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Abstract: This study investigates the dependence between stress and component strength in a
stress–strength model with bivariate stresses by incorporating a specialized Archimedean copula,
specifically the 3-dimensional Clayton copula. Diverging from prior research, we consider a scenario
where two stresses simultaneously influence the component strength, enhancing the realism of
our model. Initially, dependent parameter estimates were obtained through moment estimation.
Subsequently, maximum likelihood estimation and Bayesian estimation were employed to acquire
point and interval estimates for the model parameters. Finally, numerical simulations and real-
world data analysis were conducted to validate the accuracy and practicality of our proposed model.
This research establishes a foundation for further exploration of general dependence structures and
multi-component stress–strength correlation issues.

Keywords: stress–strength model; Archimedean copula; parametric method; Monte Carlo simulation

1. Introduction

In the field of reliability analysis, the stress–strength model plays a pivotal role. This
model characterizes the lifespan of a component with a stochastic strength denoted as X,
which is influenced by a random stress represented as Y. Component failure occurs when
applied stress surpasses the strength threshold (Y > X), while component functionality
is maintained when the strength exceeds the stress (X > Y). Consequently, equation
R = P(X > Y) serves as an indicator for evaluating component reliability. Stress–strength
models are widely used in various fields of research, especially engineering, including the
simulation of the degradation of concrete pressure vessels, degradation of rocket engines,
persistent fatigue of ceramic components and degradation of aircraft frames (see [1]). For
further applications in engineering, quality control, medicine, psychology, and mechanics
of materials, see [2–5].

In recent decades, numerous scholars have extensively explored the reliability estima-
tion of single-component stress–strength models under various data types and distribution
assumptions related to stress and strength. Kotz et al. [3] provided a comprehensive
review of the research development on the reliability issues of stress–strength models
up to the year 2003. Baklizi [6] investigated the reliability issues of single-component
stress–strength models when stress and strength follow exponential distributions based on
recorded values, employing Bayesian methods. Kundu and Gupta [7] discussed the relia-
bility issues of single-component stress–strength models when stress and strength follow
Weibull distributions with the same shape parameter but different scale parameters, using
both maximum likelihood estimation and asymptotic maximum likelihood estimation.
Lio and Tsai [8], based on progressive Type I censoring samples, obtained point estimates
of reliability parameters for single-component stress–strength models using maximum
likelihood estimation. They also derived asymptotic confidence intervals and Bootstrap
confidence intervals for the parameters, where stress and strength follow double-parameter
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Burr XII distributions. Al-Mutairi et al. [9] employed methods such as consistent unbiased
minimum variance, maximum likelihood estimation, Bayesian estimation, and Bootstrap
to study point estimates and interval estimates of parameters and reliability for single-
component stress–strength models, where stress and strength follow Lindley distributions
with different shape parameters. Nadar et al. [10] obtained point estimates and interval
estimates of parameters for single-component stress–strength models when stress and
strength follow Kumaraswamy distributions with different parameters, using classical
statistical methods and Bayesian methods. Bai et al. [11], assuming stress and strength
follow truncated proportional hazard rate distributions, provided maximum likelihood
estimates and pivotal quantity estimates for model parameters, along with the calculation
of asymptotic confidence intervals, corrected generalized confidence intervals, and Boot-
strap confidence intervals for the parameters. de la Cruz et al. [12] discussed the reliability
issues of single-component stress–strength models when stress and strength follow inde-
pendent unit-half-normal distribution models, using both maximum likelihood estimation
and bootstrap techniques to construct confidence intervals of model parameters. Recently,
Yousef et al. [13] obtained various point and interval estimators based on independent
progressive type-II censored samples from two-parameter Burr-type XII distributions when
the strength variable was subjected to the step-stress partially accelerated life test.

In the context of the stress–strength model, the relationship between stress and strength
is not inherently independent, a variety of dependencies exist between them. These varying
dependencies consequently have diverse impacts on the system’s reliability. Primarily, there
are two methods to characterize the dependency between stress and strength. One approach
is based on the joint distribution function between stress and strength, such as the bivariate
Weibull distribution (see [14]), bivariate conditional exponential distribution (see [15]), and
bivariate log-normal distribution (see [16]). However, a drawback of this method is that the
joint distribution often assumes that both marginal distributions are of the same type. The
other approach involves the use of copula functions between stress and strength. Domma
and Giordano [17] were the first to employ the Farlie Gumbel Morgenstern (FGM) copula
to characterize dependence in stress–strength models, where stress and strength follow
Burr III distributions with different parameters. Domma and Giordano [18], based on stress
and strength following different parameters of the Dagum distribution, utilized the Frank
copula to characterize the dependence and studied the reliability of stress–strength models.
Recently, James et al. [19] assumed that the dependence between stress and strength is
characterized by the FGM copula, with marginal distributions being different parameter
Rayleigh distributions. They employed maximum likelihood estimation, marginal inference
methods, and semi-parametric methods to conduct statistical analysis on the reliability of
single-component stress–strength models.

The aforementioned studies have assumed that the strength X should be smaller than
the stress Y. However, as investigated by Kotz et al. [3], many electronic devices exhibit
functional limitations at both high and low temperatures. In this paper, we consider the
reliability R = P(Y1 < X < Y2), where Y1 and Y2 are bivariate random stress variables and
X is a random strength variable. The strength X should not only be greater than stress Y1
but also be smaller than stress Y2. It may be a useful relationship in many areas.

Reliability engineering: this model is capable of predicting the probability that a
certain system or component will fail under a specific predetermined load. Engineers are
then able to optimize the design and implement appropriate precautions to minimize the
risk of failure. For example, X can be a measure of design performance, such as energy
efficiency or cost-effectiveness, Y1 and Y2 can represent the minimum and maximum limits
of target performance, and R can assess the probability that the current design meets these
performance targets.

Supply chain Management: Enterprises can use this model to assess demand fluc-
tuations in the supply chain. For example, ensuring that inventory levels are maintained
within a safe range can meet customer demand while avoiding resource overhang.
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Finance field: we can use this model to quantify financial risks. By calculating the
probability of the price fluctuations of a certain stock or asset within a given range in
a specific period of time, investors can assess and manage risks more accurately and
formulate more effective investment strategies.

Medical field: when evaluating the effectiveness of a drug or therapy, X can repre-
sent a medical indicator after treatment, such as blood pressure, cholesterol levels, or the
percentage of tumor shrinkage. Y1 and Y2 are defined as clinically significant improve-
ment thresholds.

Estimation of this reliability, predicated on independent sampling, has been explored
in studies, see [20–24]. Emura and Konno [25] derived the probability P(Y1 < X < Y2)
assuming a trivariate normal distribution for (Y1, X, Y2), with conditional independence
between (Y1, Y2|X). Additionally, Burcu and Selim [26] investigated the stress–strength
reliability model R = P(Y1 < X < Y2), utilizing a copula-based approach to account for
dependencies between stresses, under the assumption that the component’s strength lies
within these stresses.

To the best of our knowledge, until now a similar task has never been attempted for
the evaluation of R, where Y1, X, Y2 are statistics interdependent. However, this problem is
common in daily life, for example, the component strength and stresses are often interde-
pendent due to shared environmental factors, and a stronger system or component can tend
to withstand higher levels of stress. Thus, in this study, we investigate the stress–strength
reliability model R under the assumption that the strength of a component is between
dependent stresses, and stresses Y1 and Y2 are also dependent through a copula-based
approach. We model the dependence between stresses and strength variables by Clayton
copula functions. Initially, we estimate the dependence parameter using the method of
moments. Subsequently, maximum likelihood estimation (MLE) and Bayesian estimation
techniques are employed to obtain point estimates and interval estimates for model param-
eters. Finally, through numerical simulations and real data analysis, we further validate the
accuracy and practicality of our findings. Our work primarily contributes to two main areas:
First, under the conditions of bivariate stress, we have not only taken into consideration
the dependence of stress and strength but also the mutual dependence between stresses.
Second, using the method of concomitant order statistics, we have obtained the progressive
Type II censored sample of the ternary distribution. These novel contributions augment
the understanding of bivariate stress, offer new tools for analyzing censored samples in
ternary distributions, and lay a solid foundation for future research on general dependence
structures and multi-component stress–strength issues.

The subsequent sections of this paper are structured as follows. Section 2 provides an
exposition on copula theory (Archimedean copula), model description and progressive Type
II censored scheme. In Section 3, we introduce the method-of-moment for the dependence
parameter and the inference of R and model parameters, using MLE, and Bayesian methods.
Illustrative simulations and the presentation of real data analysis are found in Sections 4
and 5, respectively. Concluding remarks are outlined in Section 6.

2. Preliminaries

Before proceeding to the main results, let us first recall concepts of copula and hierar-
chical Archimedean copula which will be used.

2.1. Archimedean Copula

The copula function has demonstrated its versatility in characterizing the relationship
between variables, regardless of their individual marginal behaviors. For readers who are
new to the concept of copula and its applications, the foundational sources can be found in
the monographs by Joe [27] and Nelsen [28]. Additionally, Durante and Sempi [29] provide
a comprehensive compilation of references related to copulas.

Definition 1 ([28]). A copula is a function C : In → I with the following properties
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(i) C(v1, v2 . . . vn) is increasing in vi, i = 1, 2, . . . , n,
(ii) C(1, . . . , 1, vi, 1, . . . 1) = vi, for all i = 1, 2, . . . , n,
(iii) C(0, . . . , 0) = 0 and C(1, . . . , 1) = 1, and
(iv) for any x1, x2, . . . , xn, y1, y2, . . . , yn, if xj ≤ yj, j = 1, 2, . . . , n, then

2

∑
i1=1

2

∑
i2=1

· · ·
2

∑
in=1

(−1)i1+i2+···+in C(v1i1 , u2i2 , . . . , vnin) ≥ 0,

where vj1 = xj, vj2 = yj, j = 1, 2, . . . , n.

Another reason the copula modeling approach offers significant flexibility is due
to the availability of various copula functions. Among these, the Archimedean copula
family is a frequently used group of copula functions, it is well known that simple mul-
tivariate Archimedean copulas are perfectly symmetric, meaning that (U1, . . . , Uk) =st(
Uj1 , . . . , Ujk

)
, where (j1, j2, . . . , jk) is any of the n! permutations (1, 2, . . . , k), and =st rep-

resents the distributional equivalence of the two random variables before and after. Its
n-dimensional Archimedean copula function is defined as follows:

C(u1, u2, . . . , un) = φ
(

φ−1(u1) + φ−1(u2) + · · ·+ φ−1(un)
)

, φ ∈ Φ, (1)

where Φ represents a class of function families: φ : I → [0, ∞], is a completely monotonic
function so that it satisfies

φ(0) = 1, φ(∞) = 0, (−1)k dk

dtk φ(t) ≥ 0, k ∈ N, 0 < t < 1,

the function φ is recognized as the copula generator, and its inverse is denoted as φ−1,
commonly defined as φ−1(u) = inf{t : φ(t) = u, 0 ≤ t ≤ φ(0)} or 0. A comprehensive
resource on copulas is provided by Nelsen [28]. In this paper, we consider the Clayton
copula defined as

CC(u1, u2, u3) =

(
3

∑
i=1

u−θ
i − 2

)−1/θ

,

where θ ∈ [0, ∞), then the pdf is

cC(u1, u2, u3) = (θ + 1)(2θ + 1)

(
3

∑
i=1

u−θ
i − 2

)−(3θ+1)/θ 3

∏
i=1

u−θ−1
i . (2)

Definition 2. Let variables (X, Y) and (X′, Y′) be independent identically distributed (i.i.d), the
Kendall’s tau is defined as

τ = P
[(

X − X′)(Y − Y′) ≥ 0
]
− P

[(
X − X′)(Y − Y′) ≤ 0

]
.

If X and Y are Archimedean copula dependent, according to Definition 2, Kendall’s
tau of (X, Y) can be written as,

τ = 4
∫ 1

0
φ(t)/φ′(t)dt − 1,

where φ is the generator of the Archimedean copula.

2.2. PRHR Model

Let T be the continuous random variable with the cumulative distribution function,
probability density function and reserved hazard rate in the form of G(t) = Fµ(t), g(t) =
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µ f (t)Fµ−1(t), and r(t) = µr0(t), respectively, where F(t) is the baseline distribution and
r0(t) = f (t)/F(t) is baseline reserved hazard rate, then, T is called proportion reserved
hazard rate (PHRH) model, this model gives rise to monotonic as well as non-monotonic
failure rates even though the baseline failure rate is monotonic (see [30]). It is well known
that the PHRH model includes the following distributions.

1. Generalized exponential distribution

F(x, µ) =
(
1 − exp(−λx)

)µ,

2. Generalized Rayleigh distribution

F(x, µ) =
(
1 − exp(−λx2)

)µ,

3. Exponentiated Weibull distribution

F(x, µ) =
(
1 − exp(−λxβ)

)µ,

4. Generalized linear failure rate distribution

F(x, µ) =
(
1 − exp[−(λx + θx2)]

)µ,

5. Power normal distribution
F(x, µ) =

(
Φ(x)

)µ.

2.3. Model Description

Suppose that the product’s strength X is a non-negative continuous random variable
with cdf FX(·) and subjected to the two random stresses Y1 and Y2 from cdf GY1(·) and
GY2(·), respectively. The reliability of the product is defined as a probability of strength X
and should not only be greater than stress Y1 but also be smaller than stress Y2, that is

R = P(Y1 < X < Y2). (3)

Progressive Type II censored scheme: The traditional censored scheme is usually
aimed at the univariate or multivariable independent case. In this paper, we consider three
variables that depend on each other. The progressive Type II censored scheme is mainly
implemented by the method of concomitants of order statistics (COS).

Let (Xi, Y1i, Y2i), i = 1, 2, . . . , n be a random sample of size n from a continuous distri-
bution with distribution function F(x, y1, y2) and probability density function f (x, y1, y2). If
these pairs are ordered by the X-variate in increasing order of magnitude as X1:n ≤ X2:n ≤
· · · ≤ Xn:n then the Yi-variate paired with these order statistics are denoted by Yi[1:n], Yi[2:n],
. . . , Yi[n:n] and termed as COS (see [31]). Basically, Yi[r:n] is a Yi-value associated with Xr:n
and is not necessarily ordered with respect to Yi-observations. That is, Yi[r:n] does not
necessarily have the rank r among all Y′

i s . If there is a strong positive (negative) correlation
between X and Yi then the values of COS are roughly in increasing (decreasing) order. The
ordering of concomitants Yi[r:n] and order statistics Xr:n is exactly similar if corr(X, Yi) = 1
and completely reversed if corr(X, Yi) = −1, where i = 1, 2.

The progressive Type II censored scheme can be expressed as follows: Set n in-
dependent observations placed on life testing and the progressive censoring scheme
ri, i = 1, 2, . . . , m, then, we shall denote the m completely observed failure times by
Xi:m:n, i = 1, 2, . . . , m. At the time of the first failure, (X1:m:n, Y1[1:m:n], Y2[1:m:n]), r1 units are
randomly removed from the remaining (n − 1) surviving items, in the time of the second
failure, (X2:m:n, Y1[2:m:n], Y2[2:m:n]), r2 units of the remaining n − 2 − r1 units are randomly
removed and so the test continues until the m-th failure at any time and all the remaining
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n − m − ∑m−1
i=1 ri units are removed, and last, under the schemes (n, m, r1, r2, . . . , rm), we

can observe a progressively censored sample

{(x1:m:n, y1[1:m:n], y2[1:m:n]), (x2:m:n, y1[2:m:n], y2[2:m:n]), . . . , (xm:m:n, y1[m:m:n], y2[m:m:n])}, (4)

where (xi:m:n, y1[i:m:n], y2[i:m:n])|i=1,2,...,m is observed value of (Xi:m:n, Y1[i:m:n], Y2[i:m:n])|i=1,2,...,m,
and Y1[i:m:n], Y2[i:m:n]|i=1,2,...,m are COS of Xi:m:m|i=1,2,...,m.

For more research on the progressive type II censored scheme, please refer to [32–35].

Assumption 1. Strength X, stresses Y1 and Y2 follow PRHR model with a baseline distribution F
and proportional parameter µ1, µ2 and µ3, respectively, that is

FX(·) = Fµ1(t), GY1 = Fµ2(t), and GY2 = Fµ3(t).

Assumption 2. Strength X, and stresses Y1 and Y2 are dependent through a copula-based approach.
We model the dependence between stress and strength variables by Archimedean copula, the joint
cdf is

C(Fµ1(t), Fµ2(t), Fµ3(t)) = φ

( 2

∑
i=1

φ−1(Fµi (x)
))

.

Based on (3), Assumptions 1 and 2, we find the reliability when the strength variable
X is dependent on the stress variables (Y1, Y2) in terms of Archimedean copulas such as

R = P(Y1 < X < Y2) =
∫ ∞

0
P(Y1 < x < Y2|X = x)dFX(x)

=
∫ ∞

0

[
P(Y1 < x|X = x)− P(Y1 < x, Y2 < x|X = x)

]
dFX(x).

Note, that

P(Y1 < x|X = x) = lim
△x→0

P(Y1 < x, Y2 < ∞, X < x +△x)− P(Y1 < x, Y2 < ∞, X < x)
P(X < x +△x)− P(X < x)

=
C
(

FX(x +△x), GY1(x), GY2(∞)
)
− C

(
FX(x), GY1(x), GY2(∞)

)
FX(x +△x)− FX(x)

(5)

=
∂C
(

FX(x), GY1(x)
)

∂FX(x)
,

and

P(Y1 < x, Y2 < x|X = x) = lim
△x→0

{
P(Y1 < x, Y2 < x, X < x +△x)

P(X < x +△x)− P(X < x)

− P(Y1 < x, Y2 < x, X < x)
P(X < x +△x)− P(X < x)

}
=

∂C
(

FX(x), GY1(x), GY2(x)
)

∂FX(x)
.

Therefore, the reliability when the strength variable X is dependent on the stress variables
(Y1, Y2)

R =
∫ ∞

0

[
∂C
(

FX(x),GY1
(x)
)

∂FX(x) − ∂C
(

FX(x),GY1
(x),GY2 (x)

)
∂FX(x)

]
dFX(x),

= µ1
∫ ∞

0
φ◦φ−1

φ′◦φ−1

(
Fµ1(x)

)
r0(x)

[
φ′
(

∑2
i=1 φ−1(Fµi (x)

))
− φ′

(
∑3

i=1 φ−1(Fµi (x)
))]

dx.
(6)
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3. Inference Model Parameter and Reliability R
3.1. Method-of-Moment for Dependence Parameter

The method-of-moment is a semi-parametric technique for estimating the dependency
parameter θ based on the inverse of Kendall’s Tau. According to Nelsen [28],

τrs = 1 + 4
∫ 1

0

φ(t)
φ′(t)

dt,

for all possible pairs (Xr, Xs) with r, s ∈ 1, 2, 3, we have

τ3 =
1
6 ∑

r ̸=s
τ2(Xr, Xs) = 1 + 4

∫ 1

0

φ(t)
φ′(t)

dt, (7)

where τ3 is Kendall’s tau of 3-variate copula C(·, θ1).
Further, based on the observed sample (4), the consistent estimator of τ3 can be

expressed as

τ̂3,m =
1
6 ∑

r ̸=s
τ̂2,m(Xr, Xs)

=
1
6 ∑

r ̸=s

(
4

m(m − 1) ∑
i ̸=j

I(Xir ≤ Xjr, Xis ≤ Xjs)− 1

)
. (8)

Therefore, θ̂ can be obtained from the following nonlinear equation,

θτ,m = ξ(−1)(τ̂3,m), (9)

where ξ : θ 7→ τ3.
In particular, the Kendall’s tau of Clayton copula, ξ3(θ) =

θ
θ+2 . Then, the consistent

estimator of θ can be obtained by

θ̂C =
2τ̂3,m

1 − τ̂3,m
.

3.2. Maximum Likelihood Estimators
3.2.1. Point Estimate

Let Θ = (µ1, µ2, µ3, θ), and t1i = xi:m:n, t2i = y1[i:m:n], t3i = y2[i:m:n], denote

ck(u1, u2, u3) =
∂c(u1, u2, u3)

∂uk
, ckl(u1, u2, u3) =

∂2c(u1, u2, u3)

∂uk∂ul
,

ηk(u1, u2, u3) =
ck(u1, u2, u3)

c(u1, u2, u3)
, ηkl(u1, u2, u3) =

ckl(u1, u2, u3)

c(u1, u2, u3)
,

where k, l = 1, 2, 3.
According to Balakrishnan and Kim [36], the likelihood function L(t1i, t2i, y3i, Θ) is

defined as:

L =
m

∏
i=1

f (t1i, t2i, y3i, Θ)
[
1 − FX(t1i)

]ri ,

=
m

∏
i=1

fX(t1i) fY1(t2i) fY2(t3i)c
(

FX(t1i), FY1(t2i), FY2(t3i)
)[

1 − FX(t1i)
]ri

=
3

∏
k=1

m

∏
i=1

µkr0(tki)Fµk (tki)c
(

Fµ1(t1i), Fµ2(t2i), Fµ3(t3i)
)[

1 − Fµ1(t1i)
]ri .
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The log-likelihood function of L(t1i, t2i, y3i, Θ) can be expressed as

l =
3

∑
k=1

m

∑
i=1

[
log(µk) + log

(
r0(tki)

)
+ µk log

(
F(tki)

)]
+

m

∑
i=1

[
log
[
c
(

Fµ1(t1i), Fµ2(t2i), Fµ3(t3i)
)]

+ ri log
[(

1 − Fµ1(t1i)
)]]

.

By setting the first partial derivatives of l with respect to µ1, µ2, µ3 to zero, we can
derive the likelihood equations.

∂l
∂µ1

=
m
µ1

+
m

∑
i=1

log
(

F(t1i)
)[

1 + η1
(

Fµ1(t1i), Fµ2(t2i), Fµ3(t3i)
)

Fµ1(t1i)

− riFµ1(t1i)

1 − Fµ1(t1i)

]
, (10)

and

∂l
∂µk

=
m
µk

+
m

∑
i=1

log
(

F(tki)
)[

1 + ηk
(

Fµ1(t1i), Fµ2(t2i), Fµ3(t3i)
)

Fµk (tki)

]
k=2,3

. (11)

Denote that

H1(µ1) = − m

∑m
i=1 log

(
F(t1i)

)[
1 + η1

(
Fµ1(t1i), Fµ2(t2i), Fµ3(t3i)

)
Fµ1(t1i)− ri Fµ1 (t1i)

1−Fµ1 (t1i)

] , (12)

and

Hk(µk) = − m

∑m
i=1 log

(
F(tki)

)[
1 + ηk

(
Fµ1(t1i), Fµ2(t2i), Fµ3(t3i)

)
Fµk (tki)

] . (13)

Then, from (10), the MLE of µ1 can be obtained by solving the nonlinear equation

H1(µ1) = µ1.

Similarly, from (11), the MLE of µ2 and µ3 can be obtained by solving the nonlinear equation

Hk(µk) = µk,

respectively.
As the MLEs µ̂k, k = 1, 2, 3 are hard to solve analytically from (12) and (13), the

numerical methods can be considered, such as the Newton–Raphson iteration method or
other iteration methods. The following result shows the existence and uniqueness of MLE
for parameter µk, k = 1, 2, 3.

Theorem 1. For k = 1, 2, 3, if lim
uk→1

ηk(u1, u2, u3) is finite and ukηk(u1, u2, u3) is decreasing in

uk, then the MLEs of µ̂k, k = 1, 2, 3 not only exist but also remain unique.

Proof. From (10) and (11), we have

lim
µk→∞

∂l
∂µk

=
m

∑
i=1

log
(

F(tki)
)
< 0,
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and, note that lim
uk→1

ηk(u1, u2, u3) is finite, thus

lim
µ1→0

∂l
∂µ1

= ∞,

similarly, limµk→0
∂l

∂µk
= ∞ and thus µ̂k exists.

On the other hand, it is obvious that ri Fµ1 (t1i)
1−Fµ1 (t1i)

is decreasing in µ1, combine with

ukηk(u1, u2, u3) decreasing in µk, that is, η1
(

Fµ1(t1i), Fµ2(t2i), Fµ3(t3i)
)

Fµ1(t1i) is increasing
in µk, we have ∂l2/∂µ2

k < 0, then MLEs of µ̂k, k = 1, 2, 3 not only exists but also remains
unique.

Remark 1. For the Clayton copula, according to (2), we have

η1(u1, u2, u3) = −
(θ + 1)uθ

1
(
uθ

2
(
2uθ

3 − 1
)
− uθ

3
)
+ 2θuθ

2uθ
3

u1
[
uθ

1
(
uθ

2
(
2uθ

3 − 1
)
− uθ

3
)
− uθ

2uθ
3
] ,

then, for some finite value a, such that

lim
u1→1

η1(u1, u2, u3) = −
(θ + 1)

(
uθ

2
(
2uθ

3 − 1
)
− uθ

3
)
+ 2θuθ

2uθ
3

[uθ
2
(
2uθ

3 − 1
)
− uθ

3]− uθ
2uθ

3
= a,

further

u1η1(u1, u2, u3) = −
(θ + 1)uθ

1
(
uθ

2
(
2uθ

3 − 1
)
− uθ

3
)
+ 2θuθ

2uθ
3

uθ
1
(
uθ

2
(
2uθ

3 − 1
)
− uθ

3
)
− uθ

2uθ
3

. (14)

Let uθ
1 = x, a1 = (θ + 1)

(
uθ

2
(
2uθ

3 − 1
)
− uθ

3
)
, b1 = 2θuθ

2uθ
3, a2 =

(
uθ

2
(
2uθ

3 − 1
)
− uθ

3
)

and
b2 = −uθ

2uθ
3, then (14) is

h(x) = − a1x + b1

a2x + b2
,

it is obvious that h′(x) =sgn a2b1 − a1b2, note that

a1 = (θ + 1)
(

uθ
2

(
2uθ

3 − 1
)
− uθ

3

)
= (θ + 1)

[
uθ

2
(
uθ

3 − 1
)
+ uθ

3
(
uθ

2 − 1
)]

< 0,

and thus h′(x) < 0, that is u1η1(u1, u2, u3) is decreasing in u1.
By the symmetry of u1, u2, u3, it is also satisfied for k = 2, 3. Therefore, for the Clayton copula,

the conditions in Theorem 1 can be satisfied.

3.2.2. Asymptotic Confidence Intervals

In this subsection, confidence intervals (CIs) for µk, k = 1, 2, 3 are constructed by
leveraging the asymptotic normality property of MLE. The Fisher information matrix of
(µ1, µ2, µ3) can be expressed as follows:

I(θ) =

 I11 I12 I13
I21 I22 I23
I31 I32 I33

 =


− ∂2l

∂µ2
1

− ∂2l
∂µ1∂µ2

− ∂2l
∂µ1∂µ3

− ∂2l
∂µ2∂µ1

− ∂2l
∂µ2

2
− ∂2l

∂µ2∂µ3

− ∂2l
∂µ3∂µ1

− ∂2l
∂µ3∂µ1

− ∂2l
∂µ2

3

,
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where the associated elements are

I11 =
m
µ2

1
+

m

∑
i=1

{
Fµ1(t1i) log

(
F(t1i)

) ri{
1 − Fµ1(t1i)

}2

+
{

Fµ1(t1i) log
(

F(t1i)
)}2
[{

η1
(

Fµ1(t1i), Fµ2(t2i), Fµ3(t3i)
)}2Fµ1(t1i)

−η11
(

Fµ1(t1i), Fµ2(t2i), Fµ3(t3i)
)

Fµ1(t1i)− η1
(

Fµ1(t1i), Fµ2(t2i), Fµ3(t3i)
)]}

,

I1k|k=2,3
= −

m

∑
i=1

Fµ1(t1i)Fµk (tki) log
(

F(t1i)
)

log
(

F(tki)
)[

η1k
(

Fµ1(t1i), Fµ2(t2i), Fµ3(t3i)
)

−η1
(

Fµ1(t1i), Fµ2(t2i), Fµ3(t3i)
)
ηk
(

Fµ1(t1i), Fµ2(t2i), Fµ3(t3i)
)]

= Ik1|k=2,3
,

Ikk|k=2,3
=

m
µ2

k
+

m

∑
i=1

{
Fµk (tki)

{
log
(

F(tki)
)}2
[{

ηk
(

Fµ1(t1i), Fµ2(t2i), Fµ3(t3i)
)}2Fµk (tki)

−ηkk
(

Fµ1(t1i), Fµ2(t2i), Fµ3(t3i)
)

Fµk (tki)− ηk
(

Fµ1(t1i), Fµ2(t2i), Fµ3(t3i)
)]}

,

I23 = −
m

∑
i=1

Fµ2(t2i)Fµ3(t3i) log
(

F(t2i)
)

log
(

F(t3i)
)[

η23
(

Fµ1(t1i), Fµ2(t2i), Fµ3(t3i)
)

−η2
(

Fµ1(t1i), Fµ2(t2i), Fµ3(t3i)
)
η3
(

Fµ1(t1i), Fµ2(t2i), Fµ3(t3i)
)]

= I32.

By substituting µ̂k for µk in matrix I, we can obtain the observed Fisher informa-
tion matrix. Consequently, the approximate asymptotic variance-covariance matrix of
parameters µk is derived.

vc =

 var(µ̂1) cov(µ̂1, µ̂2) cov(µ̂1, µ̂3)
cov(µ̂2, µ̂1) var(µ̂2) cov(µ̂2, µ̂3)
cov(µ̂3, µ̂1) cov(µ̂3, µ̂2) var(µ̂3)

.

For 0 ≤ γ ≤ 1, the 100(1−γ)% asymptotic confidence intervals (ACIs) of µk, k = 1, 2, 3
are given by (

µ̂k − zγ/2

√
var(µ̂k), µ̂k + zγ/2

√
var(µ̂k)

)
, k = 1, 2, 3.

It is worth noting that for i = 1, 2, 3, 4, it is possible to establish µ̂k − zγ/2
√

var(µ̂k) ≤ 0.
However, this contradicts the fact that µk > 0. Therefore, employing a logarithmic transfor-
mation on µ̂k can effectively address this limitation. By utilizing both log-transformation
and delta method techniques (see [37]), the modify 100(1 − γ)% ACIs are µ̂k

exp
(

zγ/2

√
var(µ̂k)/µ̂2

k

) , µ̂iexp
(

zγ/2

√
var(µ̂k)/µ̂2

k

), k = 1, 2, 3.

In accordance with the asymptotic normality of maximum likelihood estimation and
the multivariate central limit theorem, when n → ∞, we have

(
µ̂1, µ̂2, µ̂3

)
∼ N(0, vc).

Furthermore, according to the multivariate Delta method (see [38]), we have

R̂MLE ∼ N
(

R, var(R̂MLE)
)
,

where var(R̂MLE) = R′vc(R′)T and R′ =
(

∂R
∂µ1

, ∂R
∂µ2

, ∂R
∂µ3

)
.



Symmetry 2024, 16, 265 11 of 23

Thus, for 0 ≤ γ ≤ 1, the 100(1 − γ)% ACIs of R is given by(
R̂MLE − zγ/2

√
var(R̂MLE), R̂MLE + zγ/2

√
var(R̂MLE)

)
.

Note, that 0 ≤ R ≤ 1, then the 100(1 − γ)% ACIs of R is also given by(
max{0, R̂MLE − zγ/2

√
var(R̂MLE)}, min{1, R̂MLE + zγ/2

√
var(R̂MLE)}

)
.

3.3. Bayesian Method
3.3.1. Prior and Posterior

Due to the interdependence of X, Y1, and Y2, we consider a dependent prior distribu-
tion for µ1, µ2, and µ3 following the Gamma-Dirichlet (GD) distribution. The GD Prior was
initially introduced by Peña and Gupta [39]. This prior demonstrates exceptional flexibility,
as its joint probability density function can adopt various shapes by adjusting hyperparam-
eters, encompassing both positive and negative correlations. In this study, our focus lies in
the reliability analysis of stress strength dependence; therefore, we choose to employ GD
priors to characterize the interdependence among model parameters. Furthermore, due
to the similarity between the prior form and posterior, it offers convenience in solving the
problem at hand.

To obtain the dependent prior distribution of µ1, µ2, µ3, let µ = µ1 + µ2 + µ3, and
suppose the prior of µ is

π(µ|a, b) =
ba

Γ(a)
µa−1e−bµ, (µ, a, b > 0).

For a given µ, the prior distribution of ( µ1
µ , µ2

µ , µ3
µ ) is a conditional Dirichlet distribu-

tion,

π(
µ1

µ
,

µ2

µ
|µ, c1, c2, c3) =

Γ(c1 + c2 + c3)

Γ(c1)Γ(c2)Γ(c3)

(
µ1

µ

)c1−1(
µ2

µ

)c2−1(
µ3

µ

)c3−1

,

where c1, c2, c3 > 0, are the hyperparameters.
Let c = c1 + c2 + c3, then, the joint prior of (µ, µ1, µ2, µ3) can be expressed as

π(µ,
µ1

µ
,

µ2

µ
|a, b, c1, c2, c3) =

Γ(c)
Γ(a)

ba−cµa−c+2
3

∏
j=1

bcj

Γ(cj)
µ

cj−1
j e−bµj .

The joint prior of (µ1, µ2, µ3) can be obtained through the following coordinate trans-
formation: Firstly, let x1 = µ1

µ , x2 = µ1
µ , and x3 = µ. Subsequently, the Jacobi determinant

of this transformation is calculated.

|J| =

∣∣∣∣∣∣∣∣
∂x1
∂µ1

∂x2
∂µ1

∂x3
∂µ1

∂x1
∂µ2

∂x2
∂µ2

∂x3
∂µ2

∂x1
∂µ3

∂x2
∂µ3

∂x3
∂µ3

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

µ2+µ3
µ2 − µ2

µ2 1

− µ1
µ2

µ1+µ3
µ2 1

− µ1
µ2 − µ2

µ2 1

∣∣∣∣∣∣∣∣ =
1

µ2 .

Furthermore, by utilizing the distribution equation of the variable transformation, we
derive the joint prior of (µ1, µ2, µ3) in the following manner:

π(µ1, µ2, µ3|a, b, c1, c2, c3) = π(x1, x2, x3|a, b, c1, c2, c3)|J|

=
Γ(c)
Γ(a)

ba−cµa−c
3

∏
k=1

bck

Γ(ck)
µ

ck−1
k e−bµk

:= GD(a, b, c1, c2, c3),
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where GD(a, b, c1, c2, c3) is the Gamma-Dirichlet distribution, which is employed to charac-
terize the interdependence among variables, particularly, when a = c, and µ1, µ2 and µ3
are mutually independent.

Thus, the joint posterior distribution of µ1, µ2, µ3 can be expressed as

π(µ1, µ2, µ3|Data) ∝ µa−c
3

∏
k=1

µ
ck−1
k e−bµk

3

∏
k=1

m

∏
i=1

µkr0(tki)[F(tki)]
µk

×c
(

Fµ1(t1i), Fµ2(t2i), Fµ3(t3i)
)[

1 − Fµ1(t1i)
]ri ,

and we further have

log
(
π(µ1, µ2, µ3|Data)

)
= (a − c) log(µ1 + µ2 + µ3) +

3

∑
k=1

[(ck − 1) log(µk)− bµk]

+
3

∑
k=1

m

∑
i=1

[
log(µk) + log

(
r0(tki)

)
+ µk log

(
F(tki)

)]
+

m

∑
i=1

[
log
[
c
(

Fµ1(t1i), Fµ2(t2i), Fµ3(t3i)
)]

+ri log
[(

1 − Fµ1(t1i)
)]]

.

The Bayesian estimator for any function g(µ) of the parameters µ = (µ1, µ2, µ3) under
the SELF is calculated using the following procedure:

ĝSEL(µ) =
∫ ∞

0

∫ ∞

0

∫ ∞

0
g(µ)π(µ1, µ2, µ3|Data)dµ1dµ2dµ3.

The explicit solutions for these complex integrals are evidently challenging to obtain
through direct computation. Markov Chain Monte Carlo (MCMC) sampling methods can
be employed to address and resolve these computational challenges.

3.3.2. Markov Chain Monte Carlo Sampling Method

The MCMC method serves as a versatile alternative to conventional approaches,
enabling the generation of samples from the posterior distribution for calculating the cor-
responding Bayesian estimates of unknown parameters µ = (µ1, µ2, µ3). The Metropolis–
Hastings (M-H) algorithm is widely used to estimate the desired distribution of the param-
eters, specifically when the problem dimensional is low. However, the M-H method has
the convergence deficiency mainly for the high dimensional case; some scholars have made
improvements, such as [40]. In view of the low dimension of the model considered in this
paper and the relative simplicity of the Metropolis–Hastings algorithm, we choose to use
the MH algorithm. The algorithm’s procedure can be summarized as follows (Algorithm 1):

By repeating Algorithm 1 a total of N times, we can calculate the average bias and mean
squared error for point estimates, as well as the average length and coverage probability
for interval estimates.
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Algorithm 1 The algorithm of Bayesian point estimates and interval estimates

Input: the progressive type II censored sample (xi:m:n, y1[i:m:n], y2[i:m:n])|i=1,2,...,m and the initial value
µ0

1, µ0
2, µ0

3, θ0;
Output: µ̂SEL and minl(Is){Is}.

1: for each i ∈ [1, M] do
2: Generate µj from log

(
π(µ1, µ2, µ3|Data)

)
using M-H sampling method;

3: end for
4: Burn-in first A times, we obtain

(µ(A+1), µ(A+2), . . . , µ(M));

5: Under the SELF, the Bayesian estimator of the parameters µ = (µ1, µ2, µ3) is calculated as follows:

µ̂SEL =
1

M − A

M

∑
j=A+1

µ(j).

6: Arrange (µ(A+1), µ(A+2), . . . , µ(M)), in ascending order to obtain the order vector
(µ[A+1], µ[A+2], . . . , µ[M]), then, the HPD CIs based on 100(1 − γ)% are given by

min
l(Is)

{Is},

where Is = (ν
[s]
j , ν

[s+(1−γ)M]
j ), A + 1 ≤ s ≤ γM, and l(Is) is the length of interval Is.

4. Simulation

This section presents simulation results to evaluate the effectiveness of the aforemen-
tioned techniques. By considering various combinations of (n, m) and different censoring
schemes (as shown in Table 1), and using a Clayton copula model with varying levels of
dependence (θ = 2, 3, 4, 5), we assess the performance of point and interval estimations
based on mean bias (AB), mean square error (MSE), interval length (IL), and coverage
probability (CP). Regarding the parameters, maintaining generality, we assign (µ1, µ2, µ3)
as (0.2, 0.4, 0.5) and based on (6), the real values of R are (0.43, 0.50, 0.55, 0.60).

Table 1. Censoring schemes using n and m, where a ∗ k = (a, a, · · ·, a︸ ︷︷ ︸
k

).

Scheme (40, 20) (100, 20) (100, 40)

S1 (0 ∗ 9, 20, 0 ∗ 10) (0 ∗ 9, 80, 0 ∗ 10) (0 ∗ 19, 60, 0 ∗ 20)
S2 (0 ∗ 19, 20) (0 ∗ 19, 80) (0 ∗ 39, 60)

Under progressive type II censored schemes, the stress–strength dependent samples
can be generated by taking the following Algorithm 2, first, let

c1|2(v|u) =
∂C(u, v)

∂u
, and c3|12(v2|u, v1) =

∂2C(u, v1, v2)/∂u∂v1

c(u, v1)
.

Note, that steps 1–3 in Algorithm 2 can be implemented using the ‘rcopula‘ package
in R language. Please refer to Listing A1 in the Appendix A for the specific code.

For θ = 2, 3, 4, 5, and the obtained lifetime data, using the moment method (Section 3.1),
we obtain θ̂, which is shown in Table 2.
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Table 2. Results of the K-S test for the real data.

(n, m) Scheme θ = 2 θ = 3 θ = 4 θ = 5

(40, 20) S1 1.9944 3.0050 3.9684 5.0028
S2 1.9968 2.9838 3.9880 5.0225

(100, 20) S1 2.0217 3.0088 3.9934 4.9857
S2 2.0040 2.9887 3.9898 4.9638

(100, 40) S1 1.9976 2.9975 3.9988 5.0323
S2 2.0008 3.0150 4.0024 4.9905

Algorithm 2 The algorithm of generated progressive type II censored scheme sample.

Input: the progressive type II censored schemes (n, m, r1, r2, . . . , rm), and µ0
1, µ0

2, µ0
3, θ0;

Output: the progressive type II censored sample (xi:m:n, y1[i:m:n], y2[i:m:n])|i=1,2,...,m;
1: Generate independent n dimension uniform (0, 1) vectors: u, v1 and v2;
2: Calculate ui2 = c−1

1|2(vi1|ui1), and ui3 = c−1
3|12(vi2|ui1, ui2), i = 1, 2 . . . , n, where c−1

1|2 and c−1
3|12 are

the pseudo-inverse of c1|2 and c3|12, respectively;
3: Set xi = F−1

X (ui1), yi1 = F−1
Y1

(ui2) and yi2 = F−1
Y2

(ui3), then (xi, yi1, yi2) is a random sample from
C(FX(x), FY1 (x), FY2 (x));

4: Under the progressive type II censored schemes (n, m, r1, r2, . . . , rm), obtain the censored sample

{(x1:m:n, y1[1:m:n], y2[1:m:n]), (x2:m:n, y1[2:m:n], y2[2:m:n]), . . . , (xm:m:n, y1[m:m:n], y2[m:m:n])},

where {xj:m:n}j=1,2,...,m is progressive type II censored order statistic and {y1[j:m:n]}j=1,2,...,m and
{y2[j:m:n]}j=1,2,...,m are concomitants of order statistics.

According to Algorithm 2, the observed data of progressive type II censored scheme
were obtained. For MLE, we employ the Newton–Raphson and Delta techniques to derive
point estimators and interval estimations of unknown parameters and reliability, respec-
tively. The entire process is replicated 10,000 times. Occasionally, the previously derived
asymptotic confidence intervals may exhibit a negative lower limit; therefore, we utilize log-
arithmic transformation to develop asymptotic confidence intervals (see subsection 3.2.2).
For Bayesian estimation, following Congdon’s recommendations (see [41]), we have evalu-
ated nearly non-informative proper priors by setting hyperparameters as a = b = 0.001 and
c1 = c2 = c3 = 1. In the Metropolis–Hastings algorithm (Algorithm 1), we set N = 10,000
and A = 1000 for simulation purposes with 1000 iterations performed.

It should be noted that MCMC output analysis is necessary for assessing the conver-
gence of the iteration process in the M-H algorithm, and partial results are presented in
Figures 1 and 2 (when n = 100, m = 20; CS = S1 and S2).
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Figure 1. The trace and autocorrelation plots of µ1, µ2, µ3 and R for MCMC chain based on S1.
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Figure 2. The trace and autocorrelation plots of µ1, µ2, µ3 and R for MCMC chain based on S2.

All the simulation results of MLE and Bayesian methods are provided from Tables 3–6.

Table 3. ABs and MSEs (within bracket) for MLE and Bayes point estimation of µ1, µ2 and µ3.

(n, m) Scheme
µ̂1 µ̂2 µ̂3

MLE Bayesian MLE Bayesian MLE Bayesian

θ = 2

(40, 20) S1 0.0192 (0.0012) 0.0163 (0.0010) 0.0371 (0.0055) 0.0264 (0.0047) 0.0449 (0.0083) 0.0359 (0.0061)
S2 0.0072 (0.0008) 0.0030 (0.0007) 0.0145 (0.0033) 0.0033 (0.0032) 0.0198 (0.0059) 0.0121 (0.0062)

(100, 20) S1 0.0181 (0.0008) 0.0132 (0.0006) 0.0343 (0.0039) 0.0284 (0.0035) 0.0433 (0.0060) 0.0278 (0.0056)
S2 0.0044 (0.0004) 0.0023 (0.0003) 0.0108 (0.0019) 0.0049 (0.0017) 0.0120 (0.0030) 0.0045 (0.0025)

(100, 40) S1 0.0172 (0.0006) 0.0225 (0.0008) 0.0324 (0.0027) 0.0414 (0.0035) 0.0379 (0.0040) 0.0488 (0.0055)
S2 0.0018 (0.0002) 0.0011 (0.0003) 0.0041 (0.0012) 0.0031 (0.0014) 0.0036 (0.0018) 0.0011 (0.0020)

θ = 3

(40, 20) S1 0.0189 (0.0011) 0.0159 (0.0011) 0.0353 (0.0042) 0.0298 (0.0051) 0.0456 (0.0073) 0.0317 (0.0083)
S2 0.0062 (0.0006) 0.0048 (0.0007) 0.0129 (0.0026) 0.0045 (0.0025) 0.0179 (0.0043) 0.0078 (0.0041)

(100, 20) S1 0.0170 (0.0008) 0.0158 (0.0007) 0.0326 (0.0035) 0.0310 (0.0031) 0.0416 (0.0055) 0.0354 (0.0043)
S2 0.0026 (0.0003) 0.0013 (0.0002) 0.0047 (0.0015) −0.0006 (0.0010) 0.0057 (0.0023) 0.0017 (0.0019)

(100, 40) S1 0.0151 (0.0005) 0.0102 (0.0002) 0.0286 (0.0023) 0.0124 (0.0002) 0.0354 (0.0036) 0.0020 (0.0001)
S2 0.0022 (0.0002) 0.0026 (0.0002) 0.0035 (0.0011) 0.0059 (0.0011) 0.0051 (0.0017) 0.0015 (0.0015)

θ = 4

(40, 20) S1 0.0189 (0.0011) 0.0189 (0.0013) 0.0370 (0.0045) 0.0334 (0.0047) 0.0453 (0.0068) 0.0460 (0.0085)
S2 0.0026 (0.0003) 0.0039 (0.0006) 0.0049 (0.0015) 0.0076 (0.0029) 0.0062 (0.0024) 0.0069 (0.0044)

(100, 20) S1 0.0165 (0.0008) 0.0141 (0.0007) 0.0319 (0.0032) 0.0243 (0.0028) 0.0399 (0.0051) 0.0308 (0.0043)
S2 0.0026 (0.0003) −0.0006 (0.0004) 0.0049 (0.0015) −0.0023 (0.0020) 0.0062 (0.0024) 0.0001 (0.0029)

(100, 40) S1 0.0143 (0.0005) 0.0106 (0.0003) 0.0268 (0.0020) 0.0192 (0.0013) 0.0334 (0.0031) 0.0232 (0.0022)
S2 0.0021 (0.0002) −0.0008 (0.0002) 0.0042 (0.0010) −0.0020 (0.0009) 0.0053 (0.0015) 0.0003 (0.0015)

θ = 5

(40, 20) S1 0.0194 (0.0011) 0.0190 (0.0010) 0.0367 (0.0046) 0.0343 (0.0033) 0.0462 (0.0073) 0.0458 (0.0059)
S2 0.0055 (0.0006) 0.0032 (0.0005) 0.0114 (0.0025) 0.0061 (0.0019) 0.0127 (0.0038) 0.0105 (0.0030)

(100, 20) S1 0.0161 (0.0008) 0.0161 (0.0007) 0.0320 (0.0032) 0.0313 (0.0027) 0.0395 (0.0050) 0.0413 (0.0043)
S2 0.0030 (0.0004) 0.0055 (0.0004) 0.0061 (0.0016) 0.0094 (0.0017) 0.0072 (0.0024) 0.0113 (0.0025)

(100, 40) S1 0.0150 (0.0006) 0.0102 (0.0003) 0.0286 (0.0023) 0.0165 (0.0013) 0.0364 (0.0035) 0.0246 (0.0005)
S2 0.0015 (0.0002) 0.0012 (0.0005) 0.0028 (0.0010) 0.0017 (0.0002) 0.0026 (0.0016) 0.0014 (0.0010)
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Table 4. ABs and MSEs (within bracket) for MLE and Bayes point estimation of R.

(n, m) Method θ = 2 θ = 3 θ = 4 θ = 5

(40, 20)
MLE S1 0.0056 (0.0005) 0.0060 (0.0004) 0.0044 (0.0002) 0.0046 (0.0002)

S2 0.0029 (0.0005) 0.0026 (0.0003) 0.0026 (0.0002) 0.0026 (0.0003)

Bayesian S1 0.0062 (0.0006) 0.0009 (0.0005) 0.0063 (0.0003) 0.0057 (0.0003)
S2 0.0035 (0.0005) 0.0014 (0.0003) −0.0011 (0.0002) 0.0020 (0.0001)

(100, 20)
MLE S1 0.0061 (0.0003) 0.0053 (0.0002) 0.0043 (0.0001) 0.0035 (0.0001)

S2 0.0009 (0.0002) 0.0005 (0.0001) 0.0009 (0.0002) 0.0002 (0.0001)

Bayesian S1 0.0008 (0.0004) 0.0010 (0.0002) 0.0034 (0.0001) 0.0049 (0.0001)
S2 −0.0003 (0.0003) 0.0029 (0.0002) 0.0009 (0.0001) 0.0007 (0.0001)

(100, 40)
MLE S1 0.0045 (0.0002) 0.0044 (0.0001) 0.0038 (0.0001) 0.0040 (0.0001)

S2 −0.0001 (0.0001) 0.0007 (0.0001) 0.0004 (0.0001) −0.0003 (0.0001)

Bayesian S1 0.0058 (0.0003) 0.0042 (0.0002) 0.0022 (0.0001) 0.0018 (0.0001)
S2 −0.0012 (0.0002) −0.0025 (0.0001) 0.0010 (0.0001) 0.0012 (0.0002)

Table 5. ILs and CPs (within bracket) for MLE and Bayes point estimation of µ1, µ2 and µ3.

(n, m) Scheme µ̂1 µ̂2 µ̂3
MLE Bayesian MLE Bayesian MLE Bayesian

θ = 2

(40, 20) S1 0.1043 (0.8760) 0.0989 (0.9400) 0.2247 (0.8640) 0.2125 (0.9100) 0.2798 (0.8790) 0.2673 (0.9400)
S2 0.0977 (0.9250) 0.0915 (0.9100) 0.2090 (0.9400) 0.1950 (0.9100) 0.2620 (0.9130) 0.2483 (0.9300)

(100, 20) S1 0.0825 (0.8590) 0.0759 (0.9000) 0.1846 (0.8610) 0.1746 (0.8900) 0.2308 (0.8600) 0.2155 (0.8900)
S2 0.0705 (0.9390) 0.0664 (0.9500) 0.1597 (0.9380) 0.1509 (0.9500) 0.1991 (0.9440) 0.1883 (0.9600)

(100, 40) S1 0.0680 (0.8180) 0.0666 (0.7500) 0.1481 (0.8420) 0.1444 (0.8000) 0.1840 (0.8600) 0.1809 (0.8100)
S2 0.0616 (0.9520) 0.0585 (0.8900) 0.1340 (0.9380) 0.1275 (0.9100) 0.1669 (0.9500) 0.1586 (0.9400)

θ = 3

(40, 20) S1 0.1000 (0.8780) 0.0935 (0.9100) 0.2071 (0.8950) 0.1954 (0.8800) 0.2596 (0.8880) 0.2423 (0.8400)
S2 0.0902 (0.9350) 0.0856 (0.8800) 0.1875 (0.9230) 0.1761 (0.9500) 0.2350 (0.9240) 0.2215 (0.9200)

(100, 20) S1 0.0811 (0.8580) 0.0760 (0.9000) 0.1720 (0.8610) 0.1622 (0.8700) 0.2152 (0.8600) 0.2015 (0.9200)
S2 0.0677 (0.9520) 0.0633 (0.9600) 0.1440 (0.9410) 0.1343 (0.9800) 0.1800 (0.9480) 0.1691 (0.9700)

(100, 40) S1 0.0652 (0.8390) 0.1214 (0.9520) 0.1363 (0.8590) 0.1436 (0.9460) 0.1702 (0.8600) 0.1528 (0.9620)
S2 0.0578 (0.9450) 0.0546 (0.9300) 0.1207 (0.9420) 0.1149 (0.9400) 0.1511 (0.9340) 0.1420 (0.9300)

θ = 4

(40, 20) S1 0.0984 (0.8620) 0.0920 (0.8400) 0.2011 (0.8660) 0.1877 (0.8500) 0.2510 (0.8780) 0.2371 (0.7800)
S2 0.0670 (0.9300) 0.0813 (0.9100) 0.1391 (0.9290) 0.1673 (0.9100) 0.1739 (0.9280) 0.2080 (0.8900)

(100, 20) S1 0.0808 (0.8410) 0.0739 (0.8300) 0.1670 (0.8650) 0.1526 (0.8600) 0.2089 (0.8500) 0.1914 (0.8600)
S2 0.0670 (0.9300) 0.0618 (0.8900) 0.1391 (0.9290) 0.1285 (0.8800) 0.1739 (0.9280) 0.1616 (0.8700)

(100, 40) S1 0.0644 (0.8470) 0.0594 (0.9400) 0.1319 (0.8610) 0.1217 (0.9300) 0.1648 (0.8640) 0.1525 (0.9100)
S2 0.0560 (0.9330) 0.0511 (0.9100) 0.1152 (0.9370) 0.1048 (0.8900) 0.1440 (0.9310) 0.1319 (0.9000)

θ = 5

(40, 20) S1 0.0978 (0.8500) 0.0922 (0.9100) 0.1979 (0.8570) 0.1865 (0.9300) 0.2475 (0.8550) 0.2343 (0.9000)
S2 0.0846 (0.9310) 0.0805 (0.9000) 0.1722 (0.9220) 0.1640 (0.9100) 0.2146 (0.9290) 0.2059 (0.9200)

(100, 20) S1 0.0804 (0.8560) 0.0747 (0.8700) 0.1647 (0.8450) 0.1532 (0.8900) 0.2057 (0.8630) 0.1918 (0.8900)
S2 0.0670 (0.9210) 0.0636 (0.8800) 0.1374 (0.9230) 0.1303 (0.8800) 0.1717 (0.9230) 0.1627 (0.8900)

(100, 40) S1 0.0644 (0.8310) 0.1205 (0.9300) 0.1307 (0.8300) 0.1036 (0.9200) 0.1636 (0.8240) 0.1545 (0.8500)
S2 0.0550 (0.9300) 0.0423 (0.8512) 0.1121 (0.9190) 0.0325 (0.8400) 0.1399 (0.9160) 0.0256 (0.9300)
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Table 6. ILs and CPs (within bracket) for MLE and Bayes point estimation of R.

(n, m) Method θ = 2 θ = 3 θ = 4 θ = 5

(40, 20)
ACI S1 0.1318 (0.9920) 0.0960 (0.9870) 0.0744 (0.9860) 0.0627 (0.9740)

S2 0.1214 (0.9870) 0.0866 (0.9890) 0.0691 (0.9790) 0.0567 (0.9670)

HPD S1 0.0703 (0.8800) 0.0561 (0.8300) 0.0475 (0.8300) 0.0422 (0.8400)
S2 0.0663 (0.8200) 0.0534 (0.9200) 0.0450 (0.8900) 0.0396 (0.9200)

(100, 20)
ACI S1 0.1019 (0.9950) 0.0730 (0.9900) 0.0561 (0.9770) 0.0468 (0.9630)

S2 0.0876 (0.9920) 0.0613 (0.9820) 0.0876 (0.9920) 0.0399 (0.9680)

HPD S1 0.0549 (0.8000) 0.0386 (0.8900) 0.0359 (0.8900) 0.0312 (0.8900)
S2 0.0481 (0.8700) 0.0431 (0.8800) 0.0328 (0.8700) 0.0282 (0.8800)

(100, 40)
ACI S1 0.0855 (0.9960) 0.0613 (0.9820) 0.0481 (0.9800) 0.0400 (0.9690)

S2 0.0756 (0.9910) 0.0545 (0.9830) 0.0431 (0.9780) 0.0353 (0.9720)

HPD S1 0.0450 (0.8400) 0.0386 (0.8700) 0.0311 (0.9100) 0.0235 (0.9200)
S2 0.0417 (0.8500) 0.0337 (0.8300) 0.0280 (0.8400) 0.0154 (0.9500)

It can be seen from Tables 3 and 4 that when the dependent parameters and the cen-
sored scheme are given time, the deviation and MSE of the maximum likelihood estimation
and Bayes estimation of the model parameters and reliability R gradually decrease with
the increase in sample n. When the sample, dependent parameters, and censored scheme
are given time, the Bayesian estimation results are better than the maximum likelihood
estimation. When the sample and the censored scheme are given, the model parameters
and reliability R do not change significantly with the increase in the dependent parameters.
When samples and dependent parameters are given, the estimated values of parameters
and reliability under scheme S2 are significantly better than those under censored S1, which
provides suggestions for our actual data analysis.

As can be seen from Tables 5 and 6, when the dependent parameters and censored
scheme are given, ACI and IL of HPD CIs of model parameters and reliability R gradually
decrease with the increase in the sample size, but CP changes are not obvious. When
samples, dependent parameters and censored schemes are given, the IL of HPD CIs is
smaller than that of ACI. When the sample and the censored scheme are given, the IL of the
model parameters and reliability R interval estimation decreases with the increase in the
dependent parameters. When samples and dependent parameters are given, the interval IL
of parameters and reliability estimated in scheme S2 is significantly smaller than that in
scheme S1, but CP changes insignificantly.

Through the above analysis, it is found that better estimation results can be obtained
by using Bayesian estimation under the S2.

5. Real Data Application

In this section, we conduct a practical investigation using three actual datasets. Data 1
and Data 2 were examined by [42] for stress–strength reliability analysis and Data 3 was
explored by [43] for stress–strength reliability estimations. All the datasets underwent
analysis conducted by [44]. In this instance, the three datasets serve as illustrative ex-
amples of the aforementioned techniques. The specific details of these four datasets are
outlined below.

Data 1: 693.73, 704.66, 323.83, 778.17, 123.06, 637.66, 383.43, 151.48, 108.94, 50.16, 671.49,
183.16, 727.23, 257.44, 291.27, 101.15, 376.42, 163.40, 141.38, 700.74, 262.90, 353.24, 422.11, 43.93,
590.48, 212.13, 303.90, 506.60, 530.55, 177.25

Data 2: 71.46, 419.02, 284.64, 585.57, 456.60, 688.16, 662.66, 113.85, 187.85, 45.58, 578.62,
756.70, 594.29, 166.49, 707.36, 99.72, 765.14, 187.13, 145.96, 350.70, 547.44, 116.99, 375.81, 119.86,
581.60, 48.01, 200.16, 36.75, 244.53, 83.55
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Data 3: 6.53, 7, 10.42, 14.48, 16, 10, 22.70, 34, 41.55, 42, 45.28, 49.40, 53.62, 63, 83, 84, 91,
108, 112, 129, 133, 133, 139, 140, 140, 146, 149, 154, 157, 160, 160, 165, 173, 176, 218, 225, 241, 248,
273, 277, 297, 405, 417, 420, 440, 523, 583, 594, 1101, 1146, 1417

To ensure a more efficient analysis of dependencies, it is crucial to maintain a uniform
sample size across all datasets. Currently, the sample sizes for Data 1 and Data 2 are both 30,
while those for Data 3 exceed this number. To address this issue, we utilized the ’sample()’
function in R to randomly select two sets of 30 data points each from Data 3, which were
labeled as Data∗3.

Data∗3: 173.00, 16.00, 140.00, 49.40, 22.70, 133.00, 146.00, 273.00, 583.00, 112.00, 523.00,
277.00, 241.00, 10.42, 42.00, 176.00, 218.00, 1417.00, 417.00, 14.48, 140.00, 1146.00, 594.00, 297.00,
53.62, 154.00, 10.00, 7.00, 165.00, 45.28

Without loss of generality, let Data 1 represent stress Y1, Data 2 represent strength X,
and Data∗3 represent stress Y2. For ease of calculation, all the data are divided by 1000, and
sorted by COS; the transformed complete data are as follows in Table 7.

Table 7. Complete data sets.

X

0.03675 0.04558 0.04801 0.07146 0.08355 0.09972 0.11385 0.11699
0.11986 0.14596 0.16649 0.18713 0.18785 0.20016 0.24453 0.28464
0.35070 0.37581 0.41902 0.45660 0.54744 0.57862 0.58160 0.58557
0.59429 0.66266 0.68816 0.70736 0.75670 0.76514

Y1

0.00700 0.11200 0.15400 0.17300 0.04528 0.17600 0.27300 1.14600
0.29700 0.41700 0.01042 1.41700 0.58300 0.01000 0.16500 0.14000
0.01448 0.59400 0.01600 0.02270 0.14000 0.52300 0.05362 0.04940
0.24100 0.14600 0.13300 0.04200 0.27700 0.21800

Y2

0.50660 0.05016 0.21213 0.69373 0.17725 0.10115 0.15148 0.35324
0.04393 0.14138 0.25744 0.16340 0.10894 0.30390 0.53055 0.32383
0.70074 0.42211 0.70466 0.12306 0.26290 0.67149 0.59048 0.77817
0.72723 0.38343 0.63766 0.29127 0.18316 0.37642

Assuming that X follows the PRHR model with distribution function Fµ1(x), Y1
follows the PRHR model with distribution function Fµ2(x), and Y2 follows the PRHR
model with distribution function Fµ3(x), where the baseline distribution is given by
F(x) = 1 − exp(−3.5x).

First, it was checked whether the PRHR model can be used or not to analyze the three
data sets separately. With the estimated parameters, for X, Y1 and Y2, the Kolmogorov–
Smirnov statistics and the corresponding p-value and AD statistics and the corresponding
p-value are given in Table 8; the empirical distribution functions are given in Figure 3. The
p-value indicates that the PRHR model adequately fits these data sets.

Table 8. Results of the K-S test and AD test for the real data.

µ̂1 µ̂2 µ̂3 KS p-Value AD p-Value

X 1.5060 - - 0.1201 0.7650 0.6201 0.6277
Y1 - 0.7718 - 0.0996 0.9270 0.3849 0.8625
Y2 - - 1.8114 0.1157 0.7743 0.4008 0.8468

By employing the moment method (Section 3.1), we determine that the dependent
parameter θ for X, Y1, Y2 is estimated as θ̂ = 0.1184. Furthermore, we utilize a goodness-of-
fit test for copula to discern the dependence structure between X, Y1, and Y2. This test is
rooted in the multiplier central limit theorems and was introduced by [45]. We present the
goodness-of-fit test results for Clayton, Gumbel and Frank copula applied to X and Y1 and
Y2 in Table 9. The p-value indicates that the Clayton copula provides an adequate fit for the
dependence of these data sets.
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Figure 3. Comparative plots of the empirical distribution of the sample data and the fitted distribution
of real data sets.

Table 9. Goodness-of-fit test for copula.

Clayton Gumbel Frank

statistic 0.0349 0.0576 0.0533
p-value 0.5099 0.2129 0.1337

Based on complete data sets (Table 7), the MLEs and Bayesian estimator and 95% ACIs
and HPD CIs of µ1, µ2, µ3 and R are given in Table 10, and trace plots are given in Figure 4.
As can be seen from Figure 4, the estimated value has good convergence and stability.

Table 10. Estimate results of µ1, µ2, µ3 and R based on complete data sets.

µ̂1 µ̂2 µ̂3 R̂

MLE 1.5060 0.7718 1.8114 0.2593

Bayesian 1.5035 0.7867 1.7995 0.2559

ACI (1.0562, 2.1472) (0.5410, 1.1010) (1.2703, 2.5832) (0, 0.7127)

HPD (0.9771, 2.0248) (0.5328, 1.0842) (1.1715, 2.4180) (0.1971, 0.3020)

Figure 4. The trail plots of µ̂1, µ̂2, µ̂3 and R̂ under complete sample.

For illustrative purposes, two different progressive type II censored samples have
been generated from the above sets:

S1 : (0 ∗ 7, n − m, 0 ∗ 7), and, S2 : (0 ∗ (m − 1), n − m).

Based on schemes S1 and S2, the data sets are as follows in Tables 11 and 12, respec-
tively. The MLEs and Bayesian estimator and 95% ACIs and HPD CIs of µ1, µ2, µ3 and R
are given in Table 13, and trace plots are given in Figures 5 and 6, respectively. As can
be seen from Figures 5 and 6, the estimated value has good convergence and stability. By
comparing the complete sample and S1 and S2, it is easy to find that the estimated results
of scheme S1 are very close to the complete sample.
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Table 11. Censored data sets under S1.

X 0.03675 0.04558 0.04801 0.07146 0.08355 0.09972 0.11385 0.11699
0.58557 0.59429 0.66266 0.68816 0.70736 0.75670 0.76514

Y1
0.00700 0.11200 0.15400 0.17300 0.04528 0.17600 0.27300 1.14600
0.04940 0.24100 0.14600 0.13300 0.04200 0.27700 0.21800

Y2
0.50660 0.05016 0.21213 0.69373 0.17725 0.10115 0.15148 0.35324
0.77817 0.72723 0.38343 0.63766 0.29127 0.18316 0.37642

Table 12. Censored data sets under S2.

X 0.03675 0.04558 0.04801 0.07146 0.08355 0.09972 0.11385 0.11699
0.11986 0.14596 0.16649 0.18713 0.18785 0.20016 0.24453

Y1
0.00700 0.11200 0.15400 0.17300 0.04528 0.17600 0.27300 1.14600
0.29700 0.41700 0.01042 1.41700 0.58300 0.01000 0.16500

Y2
0.50660 0.05016 0.21213 0.69373 0.17725 0.10115 0.15148 0.35324
0.04393 0.14138 0.25744 0.16340 0.10894 0.30390 0.53055

Table 13. Estimate results of µ1, µ2, µ3 and R based on progressive type II censored data sets.

Scheme µ̂1 µ̂2 µ̂3 R̂

MLE S1 1.6394 0.9155 1.9865 0.2579
S2 1.4159 0.8687 1.3142 0.1953

Bayesian S1 1.6242 0.9300 1.9563 0.2579
S2 1.4068 0.8793 1.3084 0.1952

ACI S1 (1.1249, 2.3894) (0.5549, 1.5104) (1.2065, 3.2707) (0, 0.9555)
S2 (0.9864, 2.0323) (0.5275, 1.4303) (0.7956, 2.1706) (0, 0.5896)

HPD S1 (1.0167, 2.2383) (0.4821, 1.3829) (1.0642, 2.9352) (0.1742, 0.3185)
S2 (0.9048, 1.9051) (0.4896, 1.3326) (0.6759, 1.9447) (0.1276, 0.2478)

Figure 5. The trail plots of µ̂1, µ̂2, µ̂3 and R̂ under scheme S1.

Figure 6. The trail plots of µ̂1, µ̂2, µ̂3 and R̂ under sample S2.

6. Conclusions

In this paper, the problem of statistical analysis and reliability evaluation of the
product-dependent stress–strength model with double stress is deeply studied. In this
model, the dependent structure is described by a 3-dimensional Clayton copula function,
with marginal distributions selected from the PRHR model. By employing a progressive
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Type II censoring scheme, we obtained MLE and Bayesian estimates for the model param-
eters and reliability. The simulation results indicate that both sample size and censoring
scheme significantly impact the outcomes, with Bayesian estimation outperforming MLE.
The real data analysis further proves that the model can be successfully applied to the
statistical modeling analysis of real data.

In the field of reliability engineering, the utilization of this model enhances the compre-
hension of system and product performance behaviors, improves the accuracy of reliability
predictions, and provides robust quantitative foundations for decision-making, which is an
indispensable aspect in achieving high-quality, high-performance, and cost-effective engi-
neering practices. In medical applications, this model holds great potential to assist doctors
in comprehending the probability of treatment effectiveness, enabling more scientifically
informed clinical decisions and ultimately enhancing the efficiency and effectiveness of
medical interventions. Through our study outlined in this article, we have identified that
defining the research problem accurately is crucial for practical applications; furthermore, it
is essential to identify key random variables X and determine the scope of interest (Y1, Y2).
Subsequently, correct distributional assumptions along with parameter estimation based
on the analysis of collected sample data are made to establish a statistical model. Finally,
inference is performed on the established model which leads to appropriate formulation or
adjustment strategies based on inferred results.

This study solely focused on the dual-stress–strength model of a single component;
however, with the development of society and the progress of science and technology, the
complexity of products and the diversity of services have led to the emergence of more
and more complex systems, most of which are multi-component systems. Therefore, how
to study the reliability of multi-component systems has become a topic of wide concern.
In the follow-up study, we will consider the reliability evaluation of the multi-component
dual stress strength model. As pointed out by the reviewers, the M-H algorithm has the
problem of insufficient convergence in the case of high dimensions, so in future research,
we will explore the updated method.
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Appendix A

Generating Progressive Type II censored data is crucial throughout the manuscript;
hence, we have included R code (Listing A1) in the appendix for generating this data.
Implementations of other algorithms in the manuscript can be based on this code; therefore,
we omit it here.

Listing A1. R code of generating Progressive Type II censored data.

1 n=40;m=20; mu1 =0.2; mu2 =0.4; mu3 =0.5; theta =2
2 #Censored scheme
3 r2 <- c(rep(0, m-1), n - m)
4 r3 <- c(rep(0, 9), n - m,rep(0, 10))
5 #Generated complete data
6 sample <-function(mu1 ,mu2 ,mu3){
7 claytonCop <- claytonCopula(theta , dim = 3)
8 data1 <- rCopula(n, claytonCop)
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9 prh <- function(t,a,b) {-(log(1-t^(1/a)))/b}
10 x=prh(data1[,1],mu1 ,2)
11 y1=prh(data1[,2],mu2 ,2)
12 y2=prh(data1[,3],mu3 ,2)
13 Da=cbind(x,y1 ,y2)
14 replace_zero <- function(x) if (x == 0) 1e-10
15 else x
16 Da = apply(Da , c(1, 2), replace_zero)
17 index <- order(Da[,1])
18 Da1 <- Da[index ,]
19 return(Da1)}
20 Data=sample(mu1 ,mu2 ,mu3)
21 #Censored data based on S1
22 Data_S1=c(Data [1:10,], Data [39:40 ,])
23 #Censored data based on S2
24 Data_S2=Data [1:m,]
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