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Abstract: In this paper, we present two new classes of fuzzy negations. They are an extension of
a well-known class of fuzzy negations, the Sugeno Class. We use it as a base for our work for the
first two construction methods. The first method generates rational fuzzy negations, where we use
a second-degree polynomial with two parameters. We investigate which of these two conditions
must be satisfied to be a fuzzy negation. In the second method, we use an increasing function instead
of the parameter δ of the Sugeno class. In this method, using an arbitrary increasing function with
specific conditions, fuzzy negations are produced, not just rational ones. Moreover, we compare the
equilibrium points of the produced fuzzy negation of the first method and the Sugeno class. We use
the equilibrium point to present a novel method which produces strong fuzzy negations by using two
decreasing functions which satisfy specific conditions. We also investigate the convexity of the new
fuzzy negation. We give some conditions that coefficients of fuzzy negation of the first method must
satisfy in order to be convex. We present some examples of the new fuzzy negations, and we use
them to generate new non-symmetric fuzzy implications by using well-known production methods
of non-symmetric fuzzy implications. We use convex fuzzy negations as decreasing functions to
construct an Archimedean copula. Finally, we investigate the quadratic form of the copula and the
conditions that the coefficients of the first method and the increasing function of the second method
must satisfy in order to generate new copulas of this form.

Keywords: Sugeno class; fuzzy negation; rational function; fuzzy implication; copula;
convex function

1. Introduction

In recent years, there has been a growing body of research on fuzzy sets, systems,
and fuzzy logic and their applications in practice, as well as the construction of new
fuzzy negations, implications, and copulas. The production of a new fuzzy implication and
copula is required. Fuzzy implications are the generalization of classical (Boolean) inference
in the interval of [0, 1]. They are widely known to play an important role in the fields of
fuzzy logic, decision theory, and fuzzy control. For this reason, the generation of new fuzzy
implications has created the need to generate new fuzzy negations. Extensive research has
been conducted in the literature on the production of fuzzy negations [1–6]. We know that
we can generate fuzzy implications from aggregation functions and fuzzy negations [7–15].
Other methods of generating fuzzy implications can be achieved using additive generating
functions or by some initial implications [16–22]. Thus, fuzzy implications are useful in
fuzzy relational equations and fuzzy mathematical morphology, fuzzy measures and image
processing [23], data mining [24], and computing with words and fuzzy partitions. On the
other hand, functions with two variables, named copulas, have attracted the interest of
many researchers because they are used in many fields. Copulas [25–28] are functions of
two variables with specific properties based on probability theory and are often used in
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statistics and economics. In recent decades, the interest of many researchers in copulas has
been very intense, as is evident from the large number of different copula constructions.
Moreover, copulas introduce a new way to model multivariable data by considering the
type of structure of these variables.

Although they come from different backgrounds, copulas and fuzzy implications
have much in common with each other. The literature testifies that there have been many
in-depth studies analyzing the relationship aggregation functions in general, and references
have been made to them [29,30]. In recent years, new ways of constructing implications
and copula functions have appeared, and their properties have been extensively studied.
Fuzzy implications are studied in many areas. The construction of new fuzzy implications
requires the construction of new fuzzy negations. The goal of this paper is to continue to
construct rational fuzzy functions and, this time, fuzzy negations.

This paper is partially inspired by Sugeno-class fuzzy implication. Here, we present
two new classes of fuzzy negations, the first of which generates rational fuzzy negations
and the second of which generates rational negations assuming that the function g is
polynomial. The first one is a parametric, with two parameters γ, δ which satisfy various
conditions. We kept parameter δ from the Sugeno class and added another parameter γ just
to generalize it to a second-degree polynomial. The second method is fuzzy negation, which
is a generalization of the well-known fuzzy negation Sugeno class, replacing the parameter
δ with an increasing function g. Some conditions, like δ > −1, turn into g(x) > −1.
Compared to previous works, herein, a new function is used in place of the parameter
δ, and this creates a large range of fuzzy negations where the choice of an appropriate
function creates new implications that satisfy specific conditions. Imagine that g can be any
polynomial function of any degree, which means that the denominator can have a degree
higher than two, as the first method has. On the other hand, g can be also any other type of
function, and the produced negation is a composition of trigonometric functions or a root
function. Using all these new fuzzy negations and in combination with known methods of
constructing fuzzy implications, many new implications are produced.

A new method which produces strong fuzzy negations is presented. Strong negations
produce S-implications and satisfy some basic properties of fuzzy implications, like the
exchange principle, ordering property, and identity principle. We generalize an old method
by using the equilibrium point ε of the new fuzzy negation and two decreasing functions
f , g with specific conditions. We compare the equilibrium points of the new negations
of the two first methods. Also, we investigate which conditions the coefficients of the
produced negation of the first method and the function g of the second method must satisfy
in order to be convex. We use this convexity to produce Archimedean copulas using a
well-known method. Finally, we investigate another category of copula, the quadratic
section, which has the form C(x, y) = a(y)x2 + ( y − a(y))x. We give another proof of
condition −1 ≤ ∂a(y)

∂y ≤ 1 that the function a must satisfy. Function a(x) has at least two
roots: the numbers 0 and 1. Using root 1, and because it is also a root of the fuzzy negations,
we can give it the following form: a(x) = x·N(x), where N is a fuzzy negation. Choosing
the Sugeno class or its extension of the second method, we investigate which conditions the
parameter δ or the function g must satisfy in order for the function a to be the appropriate
for the quadratic section of the copula. With the help of fuzzy negations, we produce fuzzy
implications which we can customize into an application. They fit better because, here, we
use a function in place of a parameter δ. Thus, we can choose an appropriate inference.
We have a plethora of implications, and, therefore, we can choose the most appropriate
implication to simulate the data we have.

The paper is organized as follows. In Section 2, we recall the basic concepts and
definitions used in the paper. In Section 3, we study the newly constructed methods of
fuzzy negations, strong fuzzy negations, and their convexity. We present many examples
of the produced negations. Also, we give some examples of the new fuzzy implications
that are produced when two or more new negations are combined. Finally, we investigate
the quadratic form of the copula, and we combine the new fuzzy negations, giving extra
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conditions to produce the copula. We present examples of the quadratic form of the copula
and Archimedean copulas.

2. Preliminaries

To help the reader to become familiar with the theory, here, we outline some of the
concepts and results employed in the rest of the paper.

Definition 1. (see [30] Definition 1.4.1). The function N : [0, 1] → [0, 1] is a fuzzy negation if
the following properties are applied:

N(0) = 1 , N(1) = 0 (1)

N: is decreasing. (2)

Definition 2. (see [30] Definition 1.4.2 (i)). A fuzzy negation N is called strict if the following
properties are applied:

N is strictly decreasing. (3)

N is continuous. (4)

Definition 3. (see [30] Definition 1.4.2 (ii)). A fuzzy negation N is called strong if

N(N(x)) = x (5)

Definition 4. (see [30] Definition 1.4.2 (ii)). The solution of the equation N(x) = x is called the
equilibrium point of N. If the function N is continuous, the equilibrium point is unique.

Table 1 below shows some basic fuzzy negations used in this article.

Table 1. Examples of basic fuzzy negations.

Name Fuzzy Negations

Threshold class
Nt(x) =


1, i f x < t
1 ή 0, i f x = t
0, i f x > t

, t ∈ (0, 1)

Standard negation N(x) = 1 − x

The least fuzzy negation ND1(x) =

{
1, i f x = 0
0, i f x ∈ (0, 1]

The greatest fuzzy negation ND2(x) =

{
0, i f x = 1
1, i f x ∈ [0, 1)

Yager class Nw(x) = (1 − xw)
1
w , w > 0

Sugeno class Nδ(x) = 1−x
1+δx , δ > −1

Fuzzy implications have probably become the most important operations in fuzzy
logic, approximate reasoning, and fuzzy control. These operators not only model fuzzy
conditionals, but also make inferences in any fuzzy rule-based system. These operators are
defined as follows.

Definition 5. (see [30] Definition 1.1.1). A function I : [0, 1]2 → [0, 1] is called a fuzzy implica-
tion, if it satisfies, for all x, x1, x2, y, y1, y2 ∈ [0, 1], the following conditions:

x1≤ x2 ⇔ I(x 1, y)≥ I(x 2, y), i.e., I(·, y) is decreasing. (6)



Symmetry 2024, 16, 317 4 of 18

y1 ≤ y2 ⇔ I(x, y1) ≤ I(x, y2), i.e., I(x, ·) is increasing. (7)

I(0, 0) = 1 (8)

I(1, 1) = 1 (9)

I(1, 0) = 0 (10)

Definition 6. (see [30] Definition 1.4.15 (ii)). If I is a fuzzy implication, then the function
NI : [0, 1] → [0, 1] with the form

NI(x) = I(x, 0) (11)

is called a natural negation of I.

Definition 7. (see [30] Definitions 1.3.1, 1.5.1). A fuzzy implication I is said to satisfy:

i. the left neutrality property if:
I(1, y) = y, y ∈ [0, 1] (12)

ii. the exchange principle if:

I(x, I(y, z)) = I(y, I(x, z)), x, y, z ∈ [0, 1] (13)

iii. the identity principle if:
I(x, x) = 1, x ∈ [0, 1] (14)

iv. the ordering property if:

I(x, y) = 1 ⇔ x ≤ y, x, y ∈ [0, 1] (15)

v. the law of contraposition with respect to N if:

I(x, y) = I(N(y), N(x)) , x, y ∈ [0, 1] (16)

vi. the law of left contraposition with respect to N if:

I(N(x), y) = I(N(y), x), x, y ∈ [0, 1] (17)

vii. the law of right contraposition with respect to N if:

I(x, N(y)) = I(y, N(x)), x, y ∈ [0, 1] (18)

Definition 8. Let I be a nonempty interval of R. A function f from I to R is convex if and only if

∂2 f
∂x2 ≥ 0 (19)

Definition 9. ([28]). A function C : [0, 1]2 → [0, 1] is called a copula if it satisfies the following
properties:

C(0, t) = C(t, 0) = 0 for each 0 ≤ t ≤ 1 (20)

C(1, t) = C(t, 1) = t for each 0 ≤ t ≤ 1 (21)

The C-volume of a rectangle must be not negative, e.g.,

VH = C(x1, y1)− C(x1, y2)− C(x2, y1) + C(x1, y1) ≥ 0 (22)

for each x1 ≤ x2 and y1 ≤ y2 where 0 ≤ x1, x2, y1, y2 ≤ 1.
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Definition 10. ([28]). If the function C is a copula, then the function in form

C∗(x, y) = x + y − 1 + C(1 − x, 1 − y) (23)

f or each 0 ≤ x, y ≤ 1 is also a copula, and it is called a survival copula.

Definition 11. ([30]). If f is a decreasing function where f (1) = 0, then we define the pseudo-
inverse of function f as:

given by f [−1] =


f−1(x), i f 0 ≤ x ≤ f (0)

0 , i f f (0) ≤ x ≤ ∞
(24)

Definition 12. ([30]). Let f : [0, 1] → [0, ∞] be a continuous, strictly decreasing, and convex
function such that f (1) = 0, and let f [−1] be the pseudo-inverse. Let C : [0, 1] → [0, 1], defined by:

C(x, y) = f [−1]( f (x) + f (y)) (25)

Then, C is an Archimedean copula.

3. Results

In this section, we give definitions and proofs of the newly generated fuzzy negations.
The utility of fuzzy negations is known because, with the help of a new negation, we can
construct a family of fuzzy implications. Also, we give examples of the new negations
and the new fuzzy implications that are produced. Using the above equilibrium points
and generalizing a known formula, we construct the branching functions and we generate
strong fuzzy negations. Moreover, we combine the new fuzzy negations with the quadratic
form of the copula.

3.1. New Fuzzy Negations

Theorem 1. The function N : [0, 1] → [0, 1], with the following form:

Nγ,δ(x) =
1 − x

γx2 + δx + 1
, (26)

is a fuzzy negation if the condition γ−|γ|
2 + δ + 1 > 0 is satisfied, where γ ∈ R− {0} and δ ∈ R.

Proof. The boundary conditions (1) are satisfied:(0) = 1 N(1) = 0.
Also, the monotony condition (2):

∂Nγ,δ(x)
∂x

=
γx2 − 2γx − δ − 1

(γx2 + δχ + 1)2 =
γ(x − 1)2 − γ − δ − 1

(γx2 + δχ + 1)2 =
γ(x − 1)2 − (γ + δ + 1)

(γx2 + δχ + 1)2
γ ̸=0
=

γ
[
(x − 1)2 − (γ+δ+1)

γ

]
(γx2 + δχ + 1)2

If γ < 0 and γ + δ + 1 > 0, then γ·
[
(x − 1)2 − (γ+δ+1)

γ

]
< 0, so the monotony

condition ∂Nγ,δ(x)
∂x < 0 is satisfied.

If γ > 0 and δ + 1 > 0, then ∂Nγ,δ(x)
∂x < 0

x ∈ [0, 1] ⇔ (x − 1) 2 ≤ 1 ⇔ (x − 1)2 − γ + δ + 1
γ

≤ 1 − γ + δ + 1
γ

=
−δ − 1

γ
< 0

□
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Proposition 1. The fuzzy negation of the Theorem 1 is strong if and only if γ = 0, which means it
is the Sugeno class.

Remark 1. If γ = 0, then the produced negation is the well-known Sugeno class Nδ(x) = 1−x
δχ+1 ,

where δ > −1.

Remark 2. If γ = δ = 0, then the produced negation is the well-known classical (standard)
fuzzy negation.

Remark 3. The fuzzy negation of Theorem 1 is a strict fuzzy negation.

Theorem 2. Let g : R → [−1,+∞), an increasing function. Then, the function Ng : [0, 1] → [0, 1],
with the following form:

Ng(x) =
1 − x

x·g(x) + 1
(27)

is a fuzzy negation.

Proof. Boundary conditions (1) are satisfied: Ng(0) = 1 Ng(1) = 0.
Monotony condition (2):

∂Ng(x)
∂x

= −
∂g(x)

∂x ·x·(1 − x) + (g(x) + 1)

(x·g(x) + 1)2 < 0

□

Because g is an increasing function, ∂g(x)
∂x ≥ 0 for every x ∈ [0, 1], and g(x) ≥ −1.

Remark 4. The function of Theorem 2 is a strict fuzzy negation.

Remark 5. The function of Theorem 2 is an evolution if and only if g is a constant function.

Remark 6. If we choose g(x) = − 1
x+1 , then the fuzzy negation that is produced from Theorem 2 is

a well-known Ng(x) = 1 − x2.

Proposition 2. Let g : R → (−1,+∞), the increasing function of the Theorem 2. We define the
following increasing function, K : R → (−1,+∞), given by:

K(x) = x·g(x) (28)

If K is a concave function, then the fuzzy negation Ng of the Theorem 2 is a convex function.

Proof. If K is an increasing function, then ∂K(x)
∂x = g(x) + x· ∂g(x)

∂x ≥ 0. If K is a concave

function, then ∂2K
∂x2 ≤ 0. We will calculate the second partial derivate of K.

∂2K(x)
∂x2 =

∂
(

∂K(x)
∂x

)
∂x2 =

∂g(x)
∂x

+
∂g(x)

∂x
+ x·∂

2g(x)
∂x2 = 2·∂g(x)

∂x
+ x·∂

2g(x)
∂x2 ≤ 0

We know from Theorem 3 that Ng is a strictly decreasing function, so:

∂Ng(x)
∂x

=
∂g(x)

∂x ·
(

x2 − x
)
− (g(x) + 1)

(x·g(x) + 1)2 < 0 ⇔ ∂g(x)
∂x

·
(

x2 − x
)
− (g(x) + 1) < 0
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∂2Ng(x)
∂x2 =

[
∂2g(x)

∂x2

(
x2 − x

)
+ 2(x − 1)· ∂g(x)

∂x

]
·(x·g(x) + 1)− 2·

(
g(x) + x· ∂g(x)

∂x

)
·
[

∂g(x)
∂x ·

(
x2 − x

)
− (g(x) + 1)

(x·g(x) + 1)3 =

=
(x − 1)·

(
x· ∂2g(x)

∂x2 + 2 ∂g(x)
∂x

)
(x·g(x) + 1)− 2·

(
g(x) + x· ∂g(x)

∂x

)
·
[

∂g(x)
∂x ·

(
x2 − x

)
− (g(x) + 1)

]
(x·g(x) + 1)3 ≥ 0

x − 1 ≤ 0 , x ∈ [0, 1]

x· ∂2g(x)
∂x2 + 2 ∂g(x)

∂x ≤ 0
x·g(x) + 1 ≥ 0

g(x) + x· ∂g(x)
∂x ≥ 0

∂g(x)
∂x ·

(
x2 − x

)
− (g(x) + 1) ≤ 0


=⇒ ∂2Ng(x)

∂x2 ≥ 0

□

Proposition 3. If γ ≥ 0 and ε1, ε2 are the equilibrium points of Nγ,δ, Nδ, respectively, then

ε1 ≤ ε2 (29)

Proof. If γ ≥ 0, then γx2 + δx + 1 ≥ δχ + 1
x∈[0,1]⇔ 1−x

γx2+δx+1 ≤ 1−x
δχ+1 ⇔ Nγ,δ(x) ≤ Nδ(x) .

Let ε1, ε2 be the equilibrium points of Nγ,δ and Nδ, respectively. Suppose that ε2 < ε1,
then Nγ,δ(ε 2

)
> Nγ,δ(ε 1

)
⇔ Nγ,δ(ε 2

)
> ε1 ⇔ ε1 < Nγ,δ(ε 2

)
< Nδ(ε 2) = ε2, which is a con-

tradiction. Therefore, ε1 < ε2. □

Example 1. In Figure 1 we present the graphs of three functions, N3,5(x) = 1−x
3x2+5x+1 (the black

one), N5(x) = 1−x
1+5x (the green one), and the identity function f (x) = x. (the blue one). N3,5

belongs to fuzzy negations of Theorem 1 and N5 belongs to fuzzy negation Nδ of the Table 1.
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Figure 1. Fuzzy negations of Example 1.

As we can see, the equilibrium point of Nγ,δ ( γ = 3 > 0) is to the left of the point of
the Nδ function.

The distance between these two equilibrium points is
√

2·|ε1 − ε2|, where ε1, ε2 are
the equilibrium points of functions Nγ, Nδ, respectively.

We can produce strong branching fuzzy negations [1] where one branch is a rational
function. If N is a fuzzy negation, which is not necessary, there is a strong negation, and
N(ε) = ε, where ε is the equilibrium point of N. Thus, if N is any continuous fuzzy
negation in the interval [0, 1], then the following form [12] produces strong fuzzy negations
N1, and, in our case, rational fuzzy negations.
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Below, in Figure 2 we present the graph of the function N1

N1(x) =


N(x) , x ∈ [0, ε]

N−1(x) , x ∈ (ε, 1]
(30)
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Figure 2. Fuzzy negation N1.

We will generalize the above formula using two decreasing functions, f , g.

Theorem 3. Let ε be the equilibrium point of Ns. f : R → (−∞, 1] and g : R → [0,+∞), two
decreasing functions with the following conditions:

f−1 = g, f (0) = 1 and g(1) = 0. Then the following form is a strong fuzzy negation:

Ns(x) =


f
(

g(ε)·x
ε

)
, x ≤ ε

g(x)·ε
g(ε) , x > ε

(31)

Proof. For x ≤ ε, we have Ns(x) = f
(

g(ε)·x
ε

)
Ns(0) = f

(
g(ε)·0

ε

)
= f (0) = 1

For x > ε, we have Ns(x) = g(x)·ε
g(ε)

Ns(1) =
g(1)·ε
g(ε)

= 0

Monotony condition:
For x ≤ ε, we have Ns(x) = f

(
g(ε)·x

ε

)
For every x1, x2 ∈ [0, ε] where x1 ≤ x2

g>0⇔ g(ε)
ε ·x1 ≤ g(ε)

ε ·x2
f↘⇔

f
(

g(ε)
ε

·x1

)
≥ f

(
g(ε)

ε
·x2

)
⇔ Ns(x1) ≥ Ns(x2)

Thus, we conclude that Ns is decreasing when x ≤ ε.
For x > ε, we have Ns(x) = g(x)·ε

g(ε)

For every x1, x2 ∈ [0, ε] where x1 ≤ x2
g↘⇔ g(x1) ≥ g(x2)

g>0⇔ g(x1)·ε
g(ε) ≥ g(x2)·ε

g(ε) ⇔
Ns(x1) ≥ Ns(x2)

Thus, we conclude that Ns is decreasing when x > ε. □
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Now, we will present some examples of new fuzzy negations. We will define some
values for parameters γ and δ of Theorem 1, and we will produce new fuzzy negations.

Example 2. If we define γ = 1, δ = 0, the produced negation is N1,0(x) = 1−x
x2+1 (the green graph),

and the inverse function is N1,0
−1(x) = −1+

√
1+4x(1−x)

2x
(the black one).

In Figure 3 we present the graphs of the function N1,0, N1,0
−1.
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Figure 3. Fuzzy negations N1,0 and N1,0
−1.

Then, the produced strong fuzzy negation has the following form and graph:

Ns(x) =



1−x
x2+1 , x ∈

[
0, 3

√√
59
108 + 1

2 − 3

√√
59
108 − 1

2

]

−1+
√

1+4x(1−x)
2x , x ∈

[
3

√√
59
108 + 1

2 − 3

√√
59

108 − 1
2 , 1

] (32)

where ε = 3

√√
59

108 + 1
2 − 3

√√
59

108 − 1
2 is the equilibrium point of Ns.

In the Figure 4 we present the graph of function Ns. Particularly, the black graph is the first
branch of Ns and the green graph is the second branch of Ns.
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Example 3. For γ = −3, δ = 4, the produced negation is

N−3,4(x) =
1 − x

−3x2 + 4x + 1
(33)

In the Figure 5 the graph of function N−3,4 is presented.
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3.2. Fuzzy Implications Generated from Fuzzy Negations of Theorems 1 and 2

Fuzzy negations are very useful in the construction of both fuzzy implications and
copulas. Firstly, we will use fuzzy negations that were generated from the above methods
for the construction of fuzzy implications.

Example 4. According to the formula [8] I(x, y) = N2

(
d(x)
d(1)▼N1(y)

)
, N1, N2 are two fuzzy

negations and d : [0, 1] → [0, ∞) is an increasing and continuous function with g(0) = 0. From
Theorem 1, if we set γ = 1, δ = 1, and from Theorem 3, if g(x) = x2, then the produced negations
are N1,1(x) = 1−x

x2+x+1 and Ng(x) = 1−x
x3+1 . If we set N1 = N1,1, N2 = Ng, and d(x) =

√
x, we

generate the following fuzzy implication:

I(x, y) =
1 −

√
x(1−y)

y2+y+1(√
x(1−y)

y2+y+1

)3
+ 1

(34)

And its natural negation is

I(x, 0) = NI(x) =
1 −

√
x√

x + 1
(35)

Moreover, we can construct parametric fuzzy implications using the produced fuzzy negations
of Theorems 1 and 2.

Remark 7. If we choose a strong fuzzy negation from relation (32), then the produced fuzzy
implication satisfies the neutrality property.

Proposition 4. Let Nγ,δ , Ng be two fuzzy negations of Theorems 1, 2 with the form Nγ,δ(x) =
1−x

γx2+δx+1 Ng(x) = 1−x
x·g(x)+1 . If we set N1 = Nγ,δ, N2 = Ng, then, according to formula [8],

I(x, y) = N2

(
d(x)
d(1)▼N1(y)

)
, and the produced implication has the form:

I(x, y) = Ig
γ,δ(x, y) =

1 − d(x)
d(1) ·

1 − y
γy2 + δy + 1

d(x)
d(1) ·

1 − y
γy2 + δy + 1 ·g

(
d(x)
d(1) ·

1 − y
γy2 + δy + 1

)
+ 1

(36)

Proof. Proof is obvious. □

With this combination, we can make many rational fuzzy implications. We can make
a family of them. Also, we can use fuzzy negations as decreasing functions to construct
copulas. The following form helps us to understand this.

In the literature, various methods of manufacturing copulas have been presented.
Here, we will deal with the Archimedean copulas.
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Example 5. According to Theorem 1, if we choose for γ = −3, δ = 7, then we take the fuzzy
negation:

N−3,7(x) =
1 − x

−3x2 + 7x + 1
(37)

Fuzzy negation N−3,7 is strict and convex. Its inverse function has the form:

N−1
−3,7(x) =


7x+1−

√
61x2+2x+1
2x , 0 < x ≤ 1

1 , x = 0
(38)

And its pseudoinverse has the form:

N[−1]
−3,7(x) =


N−1
−3,7(x) , i f 0 ≤ x ≤ 1

0 , x > 1
(39)

If we define:

h1(x) = 7·
(

1 − x
−3x2 + 7x + 1

+
1 − y

−3y2 + 7y + 1

)
+ 1

h2(x) =

√
61·
(

1 − x
−3x2 + 7x + 1

+
1 − y

−3y2 + 7y + 1

)2
+ 2·

(
1 − x

−3x2 + 7x + 1
+

1 − y
−3y2 + 7y + 1

)
+ 1

h3(x) = 2·
(

1 − x
−3x2 + 7x + 1

+
1 − y

−3y2 + 7y + 1

)
then, by the form (18), a new copula is generated.

C(x, y) =



h1(x) − h2(x)
h3(x) , 0 ≤ x, y ≤ 1

0, N−3,7(x) + N−3,7(y) > 1

1, x = y = 1

(40)

Proposition 5. If γ < 0 and 2γ + δ > 0 or γ > 0 and δ2 + δ − γ > 0, then the fuzzy negation
Nγ,δ of Theorem 1 is a convex function.

Proof. If we calculate the second derivate of Nγ,δ, we have the following: ∂2 Nγ,δ(x)
∂x2 =

−γ2x3+3γ2x2+3γx+3γδx+δ2+δ−γ

(γx2+δχ+1)3 .

We define f (x) = −γ2x3 + 3γ2x + 3γx + 3γδx + δ2 + δ − γ; then:

∂ f (x)
∂x

= −3γ2x2 + 6γ2x + 3γ + 3γδ

And the discriminant of the polynomial

∆ = 36γ4 + 36γ3(1 + δ) = 36γ4 + 36γ3(1 + δ + γ − γ) = 36γ3(1 + δ + γ)

If we examine the case, γ < 0 and 2γ + δ > 0; then, ∆ = 36γ3(1 + δ + γ) < 0, which
means that ∂ f (x)

∂x < 0 ⇔ f (x) is a decreasing function, so we have f (x) > f (1) ⇔ f (x) >
(γ + δ + 1)(2γ + δ) > 0.
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In this case (γ < 0), we already know that γ + δ + 1 > 0. So, ∂2 Nγ,δ(x)
∂x2 > 0 ⇔

(2γ + δ)(γ + δ + 1) > 0 ⇔ 2γ + δ > 0.
In the case that γ > 0 and δ2 + δ − γ > 0, we have the following:

∆ = 36γ3(1 + δ + γ) > 0 ⇔ x1,2 =
−6γ2 ±

√
36γ3(1 + δ + γ)

−6γ2 =
−6γ2 ± 6γ

√
γ(1 + δ + γ)

−6γ2 =
γ ±

√
γ(1 + δ + γ)

γ

x1, x2 /∈ [0, 1], which means that ∂ f (x)
∂x > 0, for all x ∈ [0, 1] ⇔ ∂Nγ,δ(x)

∂x , is an increas-

ing function. Thus, ∂Nγ,δ(x)
∂x >

∂Nγ,δ(0)
∂x = δ2 + δ − γ > 0. □

3.3. Copulas with Quadratic Sections

We will analyze one of the linear sections of copulas, the quadratic form of the copula.
In the book of Nelsen [28], we can find the quadratic and cubic sections of copulas.

The quadratic section of the copula is defined by the form:

C(x, y) = a(y)x2 + b(y)x + c(y)

And the cubic section of the copula is defined by the form:

C(x, y) = a(y)x3 + b(y)x2 + c(y)x + d(y)

Before that, we present a proof of the equivalency ∂2C(x,y)
∂xy ≥ 0 and the last condition

of the copula. We will use the main value theorem twice.

Proposition 6. We know that, for a function to be 2-increasing, it must satisfy the inequality
C(x1, y1) + C(x2, y2)− C(x 1, y2)− C(x2, y1) ≥ 0. This inequality is equivalent to

∂2C(x, y)
∂xy

≥ 0 (41)

when C is a differentiable function.

Proof. We apply the mean value theorem for the function C(x, y1) in the interval [x1, x2]:

∃ ξ1 ∈ (x1, x2) :
∂C(ξ1 , y1)

∂x
=

C(x2, y1)− C(x1, y1)

x2 − x1

We apply the mean value theorem for the function C(x, y2) in the interval [x1, x2]:

∃ ξ1 ∈ (x1, x2) :
∂C(ξ1 , y2)

∂x
=

C(x2, y2)− C(x1, y2)

x2 − x1

Let us suppose that C(x1, y1) + C(x2, y2)− C(x 1, y2)− C(x2, y1) ≥ 0, then:

∂C(ξ1 , y2)

∂x
− ∂C(ξ1 , y1)

∂x
≥ 0 ⇔ ∂2C(x, y)

∂xy
≥ 0

The other implication is analogous, but proceeds in reverse order. □

Proposition 7. Function C : [0, 1]2 → [0, 1] with quadratic form

C(x, y) = a(y)x2 + b(y)x + c(y) (42)

is a copula if a(0) = b(0) = 0, a(1) = 0, b(1) = 1 and
∣∣∣ ∂a(y)

∂y

∣∣∣ ≤ 1.
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Proof. Employing the boundary conditions, we have the following:

C(0, y) = c(y) = 0

C(x, 0) = a(0)x2 + b(0)x = 0 ⇔ a(0) = b(0) = 0

C(1, y) = a(y) + b(y) = y ⇔ b(y) = y − a(y)

C(x, 1) = a(1)x2 + b(1)x = x ⇔ a(1) = 0, b(1) = 1

After the boundary conditions, the quadratic form of the copula takes the follow-
ing form

C(x, y) = a(y)x2 + ( y − a(y))x (43)

We know that, in order for a function to be 2-increasing, it must satisfy the follow-
ing inequality:

C(x1, y1) + C(x2, y2)− C(x 1, y2)− C(x2, y1) ≥ 0

This inequality is equivalent to ∂2C(x)
∂xy ≥ 0 when the function C is differentiable. We

will use this inequality to set some conditions for the function a(y).

∂C(x, y)
∂x

= 2xa(y) + y − a(y)

∂2C(x)
∂xy

= 2x
∂a(y)

∂y
+ 1 − ∂a(y)

∂y
⇔ ∂2C(x)

∂xy
= 1 +

∂a(y)
∂y

(2x − 1) ≥ 0

In the case of ∂a(y)
∂y ≥ 0, we have:

0 ≤ x ≤ 1 ⇔ −1 ≤ 2x − 1 ≤ 1 ⇔ −∂a(y)
∂y

≤ ∂a(y)
∂y

(2x − 1) ≤ ∂a(y)
∂y

⇔

1 − ∂a(y)
∂y

≤ 1 +
∂a(y)

∂y
(2x − 1) ≤ 1 +

∂a(y)
∂y

⇔

1 − ∂a(y)
∂y

≤ ∂2C(x)
∂xy

≤ 1 +
∂a(y)

∂y
⇔ ∂2C(x)

∂xy
≥ 0 ⇔ 1 − ∂a(y)

∂y
≥ 0 ⇔ ∂a(y)

∂y
≤ 1

In the case of ∂a(y)
∂y ≤ 0, we have:

1 +
∂a(y)

∂y
≤ ∂2C(x)

∂xy
≤ 1 − ∂a(y)

∂y
⇔ ∂2C(x)

∂xy
≥ 0 ⇔ 1 +

∂a(y)
∂y

≥ 0 ⇔ ∂a(y)
∂y

≥ −1

We conclude that the function a(y) must satisfy the following condition:

−1 ≤ ∂a(y)
∂y

≤ 1 ⇔
∣∣∣∣∂a(y)

∂y

∣∣∣∣ ≤ 1 (44)

□

Function a(y) has at least two roots: the numbers 0 and 1. Using root 1, and because
it is also a root of the fuzzy negations, we can give it the following form: a(y) = y·N(y),
where N is a fuzzy negation. Here, we can make combinations with the above generated
fuzzy negations. If we choose the Sugeno fuzzy negation, we will study what conditions
must be satisfied by coefficient δ.
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Theorem 4. Let Nδ : [0, 1] → [0, 1], the Sugeno class fuzzy negation Nδ(x) = 1−x
δχ+1 , and

a : [0, 1] → R with the form a(y) = y·Nδ(y).

I f δ ≥ 0, then − 1 ≤ ∂a(y)
∂y

≤ 1 (45)

Proof.

a(y) = y·Nδ(y) =
y·(1 − y)

δy + 1
⇔ ∂a(y)

∂y
=

−δy2 − 2y + 1

(δy + 1)2

Function a(y) must satisfy the inequality −1 ≤ ∂a(y)
∂y ≤ 1.

For ∂a(y)
∂y ≤ 1, we have −δy2−2y+1

( δy+1) 2 ≤ 1 ⇔ y(δ + 1)(δy + 2) ≥ 0 ⇔, which is always

true.
For ∂a(y)

∂y ≥ −1, we have −δy2−2y+1

( δy+1) 2 ≥ −1 ⇔ δ(δ − 1)y2 + 2(δ − 1)y + 2 ≥ 0 .

If we set f (y) = δ(δ − 1)y2 + 2(δ − 1)y + 2, then ∂ f (y)
∂y = 2δ(δ − 1)y + 2(δ − 1) =

2(δ − 1)(δy + 1).
If δ ≥ 1, then ∂ f (y)

∂y ≥ 0. Thus, f (y) ≥ f (0) = 2 > 0, (6) is true.

If −1 < δ ≤ 1, then ∂ f (y)
∂y ≤ 0. Thus, . f (y) ≥ f (1) = δ(δ − 1) + 2(δ − 1) + 2 =

δ2 + δ = δ(δ + 1) ≥ 0 ⇔ δ ≥ 0.
We therefore conclude that inequality is satisfied when δ ≥ 0. □

As follows, if we choose the fuzzy negation of Theorem 2, Ng(x) = 1−x
x·g(x)+1 , we

will study what conditions must be established by the function g in order to satisfy the
inequality −1 ≤ ∂a(y)

∂y ≤ 1. We recall that the function g is an increasing function and
g(x) > −1.

Theorem 5. Let Ng : [0, 1] → [0, 1], the fuzzy negation of the Theorem 2 and function a : [0, 1] → R
defined by a(y) = yNg(y).

I f g(y) ≥ 0 and
∂g(y)

∂y
≤ 2 then − 1 ≤ ∂a(y)

∂y
≤ 1 (46)

Proof.

a(y) = yNg(x) =
y − y2

yg(y) + 1
⇔ ∂a(y)

∂y
=

−y2g(y) + y2 ∂g(y)
∂y (y − 1) + 1 − 2y

(yg(y) + 1)2

Function a(y) must satisfy the inequality −1 ≤ ∂a(y)
∂y ≤ 1.

For ∂a(y)
∂y ≤ 1

⇔
−y2g(y) + y2 ∂g(y)

∂y (y − 1) + 1 − 2y

(yg(y) + 1)2 ≤ 1 ⇔

y2 ∂g(y)
∂y

(y − 1)− yg(y)·(y + y·g(y) + 2) ≤ 0 when g(y) ≥ 0
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For ∂a(y)
∂y ≥ −1

−y2g(y) + y2 ∂g(y)
∂y (y − 1) + 1 − 2y(

yg(y) + 1)2
≥ −1 ⇔

yg(y)[(yg(y) + 1) + (1 − y)] + (1 − y)
(

2 − y2·∂g(y)
∂y

)
≥ 0 ⇔ ∂g(y)

∂y
≤ 2

□

Example 6. If we take the quadratic section of the copula C(x, y) = a(y)x2 + ( y − a(y))x for
δ = 2 we can set a(y) = y·Nδ(y) =

y·(1−y)
2y+1 , then the produced copula is:

C(x, y) =
y·(1 − y)

2y + 1
·x2 +

(
y − y·(1 − y)

2y + 1

)
·x (47)

The survival copula (15) is defined by:

C(x, y) = x + y − 1 + C(1 − x, 1 − y) =

x + y − 1 +
y·(1 − y)

3 − 2y
·(1 − x)2 +

(
(1 − y)− y·(1 − y)

3 − 2y

)
(1 − x) (48)

Example 7. If we choose g(x) = x2 ⇔ ∂g(x)
∂x = 2x ≤ 2

x2 ⇔ 2x3 ≤ 2, which is true for every

x ∈ [0, 1]. Thus, we can produce another copula if we set a(y) = yNg(y)
g(y)=y2

= y−y2

y3+1 . Then, the
produced copula is

C(x, y) =
y − y2·x2

y3 + 1
+

(
y − y − y2

y3 + 1

)
·x (49)

The survival copula is defined by:

C(x, y) = x + y − 1 + C(1 − x, 1 − y) =

x + y − 1 +
(1 − y)− (1 − y)2·

(
1 − x)2

(1 − y)3 + 1
+

(
y − 1 − y − (1 − y)2

(1 − y)3 + 1

)
·(1 − x) (50)

3.4. A Presentation of a Hypothetical Scenario

Let X, Y represented linguistic variables, i.e., fuzzy sets. Let us also suppose that
X ⇒ Y . For each, x ∈ X and y ∈ Y correspond to a value pair (xi, yi). If we collect a “good
sample” (xi, yi), i = 1, . . . , n, then we have:

x1 ⇒ y1

x2 ⇒ y2

...

xn ⇒ yn

But since we have a “good sample”,

x1 ⇒ y1 = 1
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x2 ⇒ y2 = 1

...

xn ⇒ yn = 1

Then, using our implication, which is produced by a convex negation with a parameter
a, we have the parametric implication J(x, y, a).

Thus, we have:
x1 ⇒ y1 = J(x1, y1, a)

x2 ⇒ y2 = J(x2, y2, a)

...

xn ⇒ yn = J(xn, yn, a)

Now, we can select the “best implication” as that which has the shortest distance
from 1. That is, we see this when the number

(1 − J(x1, y1, a))2 + (1 − J(x2, y2, a))2 + . . . + (1 − J(xn, yn, a))2 (51)

becomes the minimum.
For further reading and other research applications, the development method in [31,32]

could also be applied.

4. Conclusions

The main goal of our construction of fuzzy negations is the generation of fuzzy
implications. The symmetry or lack thereof of the generated fuzzy implications plays a
key role in the application. For example, if the generated implications are symmetric, then
the cause and the causality are mixed. In our construction, the cause and the causality are
distinct. Moreover, new fuzzy implications give us new copulas. In this work, we have
proposed some novel construction methods of fuzzy negations. Firstly, we presented a new
class of rational fuzzy negations inspired by the Sugeno class fuzzy negation. Secondly, we
replaced the parameter δ of the Sugeno class with an increasing function g with specific
conditions. We generalized a form which generates strong fuzzy negations by using
two decreasing functions f , g. Also, we gave some extra conditions so that the new
fuzzy negations would be convex and we gave many examples of the new generated
fuzzy negations (see Figures 1–5). Finally, we dealt with the quadratic section of the
copula, trying to find the appropriate function a(x) using the new fuzzy negations of the
Theorems 1 and 2. As a future work, we can investigate some other methods that produce
copulas. We will produce parametric copulas and research what conditions the coefficients
must satisfy. At this point, we must emphasize the fact that our suggested method could
also be applied by using a method that is amazing, in our opinion, on the cubic section of
the copula:

C(x, y) = a(y)x3 + b(y)x2 + c(y)x + d(y) (52)

which we can find in the book of Nelsen [28]. With this method, the case of the cubic section
of the copula, which has two functions, a and b, with common roots of the numbers 0 and
1, is investigated. Using the new fuzzy negation of the first method, we can find which
conditions its coefficients must satisfy in order to produce a copula. We could accomplish
the same result using the extension of the Sugeno class. In this class, we investigate a
function g in which we must determinate properties to be satisfied such that a cubic copula
can be produced. On the other hand, we can continue to extend other well-known fuzzy
negations by using appropriate functions instead of parameters. In addition to this, we
can investigate the extension of the Yager class of fuzzy negation, where instead of the
parameter w, we can use a function with the appropriate properties.
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The more new negations are produced, the more fuzzy implications and copulas can
be generated. In research, we need many such functions of two variables in order to be able
to choose the best one for each case every time.
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