
Citation: Liang, Q.; Yan, T.; Wang, N.;

Zhu, Z.; Ye, J. A Low-Latency

Noise-Aware Tone Mapping Operator

for Hardware Implementation with a

Locally Weighted Guided Filter.

Symmetry 2024, 16, 356. https://

doi.org/10.3390/sym16030356

Academic Editor: Theodore E. Simos

Received: 8 February 2024

Revised: 13 March 2024

Accepted: 13 March 2024

Published: 15 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Low-Latency Noise-Aware Tone Mapping Operator
for Hardware Implementation with a Locally Weighted
Guided Filter
Qianwang Liang , Tianyu Yan, Nan Wang, Zhiying Zhu and Jiongyao Ye *

School of Information Science and Engineering, East China University of Science and Technology,
Shanghai 200237, China
* Correspondence: yejy@ecust.edu.cn

Abstract: A tone mapping operator (TMO) is a module in the image signal processing pipeline that is
used to convert high dynamic range images to low dynamic range images for display. Currently, state-
of-the-art TMOs typically take complex algorithms and are implemented on graphics processing units,
making it difficult to run with low latency on edge devices, and TMOs implemented in hardware
circuits often lack additional noise suppression because of latency and hardware resource constraints.
To address these issues, we proposed a low-latency noise-aware TMO for hardware implementation.
Firstly, a locally weighted guided filter is proposed to decompose the luminance image into a base
layer and a detail layer, with the weight function symmetric concerning the central pixel value of
a window. Secondly, the mean and standard deviation of the basic layer and the detail layer are
used to estimate the noise visibility according to the human visual characteristics. Finally, the gain
for the detail layer is calculated to achieve adaptive noise suppression. In this process, luminance
is first processed by the log2 function before being filtered and then symmetrically converted back
to the linear domain by the exp2 function after compression. Meanwhile, the algorithms within
the proposed TMO were optimized for hardware implementation to minimize latency and cache,
achieving a low latency of 60.32 µs under video specification of 1080 P at 60 frames per second and
objective metric smoothness in dark flat regions could be improved by more than 10% compared to
similar methods.

Keywords: video tone mapping; guided filter; low-latency; noise suppression

1. Introduction

With the development of image sensors and imaging technology, high dynamic range
(HDR) imaging has found widespread applications in medical imaging [1], autonomous
driving [2], gaming [3], and various other fields. Current imaging devices, which often
produce images with a high bit depth, coupled with the maturity of HDR synthesis tech-
niques, lead to the expectation of a growing number of HDR videos in the future. However,
most current display devices have a limited range of 8 bits [4], necessitating the use of tone
mapping operators (TMOs) to map images into the display range. The TMOs help both
highlights and shadows to display more details, providing better subjective quality.

Because of the different purposes of applying TMOs on images, contingent upon the
target application [4], diverse TMOs and their hardware implementations have continued
to be proposed in recent years. For instance, Refs. [5–7] introduced TMOs based on neural
networks, while [8–10] presented the hardware implementations optimized for different
TMOs. Therefore, research on TMOs and their hardware implementation remains an active
and important research field.

Traditional TMOs can be categorized into two types. Global TMOs, such as the
adaptive logarithmic transformation [11] and histogram-based method [12], apply a single
tone curve to the entire image, and it is straightforward and effective for most scenes.

Symmetry 2024, 16, 356. https://doi.org/10.3390/sym16030356 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16030356
https://doi.org/10.3390/sym16030356
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0009-0000-4109-8428
https://doi.org/10.3390/sym16030356
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16030356?type=check_update&version=2

Symmetry 2024, 16, 356 2 of 22

However, global TMOs may result in insufficient local contrast, leading to the loss of some
local details. Local TMOs, such as TMOs based on Retinex theory [13], the image color
appearance model [14], and the TMO proposed in [15], adjust the tone curve based on local
information around a pixel. These TMOs have been extensively developed to meet the
requirements of many applications.

In recent years, with the development of neural networks, there has been an increasing
trend in utilizing deep neural networks to perform tone mapping (TM) tasks. Numerous
TMOs based on deep neural networks have emerged. For example, Cao et al. [5] proposed
a unified framework for unsupervised image and video tone mapping based on neural
networks. Notably, to facilitate the unsupervised training process for video tone map-
ping, Ref. [5] constructed a large-scale unpaired HDR-LDR video dataset. Zhang et al. [7]
proposed a TMO that is based on the generative adversarial network architecture and intro-
duced a new high-quality 4K HDR-SDR dataset of image pairs, covering a wide range of
brightness levels and colors. Wang et al. [16] proposed a learning-based self-supervised tone
mapping operator that is trained at test time specifically for each HDR image and does not
need any data labeling. Despite offering superior visual subjective quality, these algorithms
often incur substantial latency, which can be hundreds of milliseconds, even when running
on high-performance devices, such as graphics processing units (GPUs) [17]. Therefore, it
is challenging to apply such algorithms in applications with strict latency requirements,
such as autonomous driving [18] and real-time medical image processing [19].

Moreover, TMOs tend to amplify the existing noise in the image, particularly in the
darker regions [20], and this may potentially impact subsequent processing algorithms,
such as altering the results of the following feature extraction [21]. In pursuit of higher
image quality, Gödrich et al. [22] employed the U-Net architecture in a deep learning
approach to approximate an optimized multiscale Retinex method, effectively reducing
noise in tone-mapped images [22]. However, this network structure exhibits a runtime
of several tens of milliseconds on a GPU [17]. With power and resource constraints in
embedded vision applications, a straightforward porting of software algorithms to hard-
ware platforms may result in poor performance or even system failures, failing to meet
the increasing demands of numerous embedded vision applications (such as advanced
automotive systems, medical imaging, and unmanned aerial vehicles) [4]. The primary
components of such vision-based embedded systems include image sensors, image pro-
cessing algorithms, and display monitors. For these embedded applications with stringent
time constraints, hardware acceleration is indispensable, and the ability to build optimized
custom hardware makes field-programmable gate arrays (FPGAs) and application-specific
integrated circuits (ASICs) better than GPUs [4]. The hardware implementation of image
processing algorithms must be optimized for hardware portability, as this redesigning
effort can leverage hardware platforms to achieve optimal performance. Consequently, this
has led to the development of numerous novel hardware TM algorithms and architectures,
such as [8–10,23]. However, the majority of these hardware TMOs are primarily focused
on optimizing hardware implementation or architecture, aiming to utilize fewer hardware
resources, lower latency, or achieve higher throughput. They either lack dedicated con-
sideration for noise suppression [8,10,23] or do not comprehensively address the issue of
noise [9]. The issue of noise can potentially alter the outcomes of subsequent algorithms in
the system, such as feature extraction [21] and object detection [24], thereby impacting the
result of the overall system.

In summary, for certain embedded vision applications, the currently available hardware-
implemented TMOs do not fully address the issue of noise. To further alleviate the impacts
of noise, this paper proposes a low-latency noise-aware TMO for hardware implementation.
While replacing the filter to enhance image quality, the TMO’s capability of noise suppression
(NS) is enhanced by introducing a new method for noise suppression. However, these en-
hancements increase the system latency and line buffer requirements, compromising hardware
performance. Therefore, we optimize the algorithms for hardware implementation, reducing
latency and line buffer requirements. Additionally, several operations, such as cut and data

Symmetry 2024, 16, 356 3 of 22

prediction, are introduced to refine the entire system. Finally, the feasibility of the proposed
TMO is validated on an FPGA.

Our main contributions are summarized as follows:

1. A local weighting method with a symmetric weight function is proposed in the
guided filter (GF) to enhance the edge-preserving capability of a GF under a large
regularization parameter ϵ. This enables the GF, when applied to TM or image
enhancement, to effectively mitigate halo artifacts, thereby improving the visual
subjective quality of the results.

2. A hardware-oriented noise visibility assessment method based on human visual char-
acteristics is proposed, facilitating the implementation of introduced NS in hardware.
It leverages the intrinsic information of the image without the need for calibration.
This endows the hardware TMO with noise suppression capabilities, surpassing the
current counterpart in a similar TMO.

3. Optimizations are applied to the GF and the algorithm for finding the K-th value to
reduce latency and minimize buffer requirements in hardware implementation. This
results in approximately a 1

3 reduction in overall system latency and a 2
5 reduction

in line buffer demands. These enhancements enable the TMO to handle continuous
video stream inputs in hardware, facilitating implementation on hardware.

Building upon the three aforementioned key contributions, a comprehensive hardware-
based TMO system with noise suppression has been designed and implemented, offering a
novel solution for noise-sensitive embedded visual applications.

In the following sections, the development of hardware- and software-implemented
TMOs is first introduced in Section 2. Subsequently, the three major contributions men-
tioned above are detailed in Section 3, followed by the hardware implementation and
optimization discussed in Section 4. Finally, in Section 5, to demonstrate the usefulness of
the proposed TMO, we use a series of input HDR video sequences to evaluate the proposed
TMO and similar approaches, showing the advantages of proposed TMO in NS and system
latency of hardware implementation.

2. Related Work

Currently, hardware-implemented TM algorithms predominantly rely on traditional
TM techniques, and most of them are the improvements of algorithms proposed in [25,26]
and the algorithms based on Retinex theory [8] and retinal information processing mecha-
nisms [23]. For instance, Upadhyay et al. [8] proposed a Retinex-based algorithm that em-
ploys a low-cost edge-preserving filter for illumination estimation and implemented it on an
FPGA, but their algorithm does not take into account the problem of noise. Nosko et al. [26]
designed a comprehensive HDR real-time processing system based on the Durand TMO,
which filters the maximum and minimum values by averaging from previous frames to
ensure smooth adaptation and facilitates implementation on an FPGA, enabling the system
to process the video under specification of 1080 P at 96 frames per second (1080 P @ 96 FPS).
However, with the use of a Gaussian filter, there may be some artifacts in certain situations,
and the issue of noise was not taken into consideration. Park et al. [27] proposed a hard-
ware implementation of a low-cost, high-throughput video enhancement system based
on the Retinex algorithm that minimizes hardware resources while maintaining quality
and performance by applying the concept of approximate computing to Gaussian filters
and by designing a new nontrivial exponentiation operation. Xiang et al. [23] implemented
a biological retina-inspired tone mapping processor for high-speed, low-power image
enhancement that introduced various hardware design techniques, such as adjacent frame
feature sharing, multi-layer convolution pipelining, etc. Nevertheless, both [23,27] focused
solely on optimizing the hardware implementation of the algorithm without improving
the algorithm itself. Ambalathankandy et al. [28] presented an adaptive global and local
tone mapping algorithm and its FPGA implementation, which is based on local histogram
equalization, but it demands a relatively large number of memory resources as it requires
the utilization of a downscaled frame. Lang et al. [9] noticed the issue of noise but did not

Symmetry 2024, 16, 356 4 of 22

comprehensively take into account the characteristics of the human visual system (HVS).
They proposed a method for expanding the dynamic range of a low-light night vision
system based on guided filter and adaptive detail enhancement. In the process of adaptive
detail enhancement, only the impacts of edges on noise visibility were considered, the
impacts of background brightness were ignored.

In software-implemented algorithms, some authors have taken the issue of noise into
account. Eilertsen et al. [29] addressed noise-related problems by utilizing a noise model,
the contrast sensitivity function of the human eye, and visual system threshold curves to
calculate the noise level and the gain of detail. However, this approach requires a lot of
calibration data and runs on a GPU. Hu et al. [30] designed a neural network structure that
combines TM with denoising to accomplish both tasks and explored optimal structural
arrangements, but the number of multiply–accumulate operations and learnable parame-
ters of this model significantly increased compared to a simple TM task. Gödrich et al. [22]
employed the U-Net architecture in a deep learning approach to approximate an optimized
multiscale Retinex method and used a self-supervised deep learning method to implicitly
reduce the noise in the image after tone mapping. However, these algorithms are primarily
designed for high-performance GPU platforms, which have high complexity and computa-
tional demands. Therefore, they are not suitable for applications in scenarios with strict
requirements for low latency and low noise, especially when deployment on edge devices
is necessary.

Therefore, considering the requirements for low latency and low noise in real-time
visual applications on embedded devices, such as autonomous driving [18] and real-time
medical image processing [19], we propose a hardware-oriented, low-latency TMO with
NS and validate the algorithm’s effectiveness on the FPGA platform.

3. The Proposed Low-Latency Noise-Aware TMO

Inspired by the TMO in [26], our proposed low-latency noise-aware TMO is shown
in Figure 1. The HDR color image input is initially transformed into a luminance image
through the luma module. And, the image is then converted into the log2 domain by the
log module following the cut operation. Subsequently, the luminance image is decomposed
into a base layer and a detail layer by the HLWGF module. Then, compression and NS
are applied to the base layer and the detail layer, respectively. The compressed image is
then symmetrically converted back into the linear domain, followed by normalization and
color reproduction.

cut HLWGF
base compressionlumalumaHDR

noise
suppression

detail

+ LDRcolor
reproduction

color

log exp norm

Figure 1. Diagram of proposed low-latency noise-aware TMO.

The functions of each module are summarized as follows:

1. The luma module converts the color image to a luminance image and color coefficients.
2. The cut module clamps the upper and lower bounds of the pixel value of the whole image.
3. The log module converts luminance from the linear domain to the log2 domain.
4. The HLWGF module decomposes the image into a base layer and detail layer using a

hardware-oriented locally weighted guided filter (HLWGF).
5. The noise suppression module calculates noise visibility based on human visual char-

acteristics and uses a threshold to calculate gains to suppress noise in the detail layer.
6. The exp module converts the luminance from the log2 domain to the linear domain sym-

metrically.

Symmetry 2024, 16, 356 5 of 22

7. The norm module normalizes the compressed luminance image.
8. The color reproduction module reproduces the color of the normalized image.

This paper enhances the TMO for hardware implementation through three key improve-
ments. Firstly, optimization is applied to the method of finding the K-th largest/smallest
value, enabling the TMO to efficiently process continuous video streams on hardware. Sec-
ondly, hardware-oriented optimization is performed on the GF, along with the introduction
of a local weighting mechanism, successfully enhancing its edge-preserving capability while
concurrently reducing artifacts generated under large regularization parameter ϵ. Thirdly,
to meet the high image quality requirements of the target application, an NS mechanism
based on the characteristics of HVS is introduced, which is easy to implement in hardware.
The details of these three parts are described in the following subsections.

3.1. Fast Estimation of the K-th Largest/Smallest Value for Hardware Implementation

For the cut operation, it is necessary to know the maximum clamp value and the
minimum clamp value. This problem can be described as finding the K-th largest and
smallest values in an array. There are two kinds of algorithms to solve this problem: sorting
and histogram.

For hardware implementation, the K-th largest/smallest value of the current frame
requires a latency of one entire frame. To reduce system latency and the extensive frame
buffer, we utilize an exponential filter to smooth the K-th largest/smallest value of all
previously input frames. These smoothed values are then utilized as predictions for the
K-th largest and smallest values of the current frame, as discussed in Section 4.5.

Whether it is complete sorting or partial sorting, these algorithms require significant
latency and hardware resources (such as logic resources and buffers). The latency tends
to increase linearly or logarithmically with the data size N, and some algorithms do not
support real-time continuous data stream inputs [31]. In our case, the data size is the
number of all pixels in an image. For a 1080 P image, the number of pixels can reach
2,073,600, and the input is in the form of a stream. Therefore, we adopt a histogram-based
algorithm to address this issue. However, for 16-bit depth pixels, 65,536 bins are needed
to store the count of each pixel value. The worst-case latency to obtain the final result is
65,536 cycles, which is not suitable for continuous frame inputs with intervals of only a
few thousand cycles, as it may lead to system instability when the latency exceeds the
inter-frame interval cycles. To ensure the stable processing of continuous video streams,
the use of a compressed histogram allows for lower latency and reduced buffer overhead.
The specific steps of the method are outlined below.

To locate the value at x% in an image (with dimensions W × H), it is necessary to find
the value at the W × H × x% position in the sorted image data. Taking the example of
finding the top 0.1% and bottom 0.1% values in a 1920× 1080 image, we need to find the
value at the 1920× 1080× 0.001 = 2073.6 ≈ 2074th position. Since the output image data
will be compressed to 10 bits or 8 bits, the number of histogram bins is compressed to 1024
or 256, with 13 bits each. After the data stream input of a frame is completed, the values of
1024 or 256 registers are traversed from the first and last bin to the other end, and the value
range of the top/bottom 0.1% is found when the accumulator is detected to be greater than
2074 for the first time. Here, to reduce the impacts of the cut operation on normal pixel
values, the upper bound of the top 0.1% interval is taken as the desired value. Similarly,
the lower bound of the bottom 0.1% interval is taken as the desired value (other methods
can be selected according to the situation, such as selecting the middle value of the interval).
The pseudo-code flow is shown in Algorithm 1, where img is the input image; min_num
and max_num are the bottom and top positions, respectively, calculated according to the cut
ratio; hist_bin, min_cnt, max_cnt, i, j are temporary variables; and Kth_min and Kth_max
are the estimated K-th smallest and largest values, respectively. Finally, the algorithm’s
latency and buffer requirements are reduced to 1/64 or 1/256 of the original, corresponding
to compression to 10 bits and 8 bits, respectively.

Symmetry 2024, 16, 356 6 of 22

Algorithm 1 Fast estimation of the K-th value for hardware implementation.

hist_bin[256]← 0
min_cnt← 0
max_cnt← 0
for i← 0 to N − 1 do

hist_bin[img[i]/256]← hist_bin[img[i]/256] + 1
end for
for i← 0 to 255 do

min_cnt← min_cnt + hist_bin[i]
if min_cnt ≥ min_num then

break
end if

end for
for j← 255 to 0 do

max_cnt← max_cnt + hist_bin[j]
if max_cnt ≥ max_num then

break
end if

end for
Kth_min = i× 256
Kth_max = (j + 1)× 256

In summary, the fast estimation of the K-th value can be summarized in the following
four steps:

1. Initialize the compressed histogram bins with 0.
2. Traverse and accumulate counts from both ends of the histogram toward the other end.
3. When the cumulative sum, while traversing either from left to right (right to left),

exceeds the ranking of the bottom K-th min_num (or top K-th max_num) position, exit
the traversal and record the corresponding bin index i (or j).

4. Utilize the bin index i (or j + 1) obtained in step 3, multiplied by the compression
ratio 256, to estimate the value of the K-th largest/smallest.

To assess the impacts of using the compressed histogram to obtain the K-th largest
and smallest values on the results, with other parameters held constant, we conducted
the following experiment: within the entire TM process, using the exponential filtering
method, we calculated the K-th largest and smallest values using both precise and estimated
methods, respectively, and then observed the normalized maximum luminance values of
video frames after the TMO. The test was conducted using the “Fireplace” teaser clipof
the HdM-HDR-2014 dataset [32]. For better result observation, the maximum luminance
values of the first frame for both methods were set to 255 when plotting with Matlab.

Figure 2 shows the impacts of two different methods for obtaining the K-th largest
and smallest values, and the results of the two methods in Figure 2a are almost the same.
Figure 2b presents the absolute errors in the maximum luminance between the results
obtained by the two methods, with the maximum absolute error and average absolute
error being 1.0441 and 0.3295, respectively. Consequently, the improved estimation method
minimally affects the results while significantly reducing latency and buffer requirements.

Symmetry 2024, 16, 356 7 of 22

0 50 100 150 200 250

Frame number

180

190

200

210

220

230

240

250

260

M
a
x

im
u

m
 l

u
m

in
a
n

c
e

Precise

Estimated

(a) The maximum luminance of images after TM.

0 50 100 150 200 250

Frame number

0

0.2

0.4

0.6

0.8

1

1.2

A
b

s
o

lu
te

 e
rr

o
r

(b) The absolute errors between the two methods.

Figure 2. The maximum luminance of images after TM and the absolute errors between the two methods.

3.2. Hardware-Oriented Locally Weighted Guided Filter

It is well known that a bilateral filter tends to cause gradient reversal when used for
detail enhancement or TM. In contrast, GF can alleviate this phenomenon [9,33]. Therefore,
we adopted the GF [33] to replace the bilateral filter in our TMO. For the convenience
of comparison with subsequent improvements, we recapitulate the GF algorithm here.
The GF assumes that the output image q is a linear transform of guidance image I in a
square window wk (with radius r) centered at the pixel k:

qi = ak Ii + bk, ∀i ∈ wk, (1)

where the subscript i represents a certain pixel in the image and (ak, bk) are the linear
coefficients obtained by least square method in wk.

The GF minimizes the difference between q and the filter input image p, and the cost
function in the window wk is defined as follows:

E(ak, bk) = ∑
i∈wk

((ak Ii + bk − pi)
2 + ϵa2

k), (2)

where ϵ is a regularization parameter preventing ak from being too large. The solution to
Equation (2) can be given by linear regression:

ak =

1
|w| ∑i∈wk

pi Ii − pkµk

1
|w| ∑i∈wk

(Ii − µk)
2 + ϵ

(3)

bk = pk − µkak, (4)

where µk is the mean of I in wk, |w| is the number of pixels in wk, and pk is the mean of p in
wk. However, a pixel i is involved in all the windows wk that contain i so that GF averages
all the possible values of qi. The final filter output is computed by

qi =
1
|w| ∑

k:i∈wk

(ak Ii + bk) = ai Ii + bi, (5)

where ai =
1
|w| ∑k∈wi

ak and bi =
1
|w| ∑k∈wi

bk.
The GF averages the ak and bk before obtaining the result q (as expressed in Equation (5)).

This operation is equivalent to expanding the “receptive field” of the current point, en-
larging the range that can influence the result. While this enhances the smoothness of
the filtering result, it diminishes the edge-preserving capability in large edge regions.
Furthermore, it introduces increased latency and line buffer requirements for hardware
implementation. To address these challenges, optimizations are implemented for the GF.

Symmetry 2024, 16, 356 8 of 22

To reduce the latency and line buffer cost of the GF in hardware implementation,
a hardware-oriented guided filter (HGF) is introduced. This is achieved by eliminating
the step of averaging ak and bk and directly computing the result qi using ak and bk:
qi = ak I + bk. This hardware-oriented approach results in an almost 1

2 reduction in latency
and a 2

3 reduction in line buffer.
According to the principles of the proposed TMO, which involves decomposing the

image through a GF and compressing the base layer, the algorithm aims to achieve smoother
results in relatively flat regions while preserving gradients as much as possible in large edge
regions. This facilitates retaining more detail after the TMO. To achieve a smoother result
in relatively flat regions, the parameter ϵ can be appropriately increased, typically chosen
as 2.56 (calculated as (0.1× 16)2). Further improvements in edge-preserving capability will
be addressed in subsequent work.

Figure 3 illustrates the results of image processing using a GF and an HGF with
parameters r = 2, ϵ = 2.56. These lines represent the 1D profiles of the result images at
coordinates (800, 425:544) in Matlab. Both input images for the GF and HGF are from the
first frame of FireplaceTeaser, transformed into the log2 domain. It can be observed from
Figure 3a that, in cases with a relatively large ϵ, the difference between the results of the GF
and HGF is negligible in flat regions, producing good smoothing outcomes. In large edge
regions, the HGF exhibits a slightly better capability of preserving large edges than the GF.
Figure 3b demonstrates the results after restoring details, showcasing halo artifacts near
Column index = 25 and Column index = 98. The disparity in results between the GF and
HGF is not significant, as the HGF does not fundamentally enhance edge preservation near
large edges.

0 20 40 60 80 100 120

Column index

12

12.5

13

13.5

14

14.5

15

L
u
m

in
an

ce

Original image

GF

HGF

(a) The 1D profiles of filtered images.

0 20 40 60 80 100 120

Column index

5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

L
u
m

in
an

ce

Original image

GF

HGF

(b) The 1D profiles of images after restoring detail.

Figure 3. The results of the GF and HGF.

To enhance the edge-preserving capability of HGF, it is essential to fundamentally
analyze the principles of the HGF. The scenario depicted in Figure 3 arises because the least
squares method assigns equal weights to every point within the window, resulting in a
significant impact from points on the other side of the edge with a large difference from
the central point Ik. To address this issue, the weights of points with a larger difference
from the center point Ik are reduced. The modified cost function of the HGF is defined
as follows:

E(ak, bk) = ∑
i∈wk

(ωi(ak Ii + bk − pi)
2 + ϵa2

k), (6)

where the ωi is

ωi =

1, dwi < thslow

1− (dwi−thslow
λ), thslow < dwi < λ + thslow

0, λ + thslow < dwi

, (7)

Symmetry 2024, 16, 356 9 of 22

where the dwi is

dwi =
abs(Ii − Ik)

Imax − Imin
, (8)

where Imax and Imin are the maximum and minimum values of I, respectively. The function
dwi is symmetric with respect to Ik, thereby ensuring that the weights wi also exhibit
symmetry with respect to Ik, which guarantees an equal consideration for both higher and
lower edges relative to the central pixel.

The solution to Equation (6) can be given by linear regression:

ak =
1

W ∑i∈wk
ωi pi Ii − pkµk

1
W ∑i∈wk

ωi(Ii − µk)
2 + ϵ

(9)

bk = pk − µkak, (10)

where W represents the sum of weights ωi in the local window wk and µk and pk represent
the weighted means of I and p in wk, respectively:

µk =
1

W ∑
i∈wk

ωi Ii (11)

pk =
1

W ∑
i∈wk

ωi pi (12)

Finally, the HLWGF is shown as Algorithm 2, where “ fw_mean(I, r)” means to calculate
the weighted average of image I within a window with radius r, as shown in Equation (11).
“.∗” and “./” represent the corresponding operations in Matlab, that is, two matrices of the
same size multiply or divide the data at the corresponding position.

Algorithm 2 Hardware-oriented locally weighted guided filter.

w_meanI = fw_mean(I, r)
w_meanp = fw_mean(p, r)
w_corrI = fw_mean(I. ∗ I, r)
w_corrIp = fw_mean(I. ∗ p, r)
w_varI = w_corrI − w_meanI . ∗ w_meanI
w_covIp = w_corrIp − w_meanI . ∗ w_meanp
a = w_covIp./(w_varI + ϵ)
b = w_meanp − a. ∗ w_meanI
q = a. ∗ I + b

In summary, the HLWGF can be outlined in the following four steps:

1. Compute the weighted averages of I and p in a window with radius r.
2. Calculate the weighted averages of I. ∗ I and I. ∗ p in a window with radius r.
3. Compute the weighted variance of I. ∗ I and the weighted covariance of I. ∗ p in a

window with radius r.
4. Determine the parameters a and b using Equations (9) and (10), respectively, to obtain

the result q = a. ∗ I + b.

The first frame of FireplaceTeaser was converted into the log2 domain, and it was
used as the input and guide images for the above three GFs. Other parameters were kept
consistent (r = 2, ϵ = 2.56, thslow = 0.02, λ = 0.11, Imax = max(I), Imin = min(I)). Figure 4
shows the results of the GF, HGF, and HLWGF. It can be seen that the introduction of the
local weighting mechanism significantly alleviates the halo artifacts in large edge regions.
Additionally, the capability of preserving details in flat regions is similar to other methods.
Therefore, the HLWGF effectively meets our target requirements.

Symmetry 2024, 16, 356 10 of 22

0 20 40 60 80 100 120

Column index

12

12.5

13

13.5

14

14.5

15

L
u
m

in
an

ce

Original image

GF

HGF

HLWGF

(a) The 1D profiles of filtered images.

0 20 40 60 80 100 120

Column index

5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

L
u
m

in
an

ce

Original image

GF

HGF

HLWGF

(b) The 1D profiles of images after restoring detail.

Figure 4. The results of the GF, HGF, and HLWGF.

3.3. Noise Suppression

In the process of image acquisition, noise is inevitably introduced, especially in the
case of low-light conditions. To capture well-exposed images, the gain value of camera
sensors is usually increased, leading to increased noise in the dark regions. After TM,
which enhances luminance and contrast in the dark regions, the noise in these regions
is further amplified [20], resulting in an undesirable visual subjective quality. Figure 5
shows the results before and after the proposed TMO without NS. It can be observed that
the luminance and contrast in most regions of the original image are increased, and the
noise in the dark regions becomes more pronounced (such as the zoomed-in regions). It is
difficult for traditional denoising algorithms to remove all noise without introducing new
artifacts and significantly increasing computational complexity [20]. Therefore, it is crucial
to incorporate NS during the TM process, leveraging the characteristics of noise and the
HVS to achieve improved image quality.

(a) Original image. (b) Image after TMO.

Figure 5. The images before and after the TMO.

In the process of TM, if the detail layer remains unchanged, the TM preserves local
contrast. However, if the values of the detail layer are amplified, image details are enhanced,
but there is also a risk of amplifying noise [4], which is the detail layer that contains a lot

Symmetry 2024, 16, 356 11 of 22

of noise. Therefore, we perform NS on the detail layer here. The suppression involves
multiplying each pixel in the detail layer by a gain value “g”, which depends on the local
information around each pixel. We borrow the concept of noise visibility [20] to calculate
gain “g”, whose equation is defined as follows:

g = e ·min
(

1,
thsnv

nv

)
, (13)

where e and thsnv are parameters that can be specified manually. e is the detail enhancement
factor, which determines the maximum multiple of enhancement. thsnv is the threshold of
nv (noise visibility), which together with the noise visibility nv determines the gain “g” of
detail. We design the equation of noise visibility based on the following two characteristics
of HVS:

1. The HVS perceptual threshold for changes of luminance under a dark background
is significantly lower than that under a bright background [34]. In other words,
the human eye is more sensitive to the luminance change in the dark background.

2. The contrast sensitivity of the HVS decreases with the sharpness of the transition
in the image [9]. In other words, the human eye is more sensitive to the luminance
change in flat regions than that near the sharp edges.

Firstly, we use the standard deviation stdd within a window of the detail layer as an
estimate of the noise level. Then, for the first point mentioned above, we take the average
value meanb within a window of the base layer as an estimate of the background luminance
of each pixel, defining the noise visibility factor 1 as 1

meanb
. Secondly, we use the standard

deviation stdb of the base layer as a measure of image edge sharpness. Therefore, we define
noise visibility factor 2 using the formula 1

stdb+1 . Additionally, considering the level of
noise in the detail layer, if the noise variation is greater than the variation of edges, we
consider that the noise visibility should increase. Hence, noise visibility factor 2 is modified
to 1

(θ·stdb/stdd)+1 , where θ is a manually configured parameter and the default is 3. Finally,
we define the noise visibility as follows:

nv = stdd ·
1

meanb
· 1

θ·stdb
stdd

+ 1
=

std2
d

meanb · (θ · stdb + stdd)
(14)

Considering the significant latency and hardware resources required for hardware
implementation of calculating standard deviation, we replace the standard deviation with
the “SAD”, which represents the sum of the absolute difference between each pixel of a
window and the mean of a window. Consequently, the noise visibility function is changed
as follows:

nv =
SAD2

d
meanb · (θ · SADb + SADd)

, (15)

where SADd and SADb are the SAD values of the detail layer and base layer, respectively.
In summary, the introduced NS method can be divided into the following three steps:

1. Compute the noise visibility, nv, in the image using Equation (15).
2. Set parameters e and thsnv and calculate the gain g for each point in the detail layer

using Equation (13).
3. Multiply the gain g by the corresponding points in the detail layer and add it to the

compressed base layer to restore details.

An example visualization results of noise visibility and the gain of the detail layer
for the 10th frame of FireplaceTeaser are presented in Figure 6. In Figure 6a, brighter
regions indicate higher noise visibility, while darker regions represent lower noise visibility.
In Figure 6b, brighter pixels indicate larger gain values, while darker pixels represent
smaller gain values. It is evident from the figure that noise visibility is the largest in dark,
flat regions, and the degree of NS is also the largest.

Symmetry 2024, 16, 356 12 of 22

(a) Noise visibility of detail layer. (b) Gain map of detail layer.

Figure 6. Visualization of noise visibility and gain map of detail layer.

Figure 7 shows the result of the 10th frame in FireplaceTeaser being processed by the
proposed TMO without and with NS, and the zoomed-in images of the red and green
areas are displayed on the lower left and right sides, respectively. It can be observed that,
without NS (Figure 7a), the noise of the trees in the background and the back of the person
on the left is significantly amplified compared to the original image in Figure 5a. Upon the
introduction of NS (Figure 7b), the noise level in the two areas was significantly reduced,
and there was no significant effect on detail. This illustrates the adaptive capability of
the introduced NS method, effectively suppressing dark noise while preserving details.
Further detailed tests and data are presented in Section 5.1.

(a) The image after TMO without NS. (b) The image after TMO with NS.

Figure 7. The results of the proposed TMO without and with NS.

4. Hardware Implementation of Proposed TMO

To validate the feasibility and performance of the proposed TMO in hardware, we
implemented the entire real-time TMO system on an FPGA using a pipelined design.
The target video specification for this implementation was 1080 P @ 60 FPS, operating at
a frequency of 148.5 MHz. The hardware implementation diagram is shown in Figure 8.
The module design was basically the same as Figure 1, but the function of data prediction
was designed as a hardware module, which made it easier for hardware implementation.

Symmetry 2024, 16, 356 13 of 22

The color coefficients separated from lum module were delayed by first in first out (FIFO)
cache for a certain period and used to reproduce color in color module. And, the red bold
arrow in the figure shows the flow of the pixel data stream of the video, which was finally
output by the color module for display. In the following subsections, we introduce the
functionality and implementation details of the modules not mentioned in Section 3.

lum cut predict

base

detail
HLWGF noise

suppression

base
compression

lum
norm

color
FIFO

color

color

HDR
RGB

log2

exp2+

Pixel data stream

lum
LDR
RGB

Figure 8. Hardware implementation block diagram of the whole system.

4.1. Cut

There are often some “outliers” that significantly exceed the distribution range of the
main pixel values in the image. During the following normalization and mapping (“lum
norm” and “color” modules), these outliers compress the contrast of the main pixels in
the image, thereby reducing the subjective visual quality of the TM result [35]. To mitigate
the impacts of these outliers, the cut operation (also known as clamping) is introduced
to remove them, which means cutting off a certain ratio of high and low pixel values.
The cut ratio needs to be determined based on the experiments under different scenarios,
with common ratios such as 1% or 0.1%. Section 5 of this paper gives the chosen cut ratio.

The algorithm that obtains the K-th largest/smallest value in the cut operation is the
method described in Section 3.1.

4.2. Log2 and Exp2

In hardware circuits, implementing the log2 and exp2 functions with floating-point
numbers requires a significant amount of hardware and incurs substantial latency. There-
fore, we employed the lookup table method to implement them.

For the log2 function, the following transformation is applied:

log2(x) = log2
(
2n2−nx

)
= n + log2(2−nx), (16)

where x is a 16-bit integer input and n is the highest bit position in the binary representation
of x. For example, if x = 27, which is “11011“ in binary, then n = 4 and (2−nx) ∈ [1, 2).
Therefore, we use an 11-bit fixed-point representation to quantize (2−nx), generating
2048 values of log2(2−nx), use a 16-bit fixed-point fraction to quantize log2(2−nx), and then
store these 2048 values in ROM for the lookup table.

For the exp2 function, the following transformation is applied:

2x = 2n · 2 f = 2 f ≪ n, (17)

where x is a 20-bit fixed-point number, with the lower 16 bits representing the fractional
part. n is the integer part of the x, and f is the fractional part. To reduce ROM cost, we

Symmetry 2024, 16, 356 14 of 22

utilize the first 12 bits of f as input indices for the lookup table of 2 f and use a 17-bit
fixed-point number to quantize 2 f , with the lower 16 bits representing the fractional part.

4.3. Base Layer Compression

In the hardware implementation of the proposed TMO, to make full use of existing
information and reduce unnecessary waste of resources, the compression factor is changed
to Equation (13), and the lookup table of the log2 function can be shared with those in
Section 4.2.

F =
T

log2(max(L))− log2(min(L))
, (18)

where T is the contrast adjustment parameter. It is considered that the adjustment parameter
L is the original luminance of the whole image. Since T is an adjustable parameter, the effect
of Equation (13) is the same as that of the original TMO.

Finally, the compressed base layer is obtained by multiplying the compression factor
F by each pixel of the base layer.

4.4. Normalization and Color Reproduction

After the compressed luminance image passes through the exp2 module, it needs
normalization and color reproduction, and finally, it is mapped to the color image within
the range of 0–255. The formula of luminance normalization is defined as follows:

Lout =
Lcp

max
(

Lcp
) , (19)

where Lcp is the luminance image after compressing the base layer and suppressing the
noise of the detail layer and Lout is the luminance image after normalization.

The color reproduction method is similar to the Durand TMO [15], and the formula is
defined as follows:

Cout =

(
Cin
Lin

)s
Lout, (20)

where Cin is the values of the input color channels, which are red, green, and blue (RGB);
Lin is the luminance obtained by the input RGB conversion; s is the parameter to adjust the
color saturation, generally taken as 1; and Cout is the value of the output color channel.

To maintain the luminance difference between frames, the maximum and minimum
ratio of the final mapped luminance is kept consistent with the ratio of the original video
image, and the final mapped to the range of 0–255 and quantized:

Cd = uint8(round(Cout · (max(L255)−min(L255)) + min(L255))), (21)

where Cd is the value of the different color channels of the final output and L255 is the
luminance of the original HDR image after linear compression to the 0-255 range.

If the application scenario does not require maintaining the luminance contrast be-
tween frames, the maximum and minimum values of L255 can be directly set to 255 and 0,
respectively, so that each frame of the result video sequence can make full use of the
luminance range of the display.

4.5. Prediction

Some of the operations described previously require the use of statistics about the
current frame, such as the maximum and minimum value, the K-th largest/smallest value,
and the maximum luminance after compression and NS. In order to meet the requirements
of low latency, the statistics of N-1 frames input before the current N-th frame are filtered
and used as the predicted statistics for the current N-th frame. At the same time, this filter
can also reduce the flicker effect caused by the image luminance changing too fast.

Symmetry 2024, 16, 356 15 of 22

The simple and effective exponential filter is used to obtain the prediction of statistics
for the current frame. The formula for the exponential filter is

PDN = α · PDN−1 + (1− α) · DN−1, (22)

where DN−1 is the accurate statistic of the (N-1)-th frame, PDN−1 is the predicted statis-
tic of the (N-1)-th frame, PDN is the predicted statistic of the N-th frame, and α is the
adjustable parameter.

4.6. Fixed Point Implementation

The software implementation of the proposed TMO utilizes double-precision floating-
point numbers. However, for FPGA or ASIC platforms, the complexity and resource costs
associated with floating-point implementations led to the final decision to adopt a fixed-
point approach. The input of the system is 16-bit unsigned RGB channels, and the output is
8-bit unsigned RGB channels. The fixed-point precision (Q-format) for different modules is
detailed in Table 1.

Table 1. Fixed point precision for each module’s main processing flow.

Module Integral Bit Fractional Bit Q-Format

luma 16 0 Q16.0
cut 16 0 Q16.0

log2 4 16 Q4.16
predict 16 0 Q16.0

HLWGF 4 16 Q4.16
base compression 4 16 Q4.16
noise suppression 4 16 Q4.16

exp2 16 0 Q16.0
norm 4 12 Q4.12
color 8 12 Q8.12

5. Results
5.1. Noise Suppression

To assess the impacts of the NS introduced in this paper on image noise, we conducted
tests using the HdM-HDR-2014 dataset [32], specifically selecting three test teasers: Fire-
placeTeaser, Showgirl2Teaser, and BeerfestTeaser. The specific evaluation method is out-
lined as follows: Each test teaser underwent processing using the algorithms proposed
by Durand et al. [15], Lang et al. [9], and this paper. The algorithm in [9] was proposed
to process luminance images and does not affect the comparison of experimental results,
as the comparison of smoothness was conducted in the luminance domain. Examine the
results of the 10th frame and calculate smoothness metrics for different local regions after
transforming them into luminance images for comparison. Select two regions for evalua-
tion: one in the bright to assess the impact of noise suppression on low-noise areas and
one in the dark to evaluate the noise suppression capability. Additionally, 1D profiles ex-
tracted from these two regions are plotted to provide a more intuitive representation of
noise and details. To maintain consistency with a single variable, the compression ratio
for the first two methods was kept at 0.75, and the cut ratio of the largest and smallest val-
ues were both 0.1%. Other parameters of the algorithm in this paper are r = 2, ϵ = 2.56,
α = 0.1, thslow = 0.02, λ = 0.18, e = 1, thsnv = 0.06, θ = 3. The parameters of Lang et al. [9]
are set as follows: r = 2, ϵ = 100, β = 0.75, θ = 1, gmin = 1,gmax = 2.5, η = 1.5,
τ = 1, 000, 000 (the choice of τ aims to ensure that the average luminance value of results
align with other algorithms, as significant luminance differences can affect comparison of
smoothness). Smoothness is defined as follows [36]:

Smoothness =
mean(I)
std(I)

, (23)

Symmetry 2024, 16, 356 16 of 22

where mean(I) and std(I) represent the mean and standard deviation of the luminance I of
selected regions.

Figure 9 shows the results of the 10th frame of the FireplaceTeaser being processed
by three algorithms (Durand et al. [15], Lang et al. [9], and this work). The coordinates
of the dark region and the bright region are (500:649, 400:549) and (430:529, 1210:1309),
respectively, in Matlab. The results in Figure 9 indicate that, after being processed by
different algorithms, the noise in dark regions exhibits varying degrees of amplification,
while the noise in bright regions remains almost unchanged. Compared to the works of
Durand et al. [15] (Figure 9b) and Lang et al. [9] (Figure 9c), the proposed TMO (Figure 9d)
exhibits lower noise level in dark regions with preserved details, showcasing superior
subjective perceptual effects. In bright regions, all three algorithms exhibit a comparable
level of detail preservation, with specific smoothness values provided in the subsequent
tables. It is evident that the NS method proposed in this paper effectively suppresses noise
in dark regions while preserving details in both bright and dark regions.

(a) Original image. (b) Durand et al.

(c) Lang et al. (d) This work.

Figure 9. Comparison of images processed by different algorithms: (a) Original image. (b) Durand et al. [15]
(c) Lang et al. [9] (d) This work.

Symmetry 2024, 16, 356 17 of 22

Figure 10 shows the 1D profiles of dark and bright regions in Figure 9, with the co-
ordinates of the profiles being the middle row of the dark and bright regions. It provides
a more intuitive observation. In the dark flat region, variations between signals are pre-
dominantly influenced by noise, and the proposed TMO exhibits the minimum pixel value
changes, reflecting minimal noise and aligning with subjective observation and objective
smoothness results. In the bright region, variations between signals are dominated by detail
changes. The results from Lang et al. [9] demonstrate the highest contrast between pixel
values, showcasing the most prominent details, followed by the proposed TMO and, lastly,
Durand et al.’s [15].

0 50 100 150

Column index

10

15

20

25

30

35

40

45

50

55

60

L
u
m

in
an

ce

Original image

Durand et al.

Lang et al.

Proposed TMO

(a) The 1D profiles of dark region.

0 10 20 30 40 50 60 70 80 90 100

Column index

20

40

60

80

100

120

140

L
u
m

in
an

ce
Original image

Durand et al.

Lang et al.

Proposed TMO

(b) The 1D profiles of bright region.

Figure 10. The 1D profiles of the zoomed-in dark and bright regions in Figure 9.

The smoothness values of the dark and bright regions of the 10th frame of Fire-
placeTeaser are shown in Table 2, and the test results of the other two teasers are shown in
Tables 3 and 4. The coordinates of the dark region and the bright region of Showgirl2Teaser
are (100:249, 250:399) and (400:549, 500:649), respectively, and those of BeerfestTeaser are
(700:849, 990:1139) and (30:79, 470:519), respectively.

Table 2. The smoothness values of the 10th frame of FireplaceTeaser.

Smoothness Original HDR Image Durand et al. [15] Lang et al. [9] This Work

Dark region 5.0407 6.9238 6.9168 7.7688
Bright region 5.2403 6.7723 6.7143 6.6359

Table 3. The smoothness values of the 10th frame of Showgirl2Teaser.

Smoothness Original HDR Image Durand et al. [15] Lang et al. [9] This Work

Dark region 5.3340 6.7083 6.8288 8.7255
Bright region 7.5807 9.6034 9.5276 9.5410

Table 4. The smoothness values of the 10th frame of BeerfestTeaser.

Smoothness Original HDR Image Durand et al. [15] Lang et al. [9] This Work

Dark region 3.6156 5.0322 4.5193 5.2724
Bright region 2.8762 3.7553 3.7312 3.7144

The smoothness results are consistent with the qualitative analysis above, and the
proposed TMO exhibits the lowest noise level in the dark region, resulting in maximum
smoothness, and it preserves more details in the bright region with minimal smoothness.
As can be seen from the table above, the improved algorithm proposed in this paper can
reduce the noise level in the dark regions (improve the smoothness) and has better detail
preservation in the bright regions, which is attributed to the HLWGF, which separates

Symmetry 2024, 16, 356 18 of 22

the base layer from the detail layer to a greater extent. Additionally, the NS mechanism
introduced can effectively suppress noise according to the characteristics of HVS.

5.2. Hardware Implementation Accuracy

We utilized two objective metrics, peak signal-to-noise ratio (PSNR) and structural
similarity image index (SSIM), to evaluate the computational accuracy of the hardware
implementation. The evaluation method was as follows: The algorithm parameters were
defined, quantified as fixed-point numbers, and applied to the hardware system, and sub-
sequently, Matlab’s SSIM and PSNR functions were employed to compare the output
results of Matlab and hardware implementation. All the frames of three different teasers
(240 frames of Fireplace, 339 frames of Showgirl2, and 329 frames of Beerfest) were used as
input test HDR video stream. Table 5 shows the average PSNR and SSIM values for the
three teaser results, and it is evident from the data that the error between the hardware and
the software implementation is very small, with average SSIM values of 0.9993, 0.9995, and
0.9997, respectively, and average PSNR values of 50.0642, 58.6609, and 55.9096, respectively.

Table 5. The SSIM and PSNR between the software- and hardware-implemented results.

Evaluation Index Fireplace
(240 Frames)

Showgirl2
(339 Frames)

BeerFest
(329 Frames)

SSIM 0.9993 0.9995 0.9997
PSNR 50.0642 58.6609 55.9096

5.3. Throughput And Latency

The hardware system implemented in this paper is designed for real-time processing
at 1080 P @ 60 FPS. Each clock cycle processes one pixel, and based on the resolution of
1920 × 1080 and a frame rate of 60, a minimum frequency of 124.4 MHz is required. How-
ever, with the non-continuous nature of data in standard video timing, a higher frequency
is necessary. Generally, Xilinx-supported video processing modules use a clock frequency
of 148.5 MHz to process videos 1080 P @ 60 FPS [27]. Therefore, the proposed system in
this paper is also designed to operate at a clock frequency of 148.5 MHz. While a higher
clock frequency improves the frame rate, it also leads to increased power consumption.
Hence, it is crucial to carefully set an appropriate clock frequency to achieve the desired
frame rate while avoiding unnecessary power consumption.

Given that one of the objectives of this system design is to minimize latency, line buffers
are employed, with efforts made to reduce their quantity. In the HLWGF, base compression,
and noise suppression modules, the window size is set to 5× 5 for each, and each module
requires 4 line buffers, leading to a total requirement of 12 line buffers. Table 6 shows the
latency of different sub-modules in the system. The latency of the entire hardware system
is 60.32 µs.

Table 6. Processing latency of different modules.

Module Name Latency Cycle Specific Latency at 148.5 MHz

Luma 2 13.47 ns
Cut 1 6.73 ns

HLWGF 4484 30.20 µs
Base compress and noise suppression 4448 29.95 µs

Lum norm 21 141.41 ns
Color recover 2 6.73 ns

TOTAL 8958 60.32 µs

As the system latency is related to the algorithms in the system, Tables 7 and 8
are provided to compare the latency and the smoothness metric before and after the
improvements, considering a total of four scenarios that involve different combinations of

Symmetry 2024, 16, 356 19 of 22

the HLWGF and NS proposed in this work. The data in Table 8 present the test results of
the 10th frame in the FireplaceTeaser.

Table 7. The latency of different solution combinations.

Solution Combinations Latency (Cycle) Specific Latency Time (µs)

Proposed TMO with GF and NS 13,282 89.44
Proposed TMO with HLWGF and NS 8958 60.32

Proposed TMO with GF and without NS 8834 59.49
Proposed TMO with HLWGF and without NS 4510 30.37

Table 8. The smoothness of different solution combinations.

Solution Combinations Smoothness (Dark) Smoothness (Bright)

Proposed TMO with GF and NS 8.1518 6.6971
Proposed TMO with HLWGF and NS 7.8686 6.6403

Proposed TMO with GF and without NS 6.4899 6.4908
Proposed TMO with HLWGF and without NS 6.6107 6.6246

Analysis of Table 7 reveals a notable reduction in system latency with the implementa-
tion of the proposed HLWGF. Additionally, Table 8 demonstrates enhanced smoothness in
flat dark regions and superior preservation of details in bright regions. The selection of a
specific solution should be guided by practical considerations.

Compared to other hardware implementations of TMO in recent years, the latency of
the system implemented in this paper is still best. Table 9 shows the latency of the TMO
proposed in this paper compared to other hardware implementations.

Table 9. Latency comparison of FPGA-implementations of proposed TMO against other TMOs.

TMOs Image Size Clock (Mhz) Latency (ms)

Park et al. [27] 1920× 1080 148.5 0.24100
Muneer et al. [37] 1920× 1080 200 6.96000

This work 1920× 1080 148.5 0.06032

5.4. Hardware Resource Cost

We used the Xilinx ZCU102 evaluation board for development, utilizing Vivado
software version 2021.2. Table 10 illustrates the synthesized resource cost of the system.
The utilization of LUT and Register resources is primarily attributed to the dividers used in
the system, amounting to 21649 and 34918, respectively. DSP resources are predominantly
contributed by the HLWGF module, totaling 188. With the improvement of the algorithm,
the memory required for this study is reduced, only necessitating 1026 Kb/48 Block RAMs.

Table 10. Resource cost report after synthesis.

Device LUT Register Memory (Kb)/
Block RAM DSP

xc7vx485tffg1157-1 21649 (7.13%) 34918 (5.75%) 1026/48 (4.66%) 188 (6.71%)

6. Discussion

In the methods and experimental results above, we compared our TMO with prior
studies. Firstly, the proposed HLWGF effectively reduces halo artifacts when the GF
is utilized for image enhancement or TM tasks with large regularization parameter ϵ,
as compared to the original GF. Secondly, we employed a smoothness metric to assess the
noise suppression capability of our TMO. Compared to similar hardware-implemented
TMOs, our NS method achieves superior noise suppression in dark flat regions, enhancing

Symmetry 2024, 16, 356 20 of 22

the smoothness metric by at least 10% and up to 20% in test scenarios. Additionally, it can
be finely optimized through parameter adjustments. Concurrently, our TMO effectively
preserves edge details in both dark and bright regions. Thirdly, we also compare the latency
before and after the hardware optimizations, as well as with other hardware-implemented
TMOs in Section 5.3. Results show that, despite adding NS, system latency remains nearly
unchanged, attributed to tailored hardware-specific algorithm optimizations. Our system
also exhibits lower latency compared to other hardware TMOs.

We proposed the novel HLWGF, which effectively preserves large edges in images
compared to the original GF, offering new possibilities for filtering tasks and image en-
hancement. Additionally, we proposed a noise visibility assessment method based on
characteristics of the human visual system, adaptable to various image contents and conve-
nient for hardware implementation, providing a practical option for both software- and
hardware-based image denoising tasks. For practice, our study combines hardware op-
timizations, offering an effective hardware TMO solution for noise-sensitive embedded
visual applications.

In more detail, the local weighting mechanism in the HLWGF adjusts pixel weights
based on their differences in value within the window. The larger the differences between
pixel values and the center pixel, the more likely they belong to different sides of an
edge. Consequently, the weights of the corresponding pixels are reduced to enhance edge
preservation. Additionally, the proposed novel noise visibility assessment method com-
prehensively considers the influence of brightness and edges on human visual perception.
Specifically, human eyes are more sensitive to brightness changes in dark backgrounds and
flat regions. Based on this effect, the corresponding computational formula is designed to
effectively evaluate the visibility of noise in images. However, these two methods increase
the hardware resources needed for hardware implementation, requiring more multiplica-
tion and division operations. This can limit the usage of large integrated systems with a
TMO on smaller FPGAs.

7. Conclusions

In this paper, we proposed a low-latency noise-aware TMO tailored for hardware
implementation to meet the demands of noise-sensitive embedded vision applications.
Firstly, we enhanced the edge-preserving capability of the guided filter under large reg-
ularization parameter ϵ by introducing a weighted mechanism, addressing the issue of
halo artifacts commonly observed in image enhancement or TMO applications. Secondly,
a noise suppression method was introduced in the TMO, accompanied by a novel noise
visibility assessment method based on two human visual characteristics. Compared to
similar TMOs, our approach achieved an improvement of over 20% in noise suppression.
Thirdly, the algorithm for finding the K-th largest/smallest value and the HLWGF were
optimized for hardware implementation, enabling the TMO to handle continuous video
stream inputs in hardware and reducing the latency and line buffer by 1

3 and 2
5 respectively.

The final hardware system was implemented on an FPGA, demonstrating a latency of
60.32 µs at 1080 P @ 60 FPS, validating the effectiveness of the algorithm.

The TMO presented in this paper does not enhance other aspects of visual quality in
the tone-mapped images, such as contrast. Improvement can be achieved by exploring
alternative types of TMOs, such as those based on histogram adjustments. This research,
however, is subject to several limitations. For instance, the introduced HLWGF and NS
require additional multiplication and division operations, increasing the utilization of
certain hardware resources (such as DSP) in the system. This may restrict the deployment
of large integrated systems containing TMO on smaller FPGAs. Future research may focus
on innovative hardware design methodologies to minimize hardware resource costs.

Author Contributions: Conceptualization, Q.L.; data curation, Q.L.; formal analysis, Q.L.; inves-
tigation, Q.L.; methodology, Q.L.; project administration, J.Y.; resources, Q.L.; software, Q.L. and
T.Y.; supervision, J.Y.; validation, Q.L. and T.Y.; visualization, Q.L.; writing—original draft, Q.L.;

Symmetry 2024, 16, 356 21 of 22

writing—review & editing, N.W., Z.Z. and J.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

HDR High dynamic range
TMO Tone mapping operator
GPU Graphics processing unit
HVS Human visual system
NS Noise suppression
FPGA Field-programmable gate array
ASIC Application-specific integrated circuit
GF Guided filter
TM Tone mapping
FPS Frames per second
HGF Hardware-oriented guided filter
HLWGF Hardware-oriented locally weighted guided filter
RGB Red, green, blue
FIFO First in first out

References
1. Tohidypour, H.R.; Wang, Y.; Pourazad, M.T.; Nasiopoulos, P.; Zhao, D.; Xie, M.; Kamat, D. Investigating Suitability of Inverse

Tone Mapping for Medical Images. In Proceedings of the 2023 IEEE International Conference on Consumer Electronics (ICCE),
Las Vegas, NV, USA, 6–8 January 2023; pp. 1–2. [CrossRef]

2. Shopovska, I.; Aelterman, J.; Van Hamme, D.; Philips, W. Low-Complexity Deep HDR Fusion And Tone Mapping for Urban
Traffic Scenes. In Proceedings of the 2023 IEEE Intelligent Vehicles Symposium (IV), Anchorage, AK, USA, 4–7 June 2023; pp. 1–6.
[CrossRef]

3. Barman, N.; Martini, M.G. User Generated HDR Gaming Video Streaming: Dataset, Codec Comparison, and Challenges. IEEE
Trans. Circuits Syst. Video Technol. 2022, 32, 1236–1249. [CrossRef]

4. Ou, Y.; Ambalathankandy, P.; Takamaeda, S.; Motomura, M.; Asai, T.; Ikebe, M. Real-Time Tone Mapping: A Survey and Cross-
Implementation Hardware Benchmark. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 2666–2686. [CrossRef]

5. Cao, C.; Yue, H.; Liu, X.; Yang, J. Unsupervised HDR Image and Video Tone Mapping via Contrastive Learning. IEEE Trans.
Circuits Syst. Video Technol. 2024, 34, 786–798. [CrossRef]

6. Shopovska, I.; Stojkovic, A.; Aelterman, J.; Van Hamme, D.; Philips, W. High-Dynamic-Range Tone Mapping in Intelligent
Automotive Systems. Sensors 2023, 23, 5767. [CrossRef] [PubMed]

7. Zhang, J.; Wang, Y.; Tohidypour, H.; Pourazad, M.T.; Nasiopoulos, P. A Generative Adversarial Network Based Tone Mapping Op-
erator for 4K HDR Images. In Proceedings of the 2023 International Conference on Computing, Networking and Communications
(ICNC), Honolulu, HI, USA, 20–22 February 2023; pp. 473–477. [CrossRef]

8. Upadhyay, B.B.; Sarawadekar, K. A Low Cost FPGA Implementation of Retinex Based Low-Light Image Enhancement Algorithm.
IEEE Trans. Circuits Syst. II Express Briefs 2024, early access. [CrossRef]

9. Lang, Y.Z.; Qian, Y.S.; Wang, H.G.; Kong, X.Y.; Wu, S. A real-time high dynamic range intensified complementary metal oxide
semiconductor camera based on FPGA. Opt. Quantum Electron. 2022, 54, 304. [CrossRef]

10. Kashyap, S.; Giri, P.; Bhandari, A.K. Logarithmically Optimized Real-Time HDR Tone Mapping With Hardware Implementation.
IEEE Trans. Circuits Syst. II Express Briefs 2023, 71, 1426–1430. [CrossRef]

11. Fang, X.; Feng, X. Domain-Aware Adaptive Logarithmic Transformation. Electronics 2023, 12, 1318. [CrossRef]
12. Zhang, F.; Dai, Y.; Peng, X.; Wu, C.; Zhu, X.; Zhou, R.; Wu, Y. Brightness segmentation-based plateau histogram equalization

algorithm for displaying high dynamic range infrared images. Infrared Phys. Technol. 2023, 134, 104894. [CrossRef]
13. Zhao, L.; Li, G.; Wang, J. Tone Mapping Method Based on the Least Squares Method. Electronics 2023, 12, 31. [CrossRef]
14. Li, Y.; Liao, N.; Wu, W.; Deng, C.; Li, Y.; Fan, Q.; Liu, C. Tone Mapping Operator for High Dynamic Range Images Based on

Modified iCAM06. Sensors 2023, 23, 2516. [CrossRef]
15. Durand, F.; Dorsey, J. Fast bilateral filtering for the display of high-dynamic-range images. In Proceedings of the 29th Annual

Conference on Computer Graphics and Interactive Techniques, San Antonio, TX, USA, 23–26 July 2002; pp. 257–266.

http://doi.org/10.1109/ICCE56470.2023.10043487
http://dx.doi.org/10.1109/IV55152.2023.10186783
http://dx.doi.org/10.1109/TCSVT.2021.3077384
http://dx.doi.org/10.1109/TCSVT.2021.3060143
http://dx.doi.org/10.1109/TCSVT.2023.3290351
http://dx.doi.org/10.3390/s23125767
http://www.ncbi.nlm.nih.gov/pubmed/37420931
http://dx.doi.org/10.1109/ICNC57223.2023.10074176
http://dx.doi.org/10.1109/TCSII.2024.3361561.
http://dx.doi.org/10.1007/s11082-022-03679-8
http://dx.doi.org/10.1109/TCSII.2023.3325942
http://dx.doi.org/10.3390/electronics12061318
http://dx.doi.org/10.1016/j.infrared.2023.104894
http://dx.doi.org/10.3390/electronics12010031
http://dx.doi.org/10.3390/s23052516

Symmetry 2024, 16, 356 22 of 22

16. Wang, C.; Chen, B.; Seidel, H.; Myszkowski, K.; Serrano, A. Learning a self-supervised tone mapping operator via feature contrast
masking loss. Comput. Graph. Forum 2022, 41, 71–84. [CrossRef]

17. Zhang, Z.; Jiang, Y.; Jiang, J.; Wang, X.; Luo, P.; Gu, J. STAR: A Structure-Aware Lightweight Transformer for Real-Time Image
Enhancement. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada,
10–17 October 2021; pp. 4106–4115.

18. Liu, S.; Liu, L.; Tang, J.; Yu, B.; Wang, Y.; Shi, W. Edge Computing for Autonomous Driving: Opportunities and Challenges. Proc.
IEEE 2019, 107, 1697–1716. [CrossRef]

19. Jha, D.; Tomar, N.K.; Ali, S.; Riegler, M.A.; Johansen, H.D.; Johansen, D.; de Lange, T.; Halvorsen, P. NanoNet: Real-Time Polyp
Segmentation in Video Capsule Endoscopy and Colonoscopy. In Proceedings of the 2021 IEEE 34th International Symposium on
Computer-Based Medical Systems (CBMS), Aveiro, Portugal, 7–9 June 2021; pp. 37–43. [CrossRef]

20. Eilertsen, G.; Mantiuk, R.K.; Unger, J. A comparative review of tone-mapping algorithms for high dynamic range video. Comput.
Graph. Forum 2017, 36, 565–592. [CrossRef]

21. Wang, Y.; Jing, Z.; Ji, Z.; Wang, L.; Zhou, G.; Gao, Q.; Zhao, W.; Dai, S. Lane Detection Based on Two-Stage Noise Features
Filtering and Clustering. IEEE Sens. J. 2022, 22, 15526–15536. [CrossRef]

22. Gödrich, A.; König, D.; Eilertsen, G.; Teutsch, M. Joint tone mapping and denoising of thermal infrared images via multi-scale
Retinex and multi-task learning. In Proceedings of the Infrared Technology and Applications XLIX SPIE, Orlando, FL, USA,
30 April–4 May 2023; Volume 12534, pp. 275–291.

23. Xiang, X.; Liu, L.; Que, L.; Jia, C.; Yan, B.; Li, Y.; Guo, J.; Zhou, J. A biological retina inspired tone mapping processor for
high-speed and energy-efficient image enhancement. Sensors 2020, 20, 5600. [CrossRef]

24. Kim, Y.; Hwang, H.; Shin, J. Robust object detection under harsh autonomous-driving environments. IET Image Process. 2022,
16, 958–971. [CrossRef]

25. Reinhard, E.; Stark, M.; Shirley, P.; Ferwerda, J. Photographic tone reproduction for digital images. In Seminal Graphics Papers:
Pushing the Boundaries; ACM: New York, NY, USA, 2023; Volume 2, pp. 661–670.

26. Nosko, S.; Musil, M.; Zemcik, P.; Juranek, R. Color HDR video processing architecture for smart camera. J. Real-Time Image Process.
2020, 17, 555–566. [CrossRef]

27. Park, J.W.; Lee, H.; Kim, B.; Kang, D.G.; Jin, S.O.; Kim, H.; Lee, H.J. A low-cost and high-throughput FPGA implementation of the
retinex algorithm for real-time video enhancement. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 28, 101–114. [CrossRef]

28. Ambalathankandy, P.; Ikebe, M.; Yoshida, T.; Shimada, T.; Takamaeda, S.; Motomura, M.; Asai, T. An Adaptive Global and Local
Tone Mapping Algorithm Implemented on FPGA. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 3015–3028. [CrossRef]

29. Eilertsen, G.; Mantiuk, R.K.; Unger, J. Real-time noise-aware tone mapping. ACM Trans. Graph. (TOG) 2015, 34, 1–15. [CrossRef]
30. Hu, L.; Chen, H.; Allebach, J.P. Joint multi-scale tone mapping and denoising for HDR image enhancement. In Proceedings of the

IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 4–8 January 2022; pp. 729–738.
31. Ray, S.S.; Ghosh, S. k-Degree Parallel Comparison-Free Hardware Sorter for Complete Sorting. IEEE Trans. Comput.-Aided Des.

Integr. Circuits Syst. 2022, 42, 1438–1449.
32. Froehlich, J.; Grandinetti, S.; Eberhardt, B.; Walter, S.; Schilling, A.; Brendel, H. Creating cinematic wide gamut HDR-video for the

evaluation of tone mapping operators and HDR-displays. In Proceedings of the Digital Photography X, San Francisco, CA, USA,
2–6 February 2014; Sampat, N., Tezaur, R., Battiato, S., Fowler, B.A., Eds.; International Society for Optics and Photonics SPIE:
Bellingham, WA, USA, 2014; Volume 9023, p. 90230X. [CrossRef]

33. He, K.; Sun, J.; Tang, X. Guided Image Filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1397–1409. [CrossRef]
34. Pu, X.; Yang, K.; Li, Y. A Retinal Adaptation Model for HDR Image Compression. In Proceedings of the Computer Vision, Tianjin,

China, 11–14 October 2017; Yang, J., Hu, Q., Cheng, M.M., Wang, L., Liu, Q., Bai, X., Meng, D., Eds.; Springer: Berlin/Heidelberg,
Germany, 2017; pp. 37–47.

35. Gu, B.; Li, W.; Zhu, M.; Wang, M. Local edge-preserving multiscale decomposition for high dynamic range image tone mapping.
IEEE Trans. Image Process. 2012, 22, 70–79.

36. Lee, J.W.; Park, R.H.; Chang, S. Noise reduction and adaptive contrast enhancement for local tone mapping. IEEE Trans. Consum.
Electron. 2012, 58, 578–586. [CrossRef]

37. Muneer, M.H.; Pasha, M.A.; Khan, I.R. Hardware-friendly tone-mapping operator design and implementation for real-time
embedded vision applications. Comput. Electr. Eng. 2023, 110, 108892. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1111/cgf.14459
http://dx.doi.org/10.1109/JPROC.2019.2915983
http://dx.doi.org/10.1109/CBMS52027.2021.00014
http://dx.doi.org/10.1111/cgf.13148
http://dx.doi.org/10.1109/JSEN.2022.3187997
http://dx.doi.org/10.3390/s20195600
http://dx.doi.org/10.1049/ipr2.12159
http://dx.doi.org/10.1007/s11554-018-0810-z
http://dx.doi.org/10.1109/TVLSI.2019.2936260
http://dx.doi.org/10.1109/TCSVT.2019.2931510
http://dx.doi.org/10.1145/2816795.2818092
http://dx.doi.org/10.1117/12.2040003
http://dx.doi.org/10.1109/TPAMI.2012.213
http://dx.doi.org/10.1109/TCE.2012.6227463
http://dx.doi.org/10.1016/j.compeleceng.2023.108892

	Introduction
	Related Work
	The Proposed Low-Latency Noise-Aware TMO
	Fast Estimation of the K-th Largest/Smallest Value for Hardware Implementation
	Hardware-Oriented Locally Weighted Guided Filter
	Noise Suppression

	Hardware Implementation of Proposed TMO
	Cut
	Log2 and Exp2
	Base Layer Compression
	Normalization and Color Reproduction
	Prediction
	Fixed Point Implementation

	Results
	Noise Suppression
	Hardware Implementation Accuracy
	Throughput And Latency
	Hardware Resource Cost

	Discussion
	Conclusions
	References

