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Abstract: We introduce the concept of radially symmetric pseudo-Finsler spaces, which generalize
the notion of symmetric Finsler spaces, and prove that this concept is equivalent to the preservation
of flag curvature by parallel transport together with reversibility. As a consequence, reversible
pseudo-Finsler manifolds with constant flag curvature are radially symmetric.
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1. Introduction

The theory of symmetric spaces was successfully developed by E. Cartan in the 1920s
(see [1,2]). The concept is very simple: a complete Riemannian space is symmetric if for
all p ∈ M, the map ϕp, such that ϕp(γ(t)) = γ(−t) for all geodesic γ and all t ∈ R, is
an isometry. Locally, this is equivalent to M having a parallel curvature tensor, and the
term locally symmetric has been reserved for the spaces with this property. The notion
of symmetric space makes sense in the Finslerian realm, but it has been proved that in
the global case, there is little novelty, as globally symmetric Finsler spaces (with positive
definite fundamental tensors throughout) are of Berwald type (their geodesics can be
computed as the auto-parallel curves of an affine connection), and there is a Riemannian
symmetric space with the same geodesics (see [3], Theorem 2.7). Regarding the local case,
as observed by Egloff (see the comments in [4] and also [5]), a non-Riemannian Hilbert
geometry provides a counterexample of a reversible Finsler metric with parallel curvature
(in the sense that we will explain later), which is not locally symmetric; namely, it does not
locally admit an isometry map ϕp as defined above. Moreover, it seems that this concept of
local symmetry is very restrictive and, in many cases, assuming some conditions on the
flag curvature implies that the metric is Riemannian or Berwald (see [4,6–8]). For the study
of Berwald symmetric spaces, see [3,9,10].

The main goal of this paper is to introduce a weaker notion of Finsler symmetric
spaces, the so-called radially symmetric spaces, namely, those spaces with the property
that the map ϕp defined above is an isometry for the osculating metrics gv tangent to
the radial geodesics from p (see Definition 6). Then, we prove that these spaces can be
characterized by being reversible with flag curvature preserved by the parallel transport.
At this point, it is important to point out that to define the parallel transport of the flag
curvature, it is necessary to consider the parallel transport introduced in [11]. In this way,
the flagpole is transported as an observer (taking as a reference the same vector field),
while the transverse edge of the flag is transported with respect to the parallel observer
determined by the flagpole (see Section 2.3). Unlike the Riemannian case, this condition
does not imply that some data in the tangent map, namely, the curvature tensor and the
Finsler metric, completely determines the Finsler metric in a neighborhood. Indeed, the
Cartan–Ambrose–Hicks type theorem in Theorem 1 only provides information about the
radial directions (compare this theorem with the one given in ([12], Theorem 2.1) without
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a complete proof). However, assuming that the metric is Berwald, we again recover this
property (see Corollary 4).

To develop all the computations, we use the notion of anisotropic connection intro-
duced in [13] rather than the more standard approach followed in [14]. The reasons for this
choice will be explained at the beginning of Section 2. We organize the paper as follows: in
Section 2, we define the concept of the anisotropic tensor field and introduce the notion
of anisotropic connection and how it acts on anisotropic tensor fields. In Section 2.2, we
introduce the curvature tensor of an anisotropic connection. In Section 2.3, we define the
two types of parallel transport along a given curve, the observer-parallel transport of an
admissible vector v with respect to an anisotropic connection and the parallel transport
of a vector field along the curve with respect to a chosen admissible vector v. In the fi-
nal Section 3, we prove in Proposition 3 that the Jacobi curvature operator is parallel if
and only if it takes a parallel vector field into another parallel vector field in both cases
with respect to an observer-parallel vector field V, and this is also equivalent to the flag
curvature being invariant under parallel transport. To conclude this section, we prove
the Cartan–Ambrose–Hicks type result mentioned in the beginning, a characterization of
being radially symmetric as being reversible with parallel Jacobi operator (Corollary 2),
and finally we prove that radially symmetric is equivalent to locally symmetric for Berwald
metrics (Corollaries 4 and 5).

2. Anisotropic Tensor Calculus and Pseudo-Finsler Geometry

The anisotropic tensor calculus is an attempt to make computations in Finsler geome-
try closer to the techniques used in modern Riemannian geometry. Its origin dates back
to the use of the osculating metric by A. Nazim [15] as early as 1936 in his Ph.D. the-
sis. A few years later, O. Varga [16] further studied the osculating metric and its Levi–
Civita connection, which turned out to admit a good interpretation when a geodesic vec-
tor field V was chosen. In 1980, H. Matthias in his Ph.D. thesis [17] took a step forward
defining the so-called family of affine connections constructed from the Chern connection,
which is a connection on the vertical bundle, and a choice of a vector field V without
zeroes. The use of this family of affine connections was clarified by Z. Shen in 2001 in
his book about sprays [18], where he made clear that the family of affine connections is
very useful to compute the Jacobi operator whenever the vector field V is geodesic ([18],
Proposition 8.4.3). Around the same time, Álvarez-Paiva and Durán [19], Rademacher [20,21]
and Kováks and Tóth [22] gave certain popularity to the consideration of the Chern connec-
tion as a family of affine connections. The notion of anisotropic tensor calculus has been
recently introduced in [13,23]. Observe that a related notion of an anisotropic connection
had previously appeared in ([18], Definition 7.1.1), but the notion used here is formally
slightly different (see Definition 3). One of the main achievements of the anisotropic ten-
sor calculus is that one can completely determine the Chern curvature tensor by means
of affine connections without assuming that the prescribed vector field is geodesic (see
Proposition 1). On the other hand, the covariant derivation of anisotropic tensor fields
has a very natural interpretation using parallel transport, as explained in [11]. To obtain
this interpretation, we need to define two different types of parallel transport, one which
is already known, and it can be interpreted as the parallel transport of the non-linear
connection, but we call it observer-parallel transport, and the another one with respect to
a vector v, which takes as as reference the observer-parallel vector field obtained from v
(see Definition 4). These definitions have been crucial to establishing the equivalences in
Proposition 3. Even if it is possible to make all these definitions using connections on the
vertical bundle of TM, they are very natural in the context of anisotropic tensor calculus,
and as we state above, all the computations become quite similar to the modern treatment
of Riemannian geometry. As this calculus is not yet a common ground in the Finslerian
community, it is explained in the following. The explicit relation with the calculus using a
connection in the vertical bundle is developed in ([13], Section 4.4).
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Given a smooth manifold M of dimension n, with TM its tangent bundle and TM∗ its
cotangent bundle, let us denote by π : TM → M and π̃ : TM∗ → M the natural projections.
If A is an open subset of the tangent bundle TM, the restriction π|A : A ⊂ TM → M can be
used to obtain two vector bundles over A by lifting π and π̃, which we denote, respectively,
by π∗

A : π∗
A(M) → A and π̃∗

A : π̃∗
A(M) → A:

π∗
A(M)

π∗
A
��

TM

π

��
A ⊂ TM

π|A // M

π̃∗
A(M)

π̃∗
A
��

TM∗

π̃

��
A ⊂ TM

π|A // M

In particular, for every v ∈ A, one has that (π∗
A)

−1(v) = Tπ(v)M and (π̃∗
A)

−1(v) =
Tπ(v)M∗. Then, a section of π∗

A (resp. π̃∗
A) is a smooth map A ∋ v → X (v) ∈ TM (resp.

A ∋ v → θ(v) ∈ TM∗) such that X (v) ∈ Tπ(v)M (resp. θ(v) ∈ Tπ(v)M∗). We will denote
by T1

0(MA) the space of (smooth) sections of π∗
A(M), while the subset of smooth sections

of π̃∗
A(M) will be denoted by T0

1(MA).

Definition 1. An A-anisotropic tensor field T of type (r, s), r, s ∈ N∪ {0}, r + s > 0 is defined
as an F (A)-multilinear map

T : T0
1(MA)

r × T1
0(MA)

s → F (A),

where F (A) is the subset of smooth real functions on A, namely, f : A → R.

The space of A-anisotropic tensor fields of type (r, s) is denoted by Tr
s(MA), while

by convention T0
0(MA) ≡ F (A). The F (A)-multilinearity implies that for every v ∈ A, T

determines a multilinear map

Tv : (Tπ(v)M∗)r × (Tπ(v)M)s → R.

By the F (A)-multilinearity, it is enough to define the tensor field as

T : X∗(M)r ×X(M)s → F (A), (1)

which then will be extended by F (A)-multilinearity using a local frame in X(M) (resp.
X∗(M)); see also ([13], Remark 2).

One can also consider an F (A)-multilinear map

T : T1
0(MA)

s → T1
0(MA), (2)

which determines the A-anisotropic tensor field of type (1, s) T̄ : T0
1(MA)× T1

0(MA)
s →

F (A) defined by
T̄(θ, X1, . . . , Xs) = θ(T(X1, . . . , Xs)). (3)

As in classical tensor calculus, T will be considered as a tensor field itself, using the
formula above only when necessary.

We will say that a vector field V defined on an open subset Ω ⊂ M is A-admissible
(with A ⊂ TM) if Vp ∈ A for every p ∈ Ω. In such a case, we can define a (classical) tensor
field TV ∈ Tr

s(Ω) as a map

TV : X∗(Ω)r ×X(Ω)s → F (Ω),

such that
TV(θ

1, . . . , θr, X1, . . . , Xs)(p) = TVp(θ
1, . . . , θr, X1, . . . , Xs),

where F (Ω) = { f : Ω → R : f ∈ C∞} and X(Ω) and X∗(Ω) denote, respectively, the
space of vector fields and one-forms on Ω.
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As a result of the dependence on directions of A-anisotropic tensor fields, one can
define derivatives on the vertical bundle.

Definition 2. Given an anisotropic tensor field T ∈ Tr
s(MA), its vertical derivative is defined as

the tensor field ∂̇T ∈ Tr
s+1(MA) given by

(∂̇T)v(θ
1, . . . , θr, X1, . . . , Xs, Z) =

∂

∂t
Tv+tZπ(v)

(θ1, . . . , θr, X1, . . . , Xs)|t=0

for any v ∈ A and (θ1, θ2, . . . , θr, X1, . . . , Xs, Z) ∈ X∗(M)r × X(M)s+1, and an analogous
definition is made for anisotropic tensor fields of the type (2).

2.1. Anisotropic Connections

Let us introduce a central concept to make operations with anisotropic tensor fields.

Definition 3. An anisotropic (linear) connection is a map

∇ : X(M)×X(M) → T1
0(MA), (X, Y) 7→ ∇XY,

such that

(i) ∇X(Y + Z) = ∇XY +∇XZ, for any X, Y, Z ∈ X(M),
(ii) ∇X( f Y) = (X( f )Y) ◦ πA + ( f ◦ πA)∇XY for any f ∈ F (M), X, Y ∈ X(M),
(iii) ∇ f X+hYZ = ( f ◦ πA)∇XZ + (h ◦ πA)∇YZ, for any f , h ∈ F (M), X, Y, Z ∈ X(M),

where πA = π|A.

We will use the notation ∇v
XY := (∇XY)v. Furthermore, the torsion of ∇ is defined as

the anisotropic tensor

Tv(X, Y) = ∇v
XY −∇v

YX − [X, Y], for any X, Y ∈ X(M). (4)

An anisotropic connection is said to be torsion-free if T = 0. Given a system of coordi-
nates (Ω, φ) of M, we define the Christoffel symbols of ∇ as the functions
Γk

ij : TΩ ∩ A → R determined by ∇v
∂i

∂j = Γk
ij(v)∂k. Observe that ∇ is torsion-free if

and only if Γk
ij is symmetric in i and j.

An anisotropic connection ∇ induces an anisotropic tensor derivation ∇X for every
vector field X ∈ X(M) (see [13], Section 2.2, for the general definition) in the space of
anisotropic tensor fields Tr

s(MA) such that for any function h ∈ F (A), ∇Xh ∈ F (A) is
determined by

∇Xh(v) = X(h(V))(π(v))− (∂̇h)v(∇v
XV), (5)

where V is any A-admissible vector field extending v, namely, Vπ(v) = v. Observe that the
expression in (5) does not depend on the choice of V (see [13], Lemma 9). Moreover, if θ is
a one-form, then ∇Xθ ∈ T0

1(MA) is determined by

(∇Xθ)v(Y) = X(θ(Y))(π(v))− θπ(v)(∇v
XY), for any Y ∈ X(M). (6)

Finally, for an arbitrary anisotropic tensor field T ∈ Tr
s(MA), we define the derivation

(∇XT)(θ1, . . . , θr, X1, . . . , Xs) =∇X(T(θ1, . . . , θr, X1, . . . , Xs))

−
r

∑
i=1

T(θ1, . . . ,∇Xθi, . . . , θr, X1, . . . , Xs)

−
s

∑
j=1

T(θ1, . . . , θr, X1, . . . ,∇XXj, . . . , Xs), (7)



Symmetry 2024, 16, 362 5 of 11

for any (θ1, θ2, . . . , θr, X1, . . . , Xs) ∈ X∗(M)r ×X(M)s (see [13], Theorem 11, and recall that
∇X is an anisotropic derivation as in [13], Definition 8). Observe that the same formula (7)
with s = 0 also holds for tensor fields of the type (2).

Finally, we can also define the vertical derivative of ∇ as the anisotropic tensor field
given by:

Pv(X, Y, Z) =
∂

∂t

(
∇v+tZπ(v)

X Y
)
|t=0,

where v ∈ A and X, Y, Z are arbitrary smooth vector fields on M. Moreover, in a natural
system of coordinates of the tangent bundle (TΩ, φ̃), associated with a coordinate system
(Ω, φ) on M, one has

Pv(u, w, z) = uiwjzk
∂Γl

ij

∂yk (v)∂l (8)

for every v ∈ A, and u, w, z ∈ Tπ(v)M and ui, wi and zi being the coordinates of u, w, z. As
usual, we denote the coordinates of a point v ∈ TΩ as

φ̃ = (x, y) = (x1, x2, . . . , xn, y1, y2, . . . , yn), (9)

and we use the Einstein summation convention when possible, omitting the coordinate
functions φ and φ̃ to avoid clutter in equations. Thus, P is symmetric in the first two
arguments if ∇ is torsion-free.

2.2. Curvature Tensor

It is possible to associate a curvature tensor Rv : X(M)× X(M)× X(M) → Tπ(v)M
with every anisotropic (linear) connection ∇ as follows

Rv(X, Y)Z = ∇v
X(∇YZ)−∇v

Y(∇XZ)−∇v
[X,Y]Z, (10)

for any v ∈ A and X, Y, Z ∈ X(M). Here, one has to take into account that ∇YZ,∇XZ ∈
T1

0(MA), namely, they are anisotropic vector fields. One can check that R is an F (A)-
multilinear map, and then an anisotropic tensor as in (2), which is anti-symmetric in X
and Y.

Recall that given an A-admissible vector field V in Ω ⊂ M, the anisotropic connection
∇ provides an affine connection ∇V on Ω defined as (∇V

XY)p = ∇v
XY for any X, Y ∈ X(M),

being v = Vp. This affine connection determines its curvature tensor as

RV(X, Y)Z = ∇V
X∇V

Y Z −∇V
Y∇V

XZ −∇V
[X,Y]Z,

where X, Y, Z are arbitrary smooth vector fields on Ω. The tensor RV depends on the choice
of V, but it can be used to get an expression of the curvature tensor of ∇.

Proposition 1. Let ∇ be an anisotropic (linear) connection and Ω ⊂ M, an open subset. Then, for
any v ∈ A,

Rv(X, Y)Z = (RV(X, Y)Z − PV(Y, Z,∇V
XV) + PV(X, Z,∇V

Y V))(π(v)), (11)

where V, X, Y, Z ∈ X(Ω), V being an A-admissible extension of v.

Proof. See [23], Proposition 2.5.
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2.3. Parallel Transport

Proposition 2. Given a smooth curve α : [a, b] → M, an anisotropic connection ∇ on M with
admissible domain A ⊂ TM \ 0 and an A-admissible vector field X along α, there exists a unique
covariant derivative

DX

dt
: X(α) → X(α)

such that DX

dt Y = ∇X
α̇(t)Y whenever Y(t) = Yα(t) for some vector field Y on M.

Proof. See [23], Proposition 2.7.

Definition 4. Given a regular curve α : [a, b] → M, the observer-parallel transport of an
admissible vector v ∈ A with respect to the anisotropic connection ∇ is the map

Pp : Tα(a)M → Tα(b)M

such that Pp(v) = V(b), where V is the vector field along α such that DVV
dt = 0 and V(a) = v.

Moreover, the parallel transport with respect to v is given by

Pv
p : Tα(a)M → Tα(b)M

such that Pv
p(w) = Z(b), being Z ∈ X(α) determined by Z(a) = w and DV X

dt = 0, with V
as above.

Moreover, for any tensor T ∈ T1
s (MA), interpreted as

T : T1
0(MA)

s → T1
0(MA),

we can obtain the covariant derivative (∇YT)v using a curve α such that α̇(0) = Yπ(v), an
observer-parallel vector field V, with V(a) = v and parallel vector fields X1, . . . , Xs with
respect to v. It turns out that

(∇YT)v(X1, . . . , Xs) = ∇v
Y(TV(X1, . . . , Xs)), (12)

(see [11], Section 7).

2.4. Pseudo-Finsler Manifolds and Flag Curvature

We say that a function L : TM → R is a pseudo-Finsler metric if

1. It is smooth on TM \ 0;
2. It is positive homogeneous of degree 2;
3. For every v ∈ TM \ 0, the fundamental tensor defined as

gv(u, w) =
1
2

∂2

∂t∂s
L(v + tu + sw)|t=s=0,

is a non-degenerate bilinear form.

Given a pseudo-Finsler manifold, there is a unique anisotropic connection ∇ such
that it is torsion-free and ∇g = 0, (see [13], Section 4.1). This connection can be identified
with the Chern connection, which can be naturally interpreted as an anisotropic connection.
Using the Chern connection and its associated curvature tensor introduced in (10), one can
then introduce one of the main geometrical invariants of a pseudo-Finsler metric, the flag
curvature, K(v, w), which depends on a vector v, which plays the role of the flagpole, and a
gv-nondegenerate plane that contains v and w. It is defined as
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K(v, w) =
gv(Rv(v, w)w, v)

L(v)gv(w, w)− gv(v, w)2 .

Definition 5. The flag curvature is said to be invariant under parallel translation along a curve
α : [a, b] → M if

K(v, w) = K(Pp(v),Pv
p(w)),

for all v ∈ Tp M \ {0} and w ∈ Tp M. When it is invariant along any regular curve, we will simply
refer to it as invariant under parallel translation.

3. Radially Symmetric Finsler Manifolds

Definition 6. Let (M, L) be a pseudo-Finsler manifold with p ∈ M a given point and Ω a
neighborhood of p with the following property: for any geodesic γ with γ(0) = p, we have that if
γ|[0,t] ⊂ Ω, then γ is defined at least in [−t, t]. Then,

1. We define Ip : Ω → M as Ip(q) = γ(−t), where γ is the only unit geodesic such that
γ(0) = p and γ(t) = q.

2. We say that (M, L) is locally radially symmetric if for all p ∈ M and Ω as above, we
have that

d(Ip)q : (Tq M, gγ̇(t)) → (Tγ(−t)M, g−γ̇(−t))

is an isometry (as above γ is a unit geodesic, γ(0) = p and γ(t) = q) for all q ∈ Ω.

Recall that the Jacobi curvature operator RJ is defined as (RJ)v : Tπ(v)M → Tπ(v)M

with RJ
v(w) = Rv(v, w)v.

Proposition 3. Given a pseudo-Finsler manifold, the following conditions are equivalent:

(i) ∇RJ = 0.
(ii) If V is an observer-parallel vector field along a regular curve α and X is parallel with respect

to V, then RJ
V(X) is also parallel with respect to V along α.

(iii) Flag curvature is invariant under parallel translation.

Proof. (i) ⇔ (ii). It follows from the characterization of the covariant derivative in terms of
parallel vector fields. Indeed, given a regular curve α, a vector field Y such that Yα(t) = α̇(t)
and an observer-parallel vector field V along α with V(a) = v, then

(∇YRJ)v(X) = ∇v
Y(RJ

V(X)) =
DV

dt
(RJ

V(X))

taking into account (12).
(ii) ⇒ (iii). Observe that if α : [a, b] → M is a regular curve, V is an observer-

parallel vector field with V(a) = v and X is a parallel vector field with respect to v, then,
by applying ([23], Equation (46)), and using that gV(X, X), gV(V, V) and gV(V, X) are
constant as a consequence of the choice of V and X as observer-parallel and parallel vector
fields, respectively, we deduce that

d
dt

K(V, X) =
d
dt

gV(RV(V, X)X, V)

gV(X, X)gV(V, V)− gV(V, X)2

= −
d
dt gV(RV(V, X)V, X)

gV(X, X)gV(V, V)− gV(V, X)2

= −
d
dt gV(RJ

V(X), X)

gV(X, X)gV(V, V)− gV(V, X)2

= −
gV(∇V

α̇ (RJ
V(X)), X)

gV(X, X)gV(V, V)− gV(V, X)2 = 0,
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as required.
(iii) ⇒ (i). We have to check that if V is an observer-parallel vector field and X is

parallel with respect to V, then gV((∇YRJ)(X), W) = 0 for all W parallel with respect to V,
but this is equivalent to proving that

AV(X, W) = gV(RJ
V(X), W)

is constant along α (with α as in the proof of (i) ⇔ (ii)). As gV(X, X)gV(V, V)− gV(V, X)2

is constant because V is observer-parallel and X is parallel with respect to V, we have that
AV(X, X) is constant because, by hypothesis in part (iii), the flag curvature

K(V, X) = − AV(X, X)

gV(X, X)gV(V, V)− gV(V, X)2

is constant (see the centered formula in the above implication). In particular, AV(X +
W, X + W) is also constant (as X + W is parallel with respect to V), and therefore, we
conclude that

AV(X, W) =
1
2
(AV(X + W, X + W)− AV(X, X)− AV(W, W))

is also constant, as required.

Corollary 1. A pseudo-Finsler manifold of constant flag curvature has a parallel Jacobi curva-
ture operator.

Observe that using Proposition 3 and ([24], Theorem 2), it follows that the property
of having a flag curvature invariant by parallel transport is invariant under Zermelo
deformations using a killing field. Recall that a Zermelo deformation of a Finsler metric
F with a vector field W is obtained as the Finsler metric Z, which has as indicatrix the
translation of the indicatrix of Fp with Wp at each point p ∈ M.

Definition 7. Let (M, L) and (M̄, L̄) be pseudo-Finsler manifolds and ℓ : Tp M → Tq M̄ an
isometry. Let us denote with expp the exponential map of M at p and expq the exponential map of
M̄ at q, and let U be a normal neighborhood of p small enough such that ℓ ◦ exp−1

p (U ) is contained
in a domain of expq where it is a diffeomorphism. Then, we define the polar map as

ϕℓ = expq ◦ ℓ ◦ exp−1
p : U → M̄.

The next theorem is a local Finslerian version of the Cartan–Ambrose–Hicks Theorem
using the osculating metrics (see [1,2] for the original local version by Cartan and [25,26]
for the global extensions).

Theorem 1. If (M, L) and (M̄, L̄) are pseudo-Finsler manifolds that have parallel Jacobi curvature
operators, and ℓ : Tp M → Tq M̄ is a linear isometry that preserves the Jacobi curvature operator,
then ϕℓ is an isometry with respect to the osculating metrics gV and ḡV∗ , V being the tangent vector
to the unit radial geodesics from p and V∗ = dϕℓ(V).

Proof. Let v ∈ Tp M and denote v∗ = ℓ(v). Then, γv(t) = expp(tv) is the radial geodesic
with γ(0) = p and γ̇v(0) = v. By the definition of ϕℓ, we have that (ϕℓ ◦ γv)(t) = γ̃v∗(t) =
expq(tv

∗) is the radial geodesic in M̄ starting at q and with initial velocity tv∗. The tangent

vector V to γv is an observer-parallel vector field, i.e., DVV
dt = 0. Similarly, the tangent

vector field to the geodesic γ̃v∗ is an observer-parallel vector field, i.e., D̄V∗
V∗

dt = 0.
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To show that ϕℓ is an isometry with respect to the osculating metrics gV and ḡV∗ , it
suffices to show that for any x ∈ Tp̃ M \ {0}, p̃ ∈ U with p̃ = γv(1) for v ∈ Tp M, we have
ḡV∗(dϕℓ(x), dϕℓ(x)) = gV(x, x).

We know, from the description of Jacobi fields using the exponential map (see, for exam-
ple, [27], Lemma 3.14 and Proposition 3.15) that x = (d expp)v(yv) for some
yv ∈ Tv(Tp M), and then x = Z(1), where Z(t) = (d expp)tv(tyv) is the unique Jacobi

field with Z(0) = 0 and DV Z
dt (0) = y ∈ Tp M (here yv ≡ y using Tv(Tp M) ≡ Tp M).

Now, we look at the manifold M̄. Since ϕℓ( p̃) = expq ◦ ℓ ◦ exp−1
p ( p̃); therefore,

dϕℓ ◦ d expp = d expq ◦ dℓ and together with the fact that dℓ(yv) = ℓ(y)v∗ , since ℓ is
linear, gives that dϕℓ(x) = (d expq)(ℓ(y)v∗) = Z̃(1), where Z̃(t) = (d expq)tv∗(tℓ(y)v∗) is

the unique Jacobi field with Z̃(0) = 0 and D̄V∗
Z̃

dt (0) = ℓ(y) ∈ Tq M.
Let {E1(0), . . . , En(0)} be an orthonormal basis of Tp M with regard to the metric gv

and let {E1(t), . . . , En(t)} be its parallel transport with respect to v along γv. This parallel
frame will be orthonormal with regard to the metric gV . Since ℓ is a linear isometry,
{ℓ(E1(0)), . . . , ℓ(En(0))} is an orthonormal basis of Tq M with regard to the metric ḡv∗ . Let
{Ẽ1(t), . . . , Ẽn(t)} be its parallel transport with regard to the vector v∗ along the geodesic
γ̃v∗ . This parallel frame will remain parallel with regard to the metric ḡV∗ , and we have
that Ẽi(0) = ℓ(Ei(0)), i = 1, . . . , n.

We write v = aiEi(0), which gives ℓ(v) = ai Ẽi(0). Similarly, if y = biEi(0), then
ℓ(y) = bi Ẽi(0). We also write the Jacobi fields Z along γ and Z̃ along γ̃ using these parallel
frames as Z = ziEi and Z̃ = z̃i Ẽi, respectively. They satisfy the Jacobi field equation
DV

dt

(
DV Z

dt

)
= RV(V, Z)V, which can be written as DV

dt

(
DV Z

dt

)
= RJ

V(Z), where RJ is the
Jacobi operator. So, the coordinate functions zi(t) satisfy the system of ODEs

(zi)′′(t) = Rj
i(V)zi(t),

where RJ
V(Ei) = Rj

i(V)Ej. Since RJ is parallel and V is the observer-parallel translation of

v, it follows that Rj
i(V) is constant, since by Proposition 3, RJ

V(Ei) is also parallel. A similar
argument, using the Jacobi equation satisfied by Z̃ on the manifold M̄, gives

(z̃i)′′(t) = R̄j
i(V

∗)z̃i(t)

where R̄J
V
∗(Ẽi) = R̄j

i(V
∗)Ẽj and R̄J is the Jacobi operator associated with γ̃v∗ . Since R̄J is

parallel and V∗ is the observer-parallel translation of v∗, it follows that the components
R̄j

i(V
∗) are also constant. However, Rj

i(V) = R̄j
i(V

∗) on the common domain I, since the

isometry ℓ preserves the Jacobi curvature operator, i.e., Rj
i(v) = R̄j

i(v
∗) at t = 0.

It follows that the functions zi and z̃i, i = 1, . . . , n satisfy the same system of lin-
ear ODEs with the same initial conditions, so it follows by uniqueness of such solu-
tions that zi(t) = z̃i(t), i = 1 . . . n. Therefore gV∗(dϕℓ(x), dϕℓ(x)) = gV∗(Z̃(1), Z̃(1)) =

∑n
i=1 εi(z̃i)2 = ∑n

i=1 εi(zi)2 = gV(Z(1), Z(1)) = gV(x, x), where εi = gV(Ei, Ei) = ḡV∗(Ẽi, Ẽi)
for i = 1, . . . , n.

Corollary 2. A reversible pseudo-Finsler manifold (M, L) has parallel Jacobi operator if and only if
it is locally radially symmetric.

Proof. As (M, L) is reversible, at every point p ∈ M, the map ℓ : (Tp M, Lp) → (Tp M, Lp),
v → −v is an isometry. Moreover, the reversibility also implies that ℓ preserves the Jacobi
operator, namely, RJ

v = RJ
−v for all v ∈ Tp M \ {0}, and then we can apply Theorem 1 to

conclude the implication to the right. For the converse, observe that the radial isometry
preserves (∇RJ)v, and therefore

−(∇yRJ)v(x) = dϕℓ((∇yRJ)v(x)) = (∇−yRJ)−v(−x) = (∇yRJ)−v(x),
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for any x, y ∈ Tp M, since dϕℓ = −Id. As ∇v = ∇−v, because F is reversible, we also have
that (∇RJ)−v = (∇RJ)v, and then we conclude that ∇RJ = 0.

Corollary 3. A reversible pseudo-Finsler metric with constant flag curvature is locally
radially symmetric.

Proof. A constant flag curvature manifold always satisfies part (iii) of Proposition 3, and
then it has a parallel Jacobi operator. Therefore, the result follows from Corollary 2.

In particular, Hilbert geometries are always radially symmetric, as they have constant
flag curvature and are reversible. Recall that a Hilbert–Finsler metric is defined by sym-
metrizing a Berwald metric, which is obtained applying a Zermelo deformation with the
position vector field to the unit ball of a Minkowski norm.

Corollary 4. If (M, L) and (M̄, L̄) are Berwald manifolds that have parallel Jacobi curvature
operator, and ℓ : Tp M → Tq M̄ is an isometry that preserves the Jacobi curvature operators, then ϕℓ

is an isometry.

Proof. Observe that as (M, L) is Berwald, and V is the tangent vector field to the unit
geodesics from a certain p ∈ M, then the anisotropic connection ∇ = ∇V is indeed an affine
connection on M and coincides with the Chern connection of L (see [18], p. 100). Moreover,
as V is geodesic, ∇V is the Levi–Civita connection of gV , and then (ϕℓ)∗(∇V) = ∇̄V∗

,
where V∗ is the tangent vector field to the unit geodesics from ϕℓ(p), since ϕℓ is an isometry
of gV and ḡV∗ , the osculating metrics of (M, L) and (M̄, L̄), respectively. Finally, using that
the parallel transport of ∇ preserves the Berwald metric L and that ℓ also preserves L, we
easily conclude that ϕℓ is an isometry for L and L̄ (see also [28], Theorem 5.2).

Corollary 5. If (M, L) is a reversible Berwald manifold that has a parallel Jacobi curvature operator,
then it is locally symmetric.

4. Conclusions

In this paper, we have introduced the class of locally radially symmetric pseudo-Finsler
manifolds, a new family of pseudo-Finsler manifolds with some symmetric properties
with respect to an osculating metric associated with the exponential map. The advantage
of this family with respect to the classical symmetric Finsler manifolds is that these met-
rics can be characterized as those which are reversible and have parallel flag curvature
(see Corollary 2), mimicking what occurs in the family of locally symmetric Riemannian
manifolds. Moreover, they include reversible pseudo-Finsler manifolds with constant flag
curvature (see Corollary 3). The key result to prove all these properties is Theorem 1, which
is a Cartan–Ambrose–Hicks Theorem, and it does not hold in general when the isometry of
the osculating metrics is replaced with an isometry of the pseudo-Finsler metrics.
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