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Abstract: The Hamilton–Waterloo problem is a problem of graph factorization. The Hamilton–
Waterloo problem HWP(H; m, n; α, β) asks for a two-factorization of a graph H containing α Cm-
factors and β Cn-factors. Let K∗

v denote the complete graph Kv if v is odd and Kv minus a one-factor
if v is even. In this paper, we completely solve the Hamilton–Waterloo problem HWP(K∗

v ; m, 16; α, β)

for odd m ≥ 9 and α ≥ 15.

Keywords: Hamilton–Waterloo problem; two-factorization; cycle decomposition

1. Introduction

A central theme in combinatorics and related areas is the decomposition of large
discrete objects into simpler or smaller ones. Usually, these simpler or smaller objects
are given in advance as needed and have some special properties such as symmetry and
uniformity. In this paper, we will focus on a problem of graph factorization. We assume
that the reader is familiar with basic concepts in graph theory and design theory, and
refers to [1,2] for further details. In this paper, every graph will be simple. In general,
the vertex-set and the edge-set of a graph H are denoted by V(H) and E(H), respectively.
We denote the cycle of length k by Ck and the complete graph on n vertices by Kn. We
use Ku[g] to denote the complete u-partite graph with u parts of size g. In fact, Ku[1] is
a complete graph Ku and the graph Ku[2] is K2u minus a one-factor. These graphs are all
regular graphs and each of them possesses highly symmetric properties. A factor of H
is a spanning subgraph of H whose vertex-set is exactly V(H). We call it a G-factor if its
connected components are isomorphic to G. A G-factorization of H is a set of edge-disjoint
G-factors of H whose edge-sets partition E(H). A Ck-factorization of H is a partition of
E(H) into Ck-factors.

For the existence of a Ck-factorization of Ku, Ray-Chadhuri, Wilson [3], and Lu [4]
independently proved the existence for the case of k = 3. For the other cases, the necessary
conditions of the existence of a Ck-factorization of Ku are also sufficient, see [5–7]. The exis-
tence problem for a Ck-factorization of Ku[2] has been solved, see [8,9]. Finally, Liu [10,11]
completely solved the existence of a Ck-factorization of Ku[g].

Theorem 1. There exists a Ck-factorization of Ku[g] if and only if g(u− 1) ≡ 0 (mod 2), gu ≡ 0
(mod k), k is even when u = 2, and (k, u, g) ̸∈ {(3, 3, 2), (3, 6, 2), (3, 3, 6), (6, 2, 6)}.

As usual, an r-regular factor is called an r-factor. In particular, a two-factor is a
collection of vertex-disjoint cycles. A two-factorization of a graph H is a partition of E(H)
into two-factors. The Hamilton–Waterloo problem HWP(H; m, n; α, β) asks for a two-
factorization of a specified graph H containing α Cm-factors and β Cn-factors. Let K∗

v denote
the complete graph Kv if v is odd and Kv minus a one-factor if v is even. We denote a
solution to HWP(K∗

v ; m, n; α, β) by HW(v; m, n; α, β). Also, we use HWP(v; m, n) to denote
the set of (α, β) for which an HW(v; m, n; α, β) exists. The necessary conditions for the
existence of an HW(v; m, n; α, β) are shown so that m|v when α > 0, n|v when β > 0 and
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α + β = ⌊ v−1
2 ⌋. Theorem 1 indicates that the existence of an HW(v; m, n; α, β) has been

completely solved when αβ = 0.
For small values of m and n, the known results of the Hamilton–Waterloo problem

are as follows. A complete solution for the existence of an HW(v; 3, n; α, β) in the cases
n ∈ {4, 5, 7} is given in [12–17]. For the cases (m, n) ∈ {(3, 15), (5, 15), (4, 6),
(4, 8), (4, 16), (8, 16)}, see [12]. Kamin [18] showed that the necessary conditions for the
existence of an HW(v; 3, 9; α, β) are also sufficient, apart from the exceptional case β = 1.
Asplund et al. [19] constructed many infinite classes of HW(v; 3, 3x; α, β)s.

The existence of an HW(v; 4, m; α, β) for odd m ≥ 3 has been solved with some
possible exceptions, see [16,17,20]. Fu and Huang [21] give a complete solution for an
HW(v; 4, m; α, β) for even m ≥ 4.

Theorem 2 ([16,17,20,21]). (α, β) ∈ HWP(v; 4, m) for m ≥ 3 if and only if α, β ≥ 0 and
α + β = ⌊ v−1

2 ⌋, except possibly when m ≥ 5 is odd, v = 8m, and α = 2.

Wang and Cao [22] considered the Hamilton–Waterloo problem with C8-factors and
Cm-factors and gave the following results.

Theorem 3 ([22]). (α, β) ∈ HWP(8mt; 8, m) for m ≥ 3 and t ≥ 1 if and only if α, β ≥ 0 and
α + β = 4mt − 1, except possibly when α ∈ {1, 2} and mt is odd or α ∈ {1, 2, 4, 5, 6} and mt
is even.

Bryant et al. [23,24] completely solved the Hamilton–Waterloo problem for bipartite
two-factors. Buratti and Danziger [25] as well as Merola and Traetta [26] focused on infinitely
many cyclic solutions to the Hamilton–Waterloo problem with odd length cycles. Dinitz and
Ling [27] as well as Lei and Shen [28] gave an analysis of the Hamilton–Waterloo problem
for Hamilton cycles and triangle factors. Wang, Lu, and Cao [29] considered the existence of
an HW(k(2kt + 1); k, 2kt + 1; α, β) for t ≥ 1 and odd k ≥ 3. For the case of two cycles sizes
m, n of different parity on the Hamilton–Waterloo problem, Keranen and Pastine [30] mainly
focused on the case m|n and (m, n) = (2lx, n) with odd x, n, and gcd(x, n) ≥ 3. Burgess,
Danziger, and Traetta studied the Hamilton–Waterloo problem in detail, see [31–34]. In 2022,
Burgess et al. [35] made further progress when m and n are not coprime in two regards. In
2023, [36] presented a survey of constructive methods for the Hamilton–Waterloo problem
which have allowed recent progress. The readers can have a comprehensive understanding of
this problem.

In this paper, we consider the remaining situation of the Hamilton–Waterloo problem.
We will focus on the existence of an HW(16mt; 16, m; α, β) for odd m and give the following
main result.

Theorem 4. For any odd m ≥ 9, (α, β) ∈ HWP(16mt; 16, m) if and only if α + β = 8mt − 1,
where α ≥ 0, β ≥ 0, and t ≥ 1, except possibly when α ∈ [1, 6] and t is odd or α ∈ [1, 6]∪ [8, 14]
and t is even.

2. Preliminary

In this section, we introduce some necessary definitions, notations, and known results
which will be used later.

To begin with, we introduce the definition of a Cayley graph. Let Γ be a finite additive
group and let S be a subset of Γ\{0} closed under taking additive inverses. The Cayley
graph over Γ with connection set S, denoted by Cay(Γ, S), is the graph with vertex-set Γ
and edge-set E(Cay(Γ, S)) = {(a, b)|a, b ∈ Γ, a − b ∈ S}. For our constructions, we need
the following results on a Cm-factorization or a Cn-factorization of Cay(Zm × Zn, S).

Lemma 1 ([17,22]). (1) Let m, n ≥ 3, let a ∈ Zn satisfying | ± {0, a, 2a}| = 5, and let
gcd(i, m) = 1. There exist five Cm-factors which form a Cm-factorization of Cay(Zm ×Zn, {±i}×
(±{0, a, 2a})).
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(2) Let m ≥ 3 be odd, let n ≥ 4 be even, and let a, b ∈ Zn with | ± {a, b, a + b}| = 6. There
exist six Cm-factors which form a Cm-factorization of Cay(Zm × Zn, {±i} × (±{a, b, a + b}))
with gcd(i, m) = 1.

(3) Let m ≥ 3 be odd, let n ≥ 4 be even, and let 1 ≤ d < n. There exist three Cm-factors
which form a Cm-factorization of Cay(Zm × Zn, {±i} × {0,±d}) with gcd(i, m) = 1.

(4) Let n ≥ 4 be even and let d = 0 (m ≥ 3) or d = n/2 (m ≥ 4 is even). There exists a
Cm-factor which forms a Cm-factorization of Cay(Zm × Zn, {±i} × {d}) with gcd(i, m) = 1.

(5) Let m ≥ 3, let n ≥ 4 be even and let 0 < d < n be coprime to n. There exist two
Cn-factors which form a Cn-factorization of Cay(Zm × Zn, {±i} × {±d}) with gcd(i, m) = 1.

Next, we introduce the concept of the wreath product of two graphs. If both G and
H are graphs, the wreath product G ≀ H of G and H has a vertex-set V(G)× V(H) in which
(u1, v1)(u2, v2) ∈ E(G ≀ H) whenever u1u2 ∈ E(G) or, u1 = u2 and v1v2 ∈ E(H). For
brevity, we denote Cm ≀ Kn by Cm[n], where Kn is the complement of Kn. We will give some
known results and constructions that will be used later.

Theorem 5 ([6,37]). For m ≥ 3 and n ≥ 1, a Cm-factorization of Cm[n] exists, except for
(m, n) = (3, 6) and (m, n) ∈ {(l, 2) | l ≥ 3 is odd}.

Theorem 6 ([38]). For m ≥ 3 and n ≥ 1, there exists a Cmn-factorization of Cm[n].

Theorem 7 ([16]). The graph Cm[4] can be decomposed into α C4-factors and 4 − α Cm-factors for
m ≥ 3 and α ∈ {0, 2, 4}.

Construction 1 ([22]). If (α, β) ∈HWP(Cm[n]; m, n), then (α, β+ ⌊n−1
2 ⌋) ∈HWP(Cm ≀Kn; m, n).

Construction 2 ([17]). If there exists an HW(Ku[g]; m, n; α, β) and an HW(g; m, n; α′, β′), then
an HW(gu; m, n; α + α′, β + β′) exists.

Construction 3. If Cm[n] can be decomposed into α Cn-factors and n − α Cm-factors, and there ex-
ists a Cnw-factorization of Cn[w] and a Cm-factorization of Cm[w], then Cm[nw] can be decomposed
into wα Cnw-factors and w(n − α) Cm-factors.

Proof. The graph Cm[n] can be decomposed into α Cn-factors and n − α Cm-factors. Then,
we give each vertex weight w to obtain α Cn[w]-factors and n − α Cm[w]-factors. Each Cn[w]
(Cm[w]) can be partitioned into w Cnw-factors (Cm-factors). Finally, each Cm[nw]-factor can
be decomposed into wα Cnw-factors and w(n − α) Cm-factors.

3. Decompositions of Some Cayley Graphs

In this section, we will give some new decompositions of Cayley graphs. For brevity,
we will denote the vertex (x, y) by xy.

Lemma 2. Let m ≥ 3 be odd and n ≡ 0 (mod 4). The graph Cay(Zm × Zn, {±1} × {± n
4 , n

2 })
can be decomposed into three Cm-factors.

Proof. Let
C1

1 = (00, 1 n
4
, 2 n

2
, 3 n

4
, 4 n

2
, . . . , (m − 2) n

4
, (m − 1) n

2
),

C2
1 = (0 n

4
, 10, 2− n

4
, 30, 4− n

4
, . . . , (m − 2)0, (m − 1)− n

4
),

C1
2 = (00, 1− n

4
, 2 n

4
, 3− n

4
, 4 n

4
, . . . , (m − 2)− n

4
, (m − 1) n

4
),

C2
2 = (0− n

4
, 10, 2 n

2
, 30, 4 n

2
, . . . , (m − 2)0, (m − 1) n

2
),

C1
3 = (00, 1 n

2
, 2− n

4
, 3 n

2
, 4− n

4
, . . . , (m − 2) n

2
, (m − 1)− n

4
),

C2
3 = (0− n

4
, 1 n

4
, 20, 3 n

4
, 40, . . . , (m − 2) n

4
, (m − 1)0).
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Let Bi = {Cj
i + (0, s), Cj

i + (0, s + n
2 ) | 1 ≤ j ≤ 2, 0 ≤ s ≤ n

4 − 1}, 1 ≤ i ≤ 3. Each Bi
has 2 × 2 × n

4 = n cycles with length m and V(Bi) = Zm × Zn, thus it is a Cm-factor. By
counting the edges of ∪3

i=1Bi, we obtain that ∪3
i=1E(Bi) coincides with the edge-set of the

Cayley graph Cay(Zm × Zn, {±1} × {± n
4 , n

2 }). So, this Cayley graph can be decomposed
into three Cm-factors.

Lemma 3. Let l ≥ 3 and m ≥ 2l−1 + 1 be odd. The graph Cay(Zm × Z2l , {±1} × {±1, 2l−1})
can be partitioned into two C2l -factors and a Cm-factor.

Proof. Let
C1 = (00, (m − 1)1, 02, (m − 1)3, . . . , 02l−2, (m − 1)2l−1),

C2 = (01, 11+2l−1 , 21, 31+2l−1 , . . . , (2l−1 − 2)1, (2l−1 − 1)1+2l−1 , (2l−1)2l−1 , (2l−1 − 1)0,
(2l−1 − 2)2l−1 , (2l−1 − 3)0, . . . , 22l−1 , 10),

C3 = ((m − 1)0, 01, (m − 1)2, 03, . . . , (m − 1)2l−2, 02l−1),

C4 = (00, 12l−1 , 22l−1−1, 32l−1−2, . . . , (2l−1 − 2)3, (2l−1 − 1)2, (2l−1)1, (2l−1 − 1)2l−1+1,
(2l−1 − 2)2l−1+2, . . . , 22l−2, 12l−1).

(1) For m = 2l−1 + 1, let B1 = {(00, 11, 22, . . . , (2l−1)2l−1) + (0, h) | h ∈ Z2l}. It contains
2l cycles with a length of m and V(B1) = Zm × Z2l , then B1 is a Cm-factor.

Let B2 = {C1, C2 + (0, 2i) | 0 ≤ i ≤ 2l−1 − 1} and B3 = {C3, C4 + (0, 2i) | 0 ≤ i ≤
2l−1 − 1}. Each of them has m cycles with a length of 2l and its vertex-set is Zm × Z2l , then
B2 and B3 are two C2l -factors. By counting ∪3

i=1E(Bi), we obtain that it coincides with the
edge-set of the Cayley graph.

(2) For m ≥ 2l−1 + 3, let
B1 = {(00, 11, . . . , (2l−1)2l−1 , (2l−1 + 1)0, (2l−1 + 2)2l−1 , (2l−1 + 3)0, (2l−1 + 4)2l−1 , · · · ,

(m − 2)0, (m − 1)2l−1) + (0, h) | h ∈ Z2l},
B2 = {C1, C2 + (0, 2i), ((j + 1)0, j1, (j + 1)2, j3, . . . , (j + 1)2l−2, j2l−1) | 0 ≤ i ≤ 2l−1 −

1, 2l−1 ≤ j ≤ m − 2},
B8 = {C3, C4 + (0, 2i), (j0, (j + 1)1, j2, (j + 1)3, . . . , j2l−2, (j + 1)2l−1) | 0 ≤ i ≤ 2l−1 −

1, 2l−1 ≤ j ≤ m − 2}.
Similarly to the above case, we obtain that B1 is a Cm-factor and B2,B3 are two C2l -

factors. We check that ∪3
i=1E(Bi) = E(Cay(Zm × Z2l , {±1} × {±1, 2l−1})).

Lemma 4. Let m ≥ 3 and l ≥ 3. The graph Cay(Zm × Z2l , {±1} × {2l−1}) ∪ mK2l can be
partitioned into 2l−1 C2l -factors and a one-factor.

Proof. Note that the graph mK2l is equivalent to the Caylay graph Cay(Zm × Z2l , {0} ×
(Z2l \ {0})). By Theorem 1, there exists a C2l -factorization of the graph K2l−1 [2]. Let
(e1, e2) = (0, 1), (e3, e4) = (1 + 2l−1, 2 + 2l−1), (e2t+1, e2t+2) = (t, t + 1 + 2l−1), 2 ≤ t ≤
2l−1 − 2, (e2l−1, e2l ) = (2l−1 − 1, 2l−1). Without loss of generality, let {{e1, e2}, {e3, e4}, . . . ,
{e2l−1, e2l}} be the group set of K2l−1 [2]. There are 2l−1 − 1 C2l -factors of K2l−1 [2], denoted
by (bs1, bs2, . . . , bs,2l ) for 1 ≤ s ≤ 2l−1 − 1.

We first construct the required 2l−1 C2l -factors, each of which has exactly m cycles
with a length of C2l . Let Cs = (0bs1 , 0bs2 , . . . , 0bs,2l

), 1 ≤ s ≤ 2l−1 − 1, and

C2l−1 = (0e1 , 0e2 , 1e3 , 1e4 , 0e5 , 0e6 , 1e7 , 1e8 , . . . , 0e2l−3
, 0e2l−2

, 1e2l−1
, 1e2l ).

For 1 ≤ i ≤ 2l−1, the set of the subscripts of Ci is actually Z2l , thus, each Ci can generate a
C2l -factor by (+1 (mod m),−). In other words, {Ci + (l, 0) | l ∈ Zm} is a C2l -factor.

In the original graph, in addition to the edges in the cycles above, there are still
some edges left, that is, {(1e4p−2 , 0e4p−1) + (l, 0), (0e4p , 1e4p+1) + (l, 0) | l ∈ Zm, 1 ≤ p ≤
2l−2, e2l+1 = e1}. The set of vertices on these edges is Zm × Z2l , so this set of edges forms a
one-factor.
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Now, we construct two special one-factorizations of K16 with the vertex-set Z16 whose
15 one-factors are listed below for the following lemmas.

I1 = {(0, 1), (3, 6), (4, 5), (7, 10), (8, 9), (11, 14), (12, 13), (15, 2)},
I3 = {(0, 2), (6, 1), (13, 3), (7, 9), (5, 11), (15, 12), (8, 10), (14, 4)},
I5 = {(0, 4), (10, 1), (11, 3), (9, 2), (12, 8), (14, 5), (15, 7), (13, 6)},
I7 = {(0, 5), (3, 7), (9, 4), (2, 10), (12, 1), (15, 11), (13, 8), (6, 14)},
I9 = {(0, 6), (2, 4), (8, 3), (15, 5), (9, 11), (7, 13), (1, 14), (10, 12)},
I11 = {(0, 15), (9, 5), (11, 12), (6, 2), (8, 7), (1, 13), (3, 4), (14, 10)},
I13 = {(0, 9), (6, 12), (5, 2), (11, 8), (14, 7), (4, 13), (15, 1), (3, 10)},
I14 = {(9, 6), (12, 5), (2, 11), (8, 14), (7, 4), (13, 15), (1, 3), (10, 0)},
I15 = {(0, 11), (13, 2), (12, 7), (14, 9), (3, 5), (10, 4), (15, 6), (1, 8)},
I2i = {(x + 2i, y + 2i) : (x, y) ∈ I2i−1}, i = 1, 2, 3,
I6+2i = {(x − 2i, y − 2i) : (x, y) ∈ I5+2i}, i = 1, 2, 3.
Note that I13 ∪ I14 can form a 16-cycle.
I′1 = {(0, 2), (1, 3), (5, 4), (6, 8), (7, 9), (11, 10), (15, 13), (12, 14)},
I′2 = {(2, 1), (3, 5), (4, 6), (8, 7), (9, 11), (10, 15), (13, 12), (14, 0)},
I′3 = {(0, 4), (2, 3), (6, 1), (5, 7), (10, 8), (14, 13), (9, 15), (11, 12)},
I′4 = {(4, 2), (3, 6), (1, 5), (7, 10), (8, 14), (13, 9), (15, 11), (12, 0)},
I′5 = {(0, 5), (8, 1), (7, 3), (9, 2), (15, 4), (14, 10), (12, 6), (11, 13)},
I′6 = {(5, 8), (1, 7), (3, 9), (2, 15), (4, 14), (10, 12), (6, 11), (13, 0)},
I′7 = {(0, 6), (2, 8), (3, 12), (9, 14), (5, 10), (1, 15), (7, 13), (4, 11)},
I′8 = {(6, 2), (8, 3), (12, 9), (14, 5), (10, 1), (15, 7), (13, 4), (11, 0)},
I′9 = {(0, 7), (12, 2), (13, 3), (14, 6), (10, 4), (9, 1), (11, 5), (15, 8)},
I′10 = {(7, 12), (2, 13), (3, 14), (6, 10), (4, 9), (1, 11), (5, 15), (8, 0)},
I′11 = {(0, 10), (2, 11), (3, 15), (7, 14), (6, 13), (5, 9), (1, 12), (4, 8)},
I′12 = {(0, 1), (7, 2), (12, 4), (10, 3), (13, 5), (11, 14), (8, 9), (15, 6)},
I′13 = {(6, 7), (13, 8), (2, 10), (0, 9), (3, 11), (1, 4), (14, 15), (5, 12)},
I′14 = {(0, 3), (13, 1), (7, 4), (14, 2), (8, 11), (5, 6), (12, 15), (9, 10)},
I′15 = {(10, 13), (7, 11), (1, 14), (8, 12), (2, 5), (15, 0), (6, 9), (3, 4)}.
Note that I′2i−1 ∪ I′2i can form a 16-cycle for 1 ≤ i ≤ 5.
For an integer m ≥ 2, mH denotes m vertex-disjoint copies of a graph H. For brevity,

we use mIk (or mI′k) to denote the graph with the vertex-set Zm × Z16 and the edge-set
{(ja, jb) | j ∈ Zm, (a, b) ∈ Ik(or I′k), a ̸= b} for 1 ≤ k ≤ 15. Similarly, mKn denotes the graph
with the vertex-set Zm × Zn and the edge-set {(ja, jb) | j ∈ Zm, (a, b) ∈ E(Kn)}.

Lemma 5. Let m ≥ 3 and i ∈ {2, 4, 6}. There exist two C16-factors which form a C16-factorization
of Cay(Zm × Z16, {±1} × {i}) ∪ mIi−1 ∪ mIi.

Proof. Let C2
1 = (00, 01, 13, 16, 04, 05, 17, 110, 08, 09, 111, 114, 012, 013, 115, 12),

C4
1 = (00, 02, 16, 11, 013, 03, 17, 19, 05, 011, 115, 112, 08, 010, 114, 14),

C6
1 = (00, 04, 110, 11, 011, 03, 19, 12, 012, 08, 114, 15, 015, 07, 113, 16).

For each i ∈ {2, 4, 6}, let Ci
2 = Ci

1 + (0, i). Because the set of the subscripts of Ci
t is Z16, each

Bi
t = {Ci

t + (l, 0) | l ∈ Zm} is a C16-factor for t = 1, 2. Since E(Bi
1) ∪ E(Bi

2) = E(Cay(Zm ×
Z16, {±1} × {i}) ∪ mIi−1 ∪ mIi), these two C16-factors can form a C16-factorization of
the graph.

Lemma 6. Let m ≥ 3 and i ∈ {2, 4, 6}. There exist two C16-factors which is a C16-factorization of
Cay(Zm × Z16, {±1} × {−i}) ∪ mI6+i−1 ∪ mI6+i.

Proof. Let C2
1 = (00, 05, 13, 17, 09, 04, 12, 110, 012, 01, 115, 111, 013, 08, 16, 114),

C4
1 = (00, 06, 12, 14, 08, 03, 115, 15, 09, 011, 17, 113, 01, 014, 110, 112),
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C6
1 = (00, 015, 19, 15, 011, 012, 16, 12, 08, 07, 11, 113, 03, 04, 114, 110).

It is similar to the above lemma, let Ci
2 = Ci

1 + (0,−i) for any i ∈ {2, 4, 6}. We have that
each {Ci

t + (l, 0) | l ∈ Zm} is a C16-factor for t = 1, 2, and they form a C16-factorization.

Lemma 7. Let m ≥ 3. The graph Cay(Zm × Z16, {±1} × {8}) ∪ m(∪15
i=13 Ii) can be decomposed

into two C16-factors and a one-factor.

Proof. Let C1 = (00, 09, 06, 012, 05, 02, 011, 08, 014, 07, 04, 013, 015, 01, 03, 010),

C2 = (00, 011, 13, 15, 013, 02, 110, 14, 012, 07, 115, 16, 014, 09, 11, 18).

Similarly, each Bt = {Ct + (l, 0) | l ∈ Zm} is a C16-factor for t = 1, 2 because the set
of the subscripts of Ct is Z16. Let I = {((j + 1)11, j3), (j5, (j + 1)13), ((j + 1)2, j10), (j4, (j +
1)12), ((j + 1)7, j15), (j6, (j + 1)14), ((j + 1)9, j1), (j8, (j + 1)0) | j ∈ Zm}. It is a one-factor
since V(I) = Zm × Z16. We check that E(Cay(Zm × Z16, {±1} × {8}) ∪ m(∪15

i=13 Ii)) =
E(B1) ∪ E(B2) ∪ E(I). Then, we obtain the conclusion.

Lemma 8. Let m ≥ 3. The graph Cay(Zm × Z16, {±1} × {8}) ∪ mI′11 can be partitioned into a
C16-factor and a one-factor.

Proof. Let C = (00, 010, 12, 111, 03, 015, 17, 114, 06, 013, 15, 19, 01, 012, 14, 18). Since the set of the
subscripts of C is Z16, we obtain that B = {C + (l, 0) | l ∈ Zm} is a C16-factor of this graph.
Let I = {((j + 1)10, j2), (j11, (j + 1)3), ((j + 1)15, j7), (j14, (j + 1)6), ((j + 1)13, j5), (j9, (j +
1)1), ((j + 1)12, j4), (j8, (j + 1)0) | j ∈ Zm}. It is a set of edges and V(I) = Zm × Z16, so
it is a one-factor. We check that E(B) ∪ E(I) coincides with the edge-set of the graph
Cay(Zm × Z16, {±1} × {8}) ∪ mI′11 by counting the number of edges.

Lemma 9. Let m ≥ 3. The graph Cay(Zm × Z16, {±1} × {±6}) ∪ m(∪15
i=12 I′i ) can be decom-

posed into four C16-factors.

Proof. Let C1 = (00, 01, 17, 12, 012, 04, 110, 13, 013, 05, 111, 114, 08, 09, 115, 16),

C2 = (06, 07, 113, 18, 02, 010, 10, 19, 03, 011, 11, 14, 014, 015, 15, 112),

C3 = (00, 03, 113, 11, 07, 04, 114, 12, 08, 011, 15, 16, 012, 015, 19, 110),

C4 = (010, 013, 17, 111, 01, 014, 18, 112, 02, 05, 115, 10, 06, 09, 13, 14).

Let Bi = {Ct + (l, 0) | l ∈ Zm} for 1 ≤ t ≤ 4. Since the subscripts of Ct form the set Z16,
each Bi is a C16-factor. By counting the edges of ∪4

i=1Bi, we obtain the required design.

4. Main Results

In this section, we will prove our main results.

Lemma 10. For odd m ≥ 9 and r ∈ {0, 2, 4, 6, 8, 16}, (r, 16 − r) ∈ HWP(Cm[16]; 16, m).

Proof. We consider the four following cases.
Case 1: r = 0, 8, 16.
By Theorem 7, the graph Cm[4] can be decomposed into r

4 C4-factors and 4 − r
4 Cm-

factors for m ≥ 3. By Theorems 5 and 6, two graphs Cm[4] and C4[4] can be partitioned
into four Cm-factors and four C16-factors, respectively. Then, we obtain the conclusion by
applying Construction 3.

Case 2: r = 2.
We obtain two C16-factors from a C16-factorization of Cay(Zm × Z16, {±1} × {±5})

by Lemma 1(5). The required fourteen Cm-factors can be obtained through three parts.
The graph Cay(Zm × Z16, {±1} × {0,±1,±2}) can be decomposed into five Cm-factors by
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Lemma 1(1). Similarly, we consider two Cayley graphs Cay(Zm × Z16, {±1}× (±{3, 6, 7}))
and Cay(Zm × Z16, {±1} × {±4, 8}). They can be partitioned into six Cm-factors and three
Cm-factors by Lemma 1(2) and Lemma 2, respectively.

Case 3: r = 4.
Four C16-factors are given from a C16-factorization of Cay(Zm ×Z16, {±1}× (±{5, 7}))

by Lemma 1(5). Six of the twelve required Cm-factors can be obtained from the decom-
position of Cay(Zm × Z16, {±1} × (±{1, 2, 3})) by Lemma 1(2). The graph Cay(Zm ×
Z16, {±1} × {0,±6}) can be decomposed into three Cm-factors by Lemma 1(3). The
last three Cm-factors come from the decomposition of Cay(Zm × Z16, {±1} × {±4, 8})
by Lemma 2.

Case 4: r = 6.
A C16-factorization of Cay(Zm × Z16, {±1} × (±{5, 7})) generates four C16-factors

by Lemma 1(5). The graph Cay(Zm × Z16, {±1} × {±1, 8}) can be decomposed into two
C16-factors and a Cm-factor by Lemma 3. Now, we have the six required C16-factors.
The nine remaining Cm-factors are listed below. Six of them can be obtained from a Cm-
factorization of Cay(Zm × Z16, {±1} × (±{2, 4, 6})) by Lemma 1(2). The last three come
from the decomposition of Cay(Zm × Z16, {±1} × {0,±3}) by Lemma 1(3).

Lemma 11. For odd m ≥ 9 and 7 ≤ r ≤ 23, the graph Cm ≀ K16 can be partitioned into r
C16-factors, 23 − r Cm-factors and a one-factor.

Proof. Let the vertex-set be Zm × Z16. We distinguish 12 cases as shown below.
Case 1: r ∈ {7, 9, 11, 13, 15, 23}.
By Theorem 1 and Lemma 10, we have (0, 7) ∈ HWP(16; m, 16) and (16 − r1, r1) ∈

HWP(Cm[16]; m, 16) for odd m ≥ 9 and r1 ∈ {0, 2, 4, 6, 8, 16}, respectively. Applying
Construction 1, we obtain (16 − r1, r1 + 7) ∈ HWP(Cm ≀ K16; m, 16).

Case 2: r = 8.
Cay(Zm × Z16, {±1} × {8}) ∪ mK16 can be decomposed into eight C16-factors and a

one-factor by Lemma 4. Cay(Zm × Z16, {±1} × (±{1, 5, 6})) and Cay(Zm × Z16, {±1} ×
(±{3, 4, 7})) can be partitioned into twelve Cm-factors from Lemma 1(2). A Cm-factorization
of Cay(Zm × Z16, {±1} × {0,±2}) can generate three Cm-factors by Lemma 1(3).

Case 3: r = 10.
Cay(Zm × Z16, {±1} × {±6, 8})∪ m(∪15

i=11 I′i ) can be decomposed into five C16-factors
and a one-factor from Lemmas 8 and 9. Since I′2j−1 ∪ I′2j can form a 16-cycle, we can obtain
a C16-factor for 1 ≤ j ≤ 5 from the graph m(I′2j−1 ∪ I′2j). In other words, we obtained ten
C16-factors and a one-factor from Cay(Zm × Z16, {±1} × {±6, 8}) ∪ mK16.

Two Cayley graphs Cay(Zm × Z16, {±1} × (±{1, 3, 4})) and Cay(Zm × Z16, {±1} ×
(±{2, 5, 7})) can be partitioned into 12 Cm-factors by Lemma 1(2). The last Cm-factor comes
from a Cm-factorization of Cay(Zm × Z16, {±1} × {0}) by Lemma 1(4).

Case 4: r = 12.
Cay(Zm × Z16, {±1} × {±6, 8}) ∪ mK16 can be decomposed into ten C16-factors and

a one-factor from the above case. By Lemma 1(5), we can obtain the two remaining C16-
factors from the decomposition of Cay(Zm × Z16, {±1} × {±5}). Five Cm-factors come
from a Cm-factorization of Cay(Zm × Z16, {±1} × {0,±1,±2}) by Lemma 1(1). Cay(Zm ×
Z16, {±1} × (±{3, 4, 7})) is precisely divided into six Cm-factors by Lemma 1(2).

Case 5: r = 14.
The Cayley graph Cay(Zm × Z16, {±1} × {8}) ∪ mK16 can be divided into eight C16-

factors and a one-factor by Lemma 4. The last six C16-factors come from a C16-factorization
of Cay(Zm × Z16, {±1} × (±{3, 5, 7})) by Lemma 1(5). In addition, Cay(Zm × Z16, {±1} ×
(±{2, 4, 6})) can be partitioned into six Cm-factors by Lemma 1(2). A Cm-factorization of
Cay(Zm × Z16, {±1} × {0,±1}) contains exactly three Cm-factors by Lemma 1(3).

Case 6: r = 16.
By Lemma 4, Cay(Zm × Z16, {±1} × {8}) ∪ mK16 can be decomposed into eight C16-

factors and a one-factor. The last eight C16-factors originate from a C16-factorization of
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Cay(Zm × Z16, {±1}× (±{1, 3, 5, 7})) by Lemma 1(5). Cay(Zm × Z16, {±1}× (±{2, 4, 6}))
can be divided into six Cm-factors from Lemma 1(2). The last Cm-factor comes from a
Cm-factorization of Cay(Zm × Z16, {±1} × {0}) by Lemma 1(4).

Case 7: r = 18.
Cay(Zm × Z16, {±1} × {±6, 8}) ∪ mK16 can be divided into ten C16-factors and a

one-factor from Case 3. Similarly, we obtain eight C16-factors from Cay(Zm × Z16, {±1} ×
(±{1, 3, 5, 7})) by Lemma 1(5). The five required Cm-factors originate from a Cm-factorization
of Cay(Zm × Z16, {±1} × {0,±2,±4}) by Lemma 1(1).

Case 8: r = 20.
Cay(Zm × Z16, {±1} × (±{2, 4, 6})) ∪ m(∪12

i=1 Ii) can be partitioned into twelve C16-
factors by Lemmas 5 and 6. Cay(Zm × Z16, {±1} × {8}) ∪ m(∪15

i=13 Ii) can be divided
into two C16-factors and a one-factor by Lemma 7. That is to say, Cay(Zm × Z16, {±1} ×
{±2,±4,±6, 8}) ∪ mK16 can be decomposed into fourteen C16-factors and a one-factor. We
can obtain the other six C16-factors from Cay(Zm ×Z16, {±1}× (±{3, 5, 7})) by Lemma 1(5)
and obtain three Cm-factors from a Cm-factorization of Cay(Zm × Z16, {±1} × {0,±1}) by
Lemma 1(3).

Case 9: r = 22.
Cay(Zm × Z16, {±1} × {±2,±4,±6, 8})∪ mK16 can be decomposed into fourteen C16-

factors and a one-factor from the above case. The other eight C16-factors can be obtained
from Cay(Zm × Z16, {±1} × (±{1, 3, 5, 7})) by Lemma 1(5). A Cm-factor originates from
the decomposition of Cay(Zm × Z16, {±1} × {0}) by Lemma 1(4).

Case 10: r = 17.
Since I′2j−1 ∪ I′2j form a 16-cycle, the graph m(I′2j−1 ∪ I′2j) is actually a C16-factor for

any 1 ≤ j ≤ 5. Two graphs Cay(Zm × Z16, {±1} × {±6}) ∪ m(∪15
i=12 I′i ) and Cay(Zm ×

Z16, {±1} × (±{3, 5, 7})) can be decomposed into four C16-factors and six C16-factors by
Lemma 9 and Lemma 1(5), respectively. We can obtain two C16-factors and a Cm-factor from
Cay(Zm × Z16, {±1} × {±1, 8}) by Lemma 3 and five Cm-factors from a Cm-factorization
of Cay(Zm × Z16, {±1} × {0,±2,±4}) by Lemma 1(1). The one-factor is mI′11.

Case 11: r = 19.
By Lemmas 5 and 6, the graph Cay(Zm × Z16, {±1} × (±{2, 4, 6})) ∪ m(∪12

i=1 Ii) can
be divided into 12 C16-factors. m(I13 ∪ I14) is a C16-factor since I13 ∪ I14 can form a 16-cycle.
The one-factor is mI15. Cay(Zm × Z16, {±1} × {±1, 8}) can be divided into two C16-factors
and a Cm-factor by Lemma 3. That is to say, we can obtain 15 C16-factors, a Cm-factor, and a
one-factor from Cay(Zm × Z16, {±1} × (±{1, 2, 4, 6} ∪ {8})) ∪ mK16.

The remaining four C16-factors and three Cm-factors come from the factorization
of Cay(Zm × Z16, {±1} × (±{5, 7})) and Cay(Zm × Z16, {±1} × {0,±3}) by Lemma 1(5)
and Lemma 1(3), respectively.

Case 12: r = 21.
Similarly to the above case, we obtain 15 C16-factors, a Cm-factor, and a one-factor from

Cay(Zm × Z16, {±1} × (±{1, 2, 4, 6} ∪ {8})) ∪ mK16. Cay(Zm × Z16, {±1} × (±{3, 5, 7}))
can be decomposed into six C16-factors by Lemma 1(5). The last Cm-factor originates from
a Cm-factorization of Cay(Zm × Z16, {±1} × {0}) by Lemma 1(4).

Proof of Theorem 4. Let the vertex-set of K16mt be Zmt × Z16. We distinguish the two
following cases.

Case 1: t is odd.
The complete graph Kmt on the vertex-set Zmt can be decomposed into mt−1

2 Cm-factors
by Theorem 1. We give each vertex of Zmt a weight of 16 to obtain mtK16 and mt−1

2 Cm[16]-
factors, which are denoted by Pi, 1 ≤ i ≤ mt−1

2 . Each Pi has t Cm[16]s, denoted by Qij,
1 ≤ j ≤ t.

Let 0 ≤ x ≤ mt−3
2 , we replace each Pi (1 ≤ i ≤ x) with an HW(Cm[16]; 16, m; 16, 0) and

Pi (x + 1 ≤ i ≤ mt−3
2 ) with an HW(Cm[16]; 16, m; 0, 16) by Lemma 10.
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For Pmt−1
2

and 1 ≤ j ≤ t, the graph Q mt−1
2 ,j ∪ mK16 can be partitioned into r C16-factors,

23 − r Cm-factors, and a one-factor for 7 ≤ r ≤ 23 by Lemma 11. We put them together to
obtain r C16-factors, 23 − r Cm-factors, and a one-factor on the vertex-set Zmt × Z16.

We finally obtain α = 16x + r C16-factors, β = 16 × (mt−3
2 − x) + 23 − r = 8mt − 1 −

(16x + r) Cm-factors and a one-factor for 0 ≤ x ≤ mt−3
2 and 7 ≤ r ≤ 23. Here, the range for

α is 7 to 8mt − 1.
Case 2: t is even.
(1) α = 7.
We can obtain the conclusion by using Construction 2 with an HW(16; 16, m; 7, 0) and

an HW(Kmt[16]; 16, m; 0, 8mt − 8) from Theorem 1.
(2) α ≥ 15.
The graph K mt

2
[2] can be partitioned into mt−2

2 Cm-factors by Theorem 1. In other

words, the graph Kmt can be decomposed into mt−2
2 Cm-factors and a one-factor. Giving

each vertex of the graph Kmt weight 16, we obtain mt−2
2 Cm[16]-factors which are denoted

by Pi, 1 ≤ i ≤ mt−2
2 , mtK16, and mt

2 K2[16].
Let 0 ≤ x ≤ mt−4

2 . We replace any Pi (1 ≤ i ≤ x) with an HW(Cm[16]; 16, m; 16, 0) and
Pi (x + 1 ≤ i ≤ mt−4

2 ) with an HW(Cm[16]; 16, m; 0, 16) from Lemma 10.
Similarly to the above case, Pmt−2

2
∪ mtK16 can be partitioned into r C16-factors,

23 − r Cm-factors, and a one-factor on the whole vertex-set Zmt × Z16 for odd m ≥ 9 and
7 ≤ r ≤ 23. Furthermore, using Theorem 1, mt

2 K2[16] can be decomposed into eight
C16-factors.

It is not difficult to calculate the number α of C16-factors and the number β of Cm-
factors. We obtained α = 16x + r + 8 and β = 16 × (mt−4

2 − x) + 23 − r = 8mt − 1 − (16x +

r + 8) for 0 ≤ x ≤ mt−4
2 and 7 ≤ r ≤ 23. We check that the range for α is 15 to 8mt − 1.

5. Concluding Remarks

We are working on the existence of an HW(v; 2l , m; α, β) for an odd m. Theorem 4
completes the proof of the case l = 4 and α ≥ 15. The construction method in this paper is
still useful for other cases. We have some preliminary results and believe that the following
conjecture is valid, but there is still a long way to go before the whole problem can be
solved completely.

Conjecture 1. For any odd m ≥ 2l−1 + 1, (α, β) ∈ HWP(2lmt; 2l , m) if and only if α + β =
2l−1mt − 1, where α ≥ 0, β ≥ 0, and t ≥ 1, except possibly when α ∈ [1, 2l−1 − 2] and t is
odd or α ∈ [1, 2l−1 − 2] ∪ [2l−1, 2l − 2] and t is even.
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