Article

The Hamilton-Waterloo Problem with C_{16}-Factors and C_{m}-Factors for Odd m

Li Wang

School of Sciences and Arts, Suqian University, Suqian 223800, China; 23076@squ.edu.cn

Abstract

The Hamilton-Waterloo problem is a problem of graph factorization. The HamiltonWaterloo problem $\operatorname{HWP}(H ; m, n ; \alpha, \beta)$ asks for a two-factorization of a graph H containing αC_{m} factors and βC_{n}-factors. Let K_{v}^{*} denote the complete graph K_{v} if v is odd and K_{v} minus a one-factor if v is even. In this paper, we completely solve the Hamilton-Waterloo problem $\operatorname{HWP}\left(K_{v}^{*} ; m, 16 ; \alpha, \beta\right)$ for odd $m \geq 9$ and $\alpha \geq 15$.

Keywords: Hamilton-Waterloo problem; two-factorization; cycle decomposition

Citation: Wang, L. The
Hamilton-Waterloo Problem with C_{16}-Factors and C_{m}-Factors for Odd m. Symmetry 2024, 16, 371. https:// doi.org/10.3390/sym16030371

Academic Editors: Michel Planat and Calogero Vetro

Received: 17 January 2024
Revised: 12 March 2024
Accepted: 14 March 2024
Published: 19 March 2024

Copyright: © 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

A central theme in combinatorics and related areas is the decomposition of large discrete objects into simpler or smaller ones. Usually, these simpler or smaller objects are given in advance as needed and have some special properties such as symmetry and uniformity. In this paper, we will focus on a problem of graph factorization. We assume that the reader is familiar with basic concepts in graph theory and design theory, and refers to [1,2] for further details. In this paper, every graph will be simple. In general, the vertex-set and the edge-set of a graph H are denoted by $V(H)$ and $E(H)$, respectively. We denote the cycle of length k by C_{k} and the complete graph on n vertices by K_{n}. We use $K_{u}[g]$ to denote the complete u-partite graph with u parts of size g. In fact, $K_{u}[1]$ is a complete graph K_{u} and the graph $K_{u}[2]$ is $K_{2 u}$ minus a one-factor. These graphs are all regular graphs and each of them possesses highly symmetric properties. A factor of H is a spanning subgraph of H whose vertex-set is exactly $V(H)$. We call it a G-factor if its connected components are isomorphic to G. A G-factorization of H is a set of edge-disjoint G-factors of H whose edge-sets partition $E(H)$. A C_{k}-factorization of H is a partition of $E(H)$ into C_{k}-factors.

For the existence of a C_{k}-factorization of K_{u}, Ray-Chadhuri, Wilson [3], and Lu [4] independently proved the existence for the case of $k=3$. For the other cases, the necessary conditions of the existence of a C_{k}-factorization of K_{u} are also sufficient, see [5-7]. The existence problem for a C_{k}-factorization of $K_{u}[2]$ has been solved, see [8,9]. Finally, Liu [10,11] completely solved the existence of a C_{k}-factorization of $K_{u}[g]$.

Theorem 1. There exists a C_{k}-factorization of $K_{u}[g]$ if and only if $g(u-1) \equiv 0(\bmod 2), g u \equiv 0$ $(\bmod k), k$ is even when $u=2$, and $(k, u, g) \notin\{(3,3,2),(3,6,2),(3,3,6),(6,2,6)\}$.

As usual, an r-regular factor is called an r-factor. In particular, a two-factor is a collection of vertex-disjoint cycles. A two-factorization of a graph H is a partition of $E(H)$ into two-factors. The Hamilton-Waterloo problem $\operatorname{HWP}(H ; m, n ; \alpha, \beta)$ asks for a twofactorization of a specified graph H containing αC_{m}-factors and βC_{n}-factors. Let K_{v}^{*} denote the complete graph K_{v} if v is odd and K_{v} minus a one-factor if v is even. We denote a solution to $\operatorname{HWP}\left(K_{v}^{*} ; m, n ; \alpha, \beta\right)$ by $\operatorname{HW}(v ; m, n ; \alpha, \beta)$. Also, we use $\operatorname{HWP}(v ; m, n)$ to denote the set of (α, β) for which an $\operatorname{HW}(v ; m, n ; \alpha, \beta)$ exists. The necessary conditions for the existence of an $\operatorname{HW}(v ; m, n ; \alpha, \beta)$ are shown so that $m \mid v$ when $\alpha>0, n \mid v$ when $\beta>0$ and
$\alpha+\beta=\left\lfloor\frac{v-1}{2}\right\rfloor$. Theorem 1 indicates that the existence of an $\operatorname{HW}(v ; m, n ; \alpha, \beta)$ has been completely solved when $\alpha \beta=0$.

For small values of m and n, the known results of the Hamilton-Waterloo problem are as follows. A complete solution for the existence of an $\operatorname{HW}(v ; 3, n ; \alpha, \beta)$ in the cases $n \in\{4,5,7\}$ is given in [12-17]. For the cases $(m, n) \in\{(3,15),(5,15),(4,6)$, $(4,8),(4,16),(8,16)\}$, see [12]. Kamin [18] showed that the necessary conditions for the existence of an $\operatorname{HW}(v ; 3,9 ; \alpha, \beta)$ are also sufficient, apart from the exceptional case $\beta=1$. Asplund et al. [19] constructed many infinite classes of $\operatorname{HW}(v ; 3,3 x ; \alpha, \beta) \mathrm{s}$.

The existence of an $\operatorname{HW}(v ; 4, m ; \alpha, \beta)$ for odd $m \geq 3$ has been solved with some possible exceptions, see $[16,17,20]$. Fu and Huang [21] give a complete solution for an $\operatorname{HW}(v ; 4, m ; \alpha, \beta)$ for even $m \geq 4$.

Theorem 2 ([16,17,20,21]). $(\alpha, \beta) \in \operatorname{HWP}(v ; 4, m)$ for $m \geq 3$ if and only if $\alpha, \beta \geq 0$ and $\alpha+\beta=\left\lfloor\frac{v-1}{2}\right\rfloor$, except possibly when $m \geq 5$ is odd, $v=8 m$, and $\alpha=2$.

Wang and Cao [22] considered the Hamilton-Waterloo problem with C_{8}-factors and C_{m}-factors and gave the following results.

Theorem 3 ([22]). $(\alpha, \beta) \in \operatorname{HWP}(8 m t ; 8, m)$ for $m \geq 3$ and $t \geq 1$ if and only if $\alpha, \beta \geq 0$ and $\alpha+\beta=4 m t-1$, except possibly when $\alpha \in\{1,2\}$ and $m t$ is odd or $\alpha \in\{1,2,4,5,6\}$ and $m t$ is even.

Bryant et al. [23,24] completely solved the Hamilton-Waterloo problem for bipartite two-factors. Buratti and Danziger [25] as well as Merola and Traetta [26] focused on infinitely many cyclic solutions to the Hamilton-Waterloo problem with odd length cycles. Dinitz and Ling [27] as well as Lei and Shen [28] gave an analysis of the Hamilton-Waterloo problem for Hamilton cycles and triangle factors. Wang, Lu, and Cao [29] considered the existence of an $\operatorname{HW}(k(2 k t+1) ; k, 2 k t+1 ; \alpha, \beta)$ for $t \geq 1$ and odd $k \geq 3$. For the case of two cycles sizes m, n of different parity on the Hamilton-Waterloo problem, Keranen and Pastine [30] mainly focused on the case $m \mid n$ and $(m, n)=\left(2^{l} x, n\right)$ with odd x, n, and $\operatorname{gcd}(x, n) \geq 3$. Burgess, Danziger, and Traetta studied the Hamilton-Waterloo problem in detail, see [31-34]. In 2022, Burgess et al. [35] made further progress when m and n are not coprime in two regards. In 2023, [36] presented a survey of constructive methods for the Hamilton-Waterloo problem which have allowed recent progress. The readers can have a comprehensive understanding of this problem.

In this paper, we consider the remaining situation of the Hamilton-Waterloo problem. We will focus on the existence of an $\operatorname{HW}(16 m t ; 16, m ; \alpha, \beta)$ for odd m and give the following main result.

Theorem 4. For any odd $m \geq 9,(\alpha, \beta) \in \operatorname{HWP}(16 m t ; 16, m)$ if and only if $\alpha+\beta=8 m t-1$, where $\alpha \geq 0, \beta \geq 0$, and $t \geq 1$, except possibly when $\alpha \in[1,6]$ and t is odd or $\alpha \in[1,6] \cup[8,14]$ and t is even.

2. Preliminary

In this section, we introduce some necessary definitions, notations, and known results which will be used later.

To begin with, we introduce the definition of a Cayley graph. Let Γ be a finite additive group and let S be a subset of $\Gamma \backslash\{0\}$ closed under taking additive inverses. The Cayley graph over Γ with connection set S, denoted by $\operatorname{Cay}(\Gamma, S)$, is the graph with vertex-set Γ and edge-set $E(\operatorname{Cay}(\Gamma, S))=\{(a, b) \mid a, b \in \Gamma, a-b \in S\}$. For our constructions, we need the following results on a C_{m}-factorization or a C_{n}-factorization of $\operatorname{Cay}\left(Z_{m} \times Z_{n}, S\right)$.

Lemma 1 ([17,22]). (1) Let $m, n \geq 3$, let $a \in Z_{n}$ satisfying $| \pm\{0, a, 2 a\}|=5$, and let $\operatorname{gcd}(i, m)=1$. There exist five C_{m}-factors which form a C_{m}-factorization of Cay $\left(Z_{m} \times Z_{n},\{ \pm i\} \times\right.$ $(\pm\{0, a, 2 a\}))$.
(2) Let $m \geq 3$ be odd, let $n \geq 4$ be even, and let $a, b \in Z_{n}$ with $| \pm\{a, b, a+b\}|=6$. There exist six C_{m}-factors which form a C_{m}-factorization of $\operatorname{Cay}\left(Z_{m} \times Z_{n},\{ \pm i\} \times(\pm\{a, b, a+b\})\right)$ with $\operatorname{gcd}(i, m)=1$.
(3) Let $m \geq 3$ be odd, let $n \geq 4$ be even, and let $1 \leq d<n$. There exist three C_{m}-factors which form a C_{m}-factorization of $\operatorname{Cay}\left(Z_{m} \times Z_{n},\{ \pm i\} \times\{0, \pm d\}\right)$ with $\operatorname{gcd}(i, m)=1$.
(4) Let $n \geq 4$ be even and let $d=0(m \geq 3)$ or $d=n / 2(m \geq 4$ is even $)$. There exists a C_{m}-factor which forms a C_{m}-factorization of $\operatorname{Cay}\left(Z_{m} \times Z_{n},\{ \pm i\} \times\{d\}\right)$ with $\operatorname{gcd}(i, m)=1$.
(5) Let $m \geq 3$, let $n \geq 4$ be even and let $0<d<n$ be coprime to n. There exist two C_{n}-factors which form a C_{n}-factorization of $\operatorname{Cay}\left(Z_{m} \times Z_{n},\{ \pm i\} \times\{ \pm d\}\right)$ with $\operatorname{gcd}(i, m)=1$.

Next, we introduce the concept of the wreath product of two graphs. If both G and H are graphs, the wreath product $G<H$ of G and H has a vertex-set $V(G) \times V(H)$ in which $\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \in E(G \imath H)$ whenever $u_{1} u_{2} \in E(G)$ or, $u_{1}=u_{2}$ and $v_{1} v_{2} \in E(H)$. For brevity, we denote $C_{m} \imath \overline{K_{n}}$ by $C_{m}[n]$, where $\overline{K_{n}}$ is the complement of K_{n}. We will give some known results and constructions that will be used later.

Theorem 5 ([6,37]). For $m \geq 3$ and $n \geq 1$, a C_{m}-factorization of $C_{m}[n]$ exists, except for $(m, n)=(3,6)$ and $(m, n) \in\{(l, 2) \mid l \geq 3$ is odd $\}$.

Theorem 6 ([38]). For $m \geq 3$ and $n \geq 1$, there exists a $C_{m n}$-factorization of $C_{m}[n]$.
Theorem 7 ([16]). The graph $C_{m}[4]$ can be decomposed into αC_{4}-factors and $4-\alpha C_{m}$-factors for $m \geq 3$ and $\alpha \in\{0,2,4\}$.

Construction 1 ([22]). If $(\alpha, \beta) \in \operatorname{HWP}\left(C_{m}[n] ; m, n\right)$, then $\left(\alpha, \beta+\left\lfloor\frac{n-1}{2}\right\rfloor\right) \in \operatorname{HWP}\left(C_{m} \backslash K_{n} ; m, n\right)$.
Construction 2 ([17]). If there exists an $\operatorname{HW}\left(K_{u}[g] ; m, n ; \alpha, \beta\right)$ and an $\operatorname{HW}\left(g ; m, n ; \alpha^{\prime}, \beta^{\prime}\right)$, then an $\operatorname{HW}\left(g u ; m, n ; \alpha+\alpha^{\prime}, \beta+\beta^{\prime}\right)$ exists.

Construction 3. If $C_{m}[n]$ can be decomposed into αC_{n}-factors and $n-\alpha C_{m}$-factors, and there exists a $C_{n w}$-factorization of $C_{n}[w]$ and a C_{m}-factorization of $C_{m}[w]$, then $C_{m}[n w]$ can be decomposed into wa $C_{n w}$-factors and $w(n-\alpha) C_{m}$-factors.

Proof. The graph $C_{m}[n]$ can be decomposed into αC_{n}-factors and $n-\alpha C_{m}$-factors. Then, we give each vertex weight w to obtain $\alpha C_{n}[w]$-factors and $n-\alpha C_{m}[w]$-factors. Each $C_{n}[w]$ ($C_{m}[w]$) can be partitioned into $w C_{n w}$-factors (C_{m}-factors). Finally, each $C_{m}[n w]$-factor can be decomposed into $w \alpha C_{n w}$-factors and $w(n-\alpha) C_{m}$-factors.

3. Decompositions of Some Cayley Graphs

In this section, we will give some new decompositions of Cayley graphs. For brevity, we will denote the vertex (x, y) by x_{y}.

Lemma 2. Let $m \geq 3$ be odd and $n \equiv 0(\bmod 4)$. The graph $\operatorname{Cay}\left(Z_{m} \times Z_{n},\{ \pm 1\} \times\left\{ \pm \frac{n}{4}, \frac{n}{2}\right\}\right)$ can be decomposed into three C_{m}-factors.

Proof. Let

$$
\begin{aligned}
& C_{1}^{1}=\left(0_{0}, 1_{\frac{n}{4}}, 2_{\frac{n}{2}}, 3_{\frac{n}{4}}, 4_{\frac{n}{2}}, \ldots,(m-2)_{\frac{n}{4}},(m-1)_{\frac{n}{2}}\right), \\
& C_{1}^{2}=\left(0_{\frac{n}{4}}, 1_{0}, 2_{-\frac{n}{4}}, 3_{0}, 4_{-\frac{n}{4}}, \ldots,(m-2)_{0},(m-1)_{-\frac{n}{4}}\right), \\
& C_{2}^{1}=\left(0_{0}, 1_{-\frac{n}{4}}, 2_{\frac{n}{4},}, 3_{-\frac{n}{4}}, 4_{\frac{n}{4}}, \ldots,(m-2)_{-\frac{n}{4}},(m-1)_{\frac{n}{4}}\right), \\
& C_{2}^{2}=\left(0_{-\frac{n}{4}}, 1_{0}, 2_{\frac{n}{2}}, 3_{0}, 4_{\frac{n}{2}}, \ldots,(m-2)_{0},(m-1)_{\frac{n}{2}}\right), \\
& C_{3}^{1}=\left(0_{0}, 1_{\frac{n}{2}}, 2_{-\frac{n}{4}}, 3_{\frac{n}{2}}, 4_{-\frac{n}{4}}, \ldots,(m-2)_{\frac{n}{2}},(m-1)_{-\frac{n}{4}}\right), \\
& C_{3}^{2}=\left(0_{-\frac{n}{4}}, 1_{\frac{n}{4}}^{4}, 2_{0}, 3_{\frac{n}{4}}, 4_{0}, \ldots,(m-2)_{n}\right) .
\end{aligned}
$$

Let $\mathcal{B}_{i}=\left\{C_{i}^{j}+(0, s), \left.C_{i}^{j}+\left(0, s+\frac{n}{2}\right) \right\rvert\, 1 \leq j \leq 2,0 \leq s \leq \frac{n}{4}-1\right\}, 1 \leq i \leq 3$. Each \mathcal{B}_{i} has $2 \times 2 \times \frac{n}{4}=n$ cycles with length m and $V\left(\mathcal{B}_{i}\right)=Z_{m} \times Z_{n}$, thus it is a C_{m}-factor. By counting the edges of $\cup_{i=1}^{3} \mathcal{B}_{i}$, we obtain that $\cup_{i=1}^{3} E\left(\mathcal{B}_{i}\right)$ coincides with the edge-set of the Cayley graph Cay $\left(Z_{m} \times Z_{n},\{ \pm 1\} \times\left\{ \pm \frac{n}{4}, \frac{n}{2}\right\}\right)$. So, this Cayley graph can be decomposed into three C_{m}-factors.

Lemma 3. Let $l \geq 3$ and $m \geq 2^{l-1}+1$ be odd. The graph Cay $\left(Z_{m} \times Z_{2^{l}},\{ \pm 1\} \times\left\{ \pm 1,2^{l-1}\right\}\right)$ can be partitioned into two $C_{2^{l}}$-factors and a C_{m}-factor.

Proof. Let
$C_{1}=\left(0_{0},(m-1)_{1}, 0_{2},(m-1)_{3}, \ldots, 0_{2^{l}-2^{\prime}}(m-1)_{2^{l}-1}\right)$,
$C_{2}=\left(0_{1}, 1_{1+2^{l-1}}, 2_{1}, 3_{1+2^{l-1}}, \ldots,\left(2^{l-1}-2\right)_{1},\left(2^{l-1}-1\right)_{1+2^{l-1}},\left(2^{l-1}\right)_{2^{l-1}},\left(2^{l-1}-1\right)_{0}\right.$, $\left.\left(2^{l-1}-2\right)_{2^{l-1}},\left(2^{l-1}-3\right)_{0}, \ldots, 2_{2^{l-1}}, 1_{0}\right)$,
$C_{3}=\left((m-1)_{0}, 0_{1},(m-1)_{2}, 0_{3}, \ldots,(m-1)_{2^{l}-2^{2}}, 0_{2^{l}-1}\right)$,
$C_{4}=\left(0_{0}, 1_{2^{l-1}}, 2_{2^{l-1}-1}, 3_{2^{l-1}-2^{\prime}}, \ldots,\left(2^{l-1}-2\right)_{3},\left(2^{l-1}-1\right)_{2},\left(2^{l-1}\right)_{1},\left(2^{l-1}-1\right)_{2^{l-1}+1}\right.$,
$\left.\left(2^{l-1}-2\right)_{2^{l-1}+2^{\prime}}, \ldots, 2_{2^{l}-2^{\prime}}, 1_{2^{l}-1}\right)$.
(1) For $m=2^{l-1}+1$, let $\mathcal{B}_{1}=\left\{\left(0_{0}, 1_{1}, 2_{2}, \ldots,\left(2^{l-1}\right)_{2^{l-1}}\right)+(0, h) \mid h \in Z_{2^{l}}\right\}$. It contains 2^{l} cycles with a length of m and $V\left(\mathcal{B}_{1}\right)=Z_{m} \times Z_{2^{l}}$, then \mathcal{B}_{1} is a C_{m}-factor.

Let $\mathcal{B}_{2}=\left\{C_{1}, C_{2}+(0,2 i) \mid 0 \leq i \leq 2^{l-1}-1\right\}$ and $\mathcal{B}_{3}=\left\{C_{3}, C_{4}+(0,2 i) \mid 0 \leq i \leq\right.$ $\left.2^{l-1}-1\right\}$. Each of them has m cycles with a length of 2^{l} and its vertex-set is $Z_{m} \times Z_{2^{l}}$, then \mathcal{B}_{2} and \mathcal{B}_{3} are two $C_{2 l}$-factors. By counting $\cup_{i=1}^{3} E\left(\mathcal{B}_{i}\right)$, we obtain that it coincides with the edge-set of the Cayley graph.
(2) For $m \geq 2^{l-1}+3$, let
$\mathcal{B}_{1}=\left\{\left(0_{0}, 1_{1}, \ldots,\left(2^{l-1}\right)_{2^{l-1}},\left(2^{l-1}+1\right)_{0},\left(2^{l-1}+2\right)_{2^{l-1}},\left(2^{l-1}+3\right)_{0},\left(2^{l-1}+4\right)_{2^{l-1}}, \cdots\right.\right.$, $\left.\left.(m-2)_{0},(m-1)_{2^{l-1}}\right)+(0, h) \mid h \in Z_{2^{l}}\right\}$,
$\mathcal{B}_{2}=\left\{C_{1}, C_{2}+(0,2 i),\left((j+1)_{0}, j_{1},(j+1)_{2}, j_{3}, \ldots,(j+1)_{2^{l}-2^{\prime}}, j_{2^{l}-1}\right) \mid 0 \leq i \leq 2^{l-1}-\right.$ $\left.1,2^{l-1} \leq j \leq m-2\right\}$,
$\mathcal{B}_{8}=\left\{C_{3}, C_{4}+(0,2 i),\left(j_{0},(j+1)_{1}, j_{2},(j+1)_{3}, \ldots, j_{2^{l}-2^{\prime}}(j+1)_{2^{l}-1}\right) \mid 0 \leq i \leq 2^{l-1}-\right.$ $\left.1,2^{l-1} \leq j \leq m-2\right\}$.

Similarly to the above case, we obtain that \mathcal{B}_{1} is a C_{m}-factor and $\mathcal{B}_{2}, \mathcal{B}_{3}$ are two $C_{2^{-}}$ factors. We check that $\cup_{i=1}^{3} E\left(\mathcal{B}_{i}\right)=E\left(\operatorname{Cay}\left(Z_{m} \times Z_{2^{l}},\{ \pm 1\} \times\left\{ \pm 1,2^{l-1}\right\}\right)\right)$.

Lemma 4. Let $m \geq 3$ and $l \geq 3$. The graph $\operatorname{Cay}\left(Z_{m} \times Z_{2^{l}},\{ \pm 1\} \times\left\{2^{l-1}\right\}\right) \cup m K_{2^{l}}$ can be partitioned into $2^{l-1} C_{2^{l}}$-factors and a one-factor.

Proof. Note that the graph $m K_{2^{l}}$ is equivalent to the Caylay graph $\operatorname{Cay}\left(Z_{m} \times Z_{2^{l}},\{0\} \times\right.$ $\left(Z_{2^{l}} \backslash\{0\}\right)$). By Theorem 1, there exists a $C_{2^{l}}$-factorization of the graph $K_{2^{l-1}}[2]$. Let $\left(e_{1}, e_{2}\right)=(0,1),\left(e_{3}, e_{4}\right)=\left(1+2^{l-1}, 2+2^{l-1}\right),\left(e_{2 t+1}, e_{2 t+2}\right)=\left(t, t+1+2^{l-1}\right), 2 \leq t \leq$ $2^{l-1}-2,\left(e_{2^{l}-1}, e_{2^{l}}\right)=\left(2^{l-1}-1,2^{l-1}\right)$. Without loss of generality, let $\left\{\left\{e_{1}, e_{2}\right\},\left\{e_{3}, e_{4}\right\}, \ldots\right.$, $\left.\left\{e_{2^{l}-1^{\prime}}, e_{2^{l}}\right\}\right\}$ be the group set of $K_{2^{l-1}}[2]$. There are $2^{l-1}-1 C_{2^{l}}$-factors of $K_{2^{l-1}}$ [2], denoted by $\left(b_{s 1}, b_{s 2}, \ldots, b_{s, 2}\right)$ for $1 \leq s \leq 2^{l-1}-1$.

We first construct the required $2^{l-1} C_{2^{l}}$-factors, each of which has exactly m cycles with a length of $C_{2^{l}}$. Let $C_{s}=\left(0_{b_{s 1}}, 0_{b_{s 2}}, \ldots, 0_{b_{s, 2} l}\right), 1 \leq s \leq 2^{l-1}-1$, and

$$
C_{2^{l-1}}=\left(0_{e_{1}}, 0_{e_{2}}, 1_{e_{3}}, 1_{e_{4}}, 0_{e_{5}}, 0_{e_{6}}, 1_{e_{7}}, 1_{e_{8}}, \ldots, 0_{e_{2} l_{-3}}, 0_{e_{e_{2}-2}}, 1_{e_{e_{2} l_{-1}}}, 1_{e_{e_{2} l}}\right) .
$$

For $1 \leq i \leq 2^{l-1}$, the set of the subscripts of C_{i} is actually $Z_{2^{l}}$, thus, each C_{i} can generate a C_{2} l-factor by $(+1(\bmod m),-)$. In other words, $\left\{C_{i}+(l, 0) \mid l \in Z_{m}\right\}$ is a $C_{2} l$-factor.

In the original graph, in addition to the edges in the cycles above, there are still some edges left, that is, $\left\{\left(1_{e_{4 p-2}}, 0_{e_{4 p-1}}\right)+(l, 0),\left(0_{e_{4 p}}, 1_{e_{4 p+1}}\right)+(l, 0) \mid l \in Z_{m}, 1 \leq p \leq\right.$ $\left.2^{l-2}, e_{2^{l}+1}=e_{1}\right\}$. The set of vertices on these edges is $Z_{m} \times Z_{2^{l}}$, so this set of edges forms a one-factor.

Now, we construct two special one-factorizations of K_{16} with the vertex-set Z_{16} whose 15 one-factors are listed below for the following lemmas.

$$
\begin{aligned}
& I_{1}=\{(0,1),(3,6),(4,5),(7,10),(8,9),(11,14),(12,13),(15,2)\}, \\
& I_{3}=\{(0,2),(6,1),(13,3),(7,9),(5,11),(15,12),(8,10),(14,4)\}, \\
& I_{5}=\{(0,4),(10,1),(11,3),(9,2),(12,8),(14,5),(15,7),(13,6)\}, \\
& I_{7}=\{(0,5),(3,7),(9,4),(2,10),(12,1),(15,11),(13,8),(6,14)\}, \\
& I_{9}=\{(0,6),(2,4),(8,3),(15,5),(9,11),(7,13),(1,14),(10,12)\}, \\
& I_{11}=\{(0,15),(9,5),(11,12),(6,2),(8,7),(1,13),(3,4),(14,10)\}, \\
& I_{13}=\{(0,9),(6,12),(5,2),(11,8),(14,7),(4,13),(15,1),(3,10)\}, \\
& I_{14}=\{(9,6),(12,5),(2,11),(8,14),(7,4),(13,15),(1,3),(10,0)\}, \\
& I_{15}=\{(0,11),(13,2),(12,7),(14,9),(3,5),(10,4),(15,6),(1,8)\}, \\
& I_{2 i}=\left\{(x+2 i, y+2 i):(x, y) \in I_{2 i-1}\right\}, i=1,2,3, \\
& I_{6+2 i}=\left\{(x-2 i, y-2 i):(x, y) \in I_{5+2 i}\right\}, i=1,2,3 . \\
& \text { Note that } I_{13} \cup I_{14} \text { can form a } 16-\text { cycle }, \\
& I_{1}^{\prime}=\{(0,2),(1,3),(5,4),(6,8),(7,9),(11,10),(15,13),(12,14)\}, \\
& I_{2}^{\prime}=\{(2,1),(3,5),(4,6),(8,7),(9,11),(10,15),(13,12),(14,0)\}, \\
& I_{3}^{\prime}=\{(0,4),(2,3),(6,1),(5,7),(10,8),(14,13),(9,15),(11,12)\}, \\
& I_{4}^{\prime}=\{(4,2),(3,6),(1,5),(7,10),(8,14),(13,9),(15,11),(12,0)\}, \\
& I_{5}^{\prime}=\{(0,5),(8,1),(7,3),(9,2),(15,4),(14,10),(12,6),(11,13)\}, \\
& I_{6}^{\prime}=\{(5,8),(1,7),(3,9),(2,15),(4,14),(10,12),(6,11),(13,0)\}, \\
& I_{7}^{\prime}=\{(0,6),(2,8),(3,12),(9,14),(5,10),(1,15),(7,13),(4,11)\}, \\
& I_{8}^{\prime}=\{(6,2),(8,3),(12,9),(14,5),(10,1),(15,7),(13,4),(11,0)\}, \\
& I_{9}^{\prime}=\{(0,7),(12,2),(13,3),(14,6),(10,4),(9,1),(11,5),(15,8)\}, \\
& I_{10}^{\prime}=\{(7,12),(2,13),(3,14),(6,10),(4,9),(1,11),(5,15),(8,0)\}, \\
& I_{11}^{\prime}=\{(0,10),(2,11),(3,15),(7,14),(6,13),(5,9),(1,12),(4,8)\}, \\
& I_{12}^{\prime}=\{(0,1),(7,2),(12,4),(10,3),(13,5),(11,14),(8,9),(15,6)\}, \\
& I_{13}^{\prime}=\{(6,7),(13,8),(2,10),(0,9),(3,11),(1,4),(14,15),(5,12)\}, \\
& I_{14}^{\prime}=\{(0,3),(13,1),(7,4),(14,2),(8,11),(5,6),(12,15),(9,10)\}, \\
& I_{15}^{\prime}=\{(10,13),(7,11),(1,14),(8,12),(2,5),(15,0),(6,9),(3,4)\} .
\end{aligned}
$$

Note that $I_{2 i-1}^{\prime} \cup I_{2 i}^{\prime}$ can form a 16 -cycle for $1 \leq i \leq 5$.
For an integer $m \geq 2, m H$ denotes m vertex-disjoint copies of a graph H. For brevity, we use $m I_{k}$ (or $m I_{k}^{\prime}$) to denote the graph with the vertex-set $Z_{m} \times Z_{16}$ and the edge-set $\left\{\left(j_{a}, j_{b}\right) \mid j \in Z_{m},(a, b) \in I_{k}\left(\right.\right.$ or $\left.\left.I_{k}^{\prime}\right), a \neq b\right\}$ for $1 \leq k \leq 15$. Similarly, $m K_{n}$ denotes the graph with the vertex-set $Z_{m} \times Z_{n}$ and the edge-set $\left\{\left(j_{a}, j_{b}\right) \mid j \in Z_{m},(a, b) \in E\left(K_{n}\right)\right\}$.

Lemma 5. Let $m \geq 3$ and $i \in\{2,4,6\}$. There exist two C_{16}-factors which form a C_{16}-factorization of $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{i\}\right) \cup m I_{i-1} \cup m I_{i}$.

Proof. Let $C_{1}^{2}=\left(0_{0}, 0_{1}, 1_{3}, 1_{6}, 0_{4}, 0_{5}, 1_{7}, 1_{10}, 0_{8}, 0_{9}, 1_{11}, 1_{14}, 0_{12}, 0_{13}, 1_{15}, 1_{2}\right)$,

$$
\begin{aligned}
& C_{1}^{4}=\left(0_{0}, 0_{2}, 1_{6}, 1_{1}, 0_{13}, 0_{3}, 1_{7}, 1_{9}, 0_{5}, 0_{11}, 1_{15}, 1_{12}, 0_{8}, 0_{10}, 1_{14}, 1_{4}\right), \\
& C_{1}^{6}=\left(0_{0}, 0_{4}, 1_{10}, 1_{1}, 0_{11}, 0_{3}, 1_{9}, 1_{2}, 0_{12}, 0_{8}, 1_{14}, 1_{5}, 0_{15}, 0_{7}, 1_{13}, 1_{6}\right) .
\end{aligned}
$$

For each $i \in\{2,4,6\}$, let $C_{2}^{i}=C_{1}^{i}+(0, i)$. Because the set of the subscripts of C_{t}^{i} is Z_{16}, each $\mathcal{B}_{t}^{i}=\left\{C_{t}^{i}+(l, 0) \mid l \in Z_{m}\right\}$ is a C_{16}-factor for $t=1,2$. Since $E\left(\mathcal{B}_{1}^{i}\right) \cup E\left(\mathcal{B}_{2}^{i}\right)=E\left(\operatorname{Cay}\left(Z_{m} \times\right.\right.$ $\left.\left.Z_{16},\{ \pm 1\} \times\{i\}\right) \cup m I_{i-1} \cup m I_{i}\right)$, these two C_{16}-factors can form a C_{16}-factorization of the graph.

Lemma 6. Let $m \geq 3$ and $i \in\{2,4,6\}$. There exist two C_{16}-factors which is a C_{16}-factorization of $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{-i\}\right) \cup m I_{6+i-1} \cup m I_{6+i}$.

Proof. Let $C_{1}^{2}=\left(0_{0}, 0_{5}, 1_{3}, 1_{7}, 0_{9}, 0_{4}, 1_{2}, 1_{10}, 0_{12}, 0_{1}, 1_{15}, 1_{11}, 0_{13}, 0_{8}, 1_{6}, 1_{14}\right)$,

$$
C_{1}^{4}=\left(0_{0}, 0_{6}, 1_{2}, 1_{4}, 0_{8}, 0_{3}, 1_{15}, 1_{5}, 0_{9}, 0_{11}, 1_{7}, 1_{13}, 0_{1}, 0_{14}, 1_{10}, 1_{12}\right)
$$

$$
C_{1}^{6}=\left(0_{0}, 0_{15}, 1_{9}, 1_{5}, 0_{11}, 0_{12}, 1_{6}, 1_{2}, 0_{8}, 0_{7}, 1_{1}, 1_{13}, 0_{3}, 0_{4}, 1_{14}, 1_{10}\right) .
$$

It is similar to the above lemma, let $C_{2}^{i}=C_{1}^{i}+(0,-i)$ for any $i \in\{2,4,6\}$. We have that each $\left\{C_{t}^{i}+(l, 0) \mid l \in Z_{m}\right\}$ is a C_{16}-factor for $t=1,2$, and they form a C_{16}-factorization.

Lemma 7. Let $m \geq 3$. The graph $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{8\}\right) \cup m\left(\cup_{i=13}^{15} I_{i}\right)$ can be decomposed into two C_{16}-factors and a one-factor.

Proof. Let $C_{1}=\left(0_{0}, 0_{9}, 0_{6}, 0_{12}, 0_{5}, 0_{2}, 0_{11}, 0_{8}, 0_{14}, 0_{7}, 0_{4}, 0_{13}, 0_{15}, 0_{1}, 0_{3}, 0_{10}\right)$,

$$
C_{2}=\left(0_{0}, 0_{11}, 1_{3}, 1_{5}, 0_{13}, 0_{2}, 1_{10}, 1_{4}, 0_{12}, 0_{7}, 1_{15}, 1_{6}, 0_{14}, 0_{9}, 1_{1}, 1_{8}\right) .
$$

Similarly, each $\mathcal{B}_{t}=\left\{C_{t}+(l, 0) \mid l \in Z_{m}\right\}$ is a C_{16}-factor for $t=1,2$ because the set of the subscripts of C_{t} is Z_{16}. Let $I=\left\{\left((j+1)_{11}, j_{3}\right),\left(j_{5},(j+1)_{13}\right),\left((j+1)_{2}, j_{10}\right),\left(j_{4},(j+\right.\right.$ $\left.\left.1)_{12}\right),\left((j+1)_{7}, j_{15}\right),\left(j_{6},(j+1)_{14}\right),\left((j+1)_{9}, j_{1}\right),\left(j_{8},(j+1)_{0}\right) \mid j \in Z_{m}\right\}$. It is a one-factor since $V(I)=Z_{m} \times Z_{16}$. We check that $E\left(\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{8\}\right) \cup m\left(\cup_{i=13}^{15} I_{i}\right)\right)=$ $E\left(\mathcal{B}_{1}\right) \cup E\left(\mathcal{B}_{2}\right) \cup E(I)$. Then, we obtain the conclusion.

Lemma 8. Let $m \geq 3$. The graph $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{8\}\right) \cup m I_{11}^{\prime}$ can be partitioned into a C_{16}-factor and a one-factor.

Proof. Let $C=\left(0_{0}, 0_{10}, 1_{2}, 1_{11}, 0_{3}, 0_{15}, 1_{7}, 1_{14}, 0_{6}, 0_{13}, 1_{5}, 1_{9}, 0_{1}, 0_{12}, 1_{4}, 1_{8}\right)$. Since the set of the subscripts of C is Z_{16}, we obtain that $\mathcal{B}=\left\{C+(l, 0) \mid l \in Z_{m}\right\}$ is a C_{16}-factor of this graph. Let $I=\left\{\left((j+1)_{10}, j_{2}\right),\left(j_{11},(j+1)_{3}\right),\left((j+1)_{15}, j_{7}\right),\left(j_{14},(j+1)_{6}\right),\left((j+1)_{13}, j_{5}\right),\left(j_{9},(j+\right.\right.$ $\left.\left.1)_{1}\right),\left((j+1)_{12}, j_{4}\right),\left(j_{8},(j+1)_{0}\right) \mid j \in Z_{m}\right\}$. It is a set of edges and $V(I)=Z_{m} \times Z_{16}$, so it is a one-factor. We check that $E(\mathcal{B}) \cup E(I)$ coincides with the edge-set of the graph $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{8\}\right) \cup m I_{11}^{\prime}$ by counting the number of edges.

Lemma 9. Let $m \geq 3$. The graph $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{ \pm 6\}\right) \cup m\left(\cup_{i=12}^{15} I_{i}^{\prime}\right)$ can be decomposed into four C_{16}-factors.

Proof. Let $C_{1}=\left(0_{0}, 0_{1}, 1_{7}, 1_{2}, 0_{12}, 0_{4}, 1_{10}, 1_{3}, 0_{13}, 0_{5}, 1_{11}, 1_{14}, 0_{8}, 0_{9}, 1_{15}, 1_{6}\right)$,

$$
\begin{aligned}
& C_{2}=\left(0_{6}, 0_{7}, 1_{13}, 1_{8}, 0_{2}, 0_{10}, 1_{0}, 1_{9}, 0_{3}, 0_{11}, 1_{1}, 1_{4}, 0_{14}, 0_{15}, 1_{5}, 1_{12}\right), \\
& C_{3}=\left(0_{0}, 0_{3}, 1_{13}, 1_{1}, 0_{7}, 0_{4}, 1_{14}, 1_{2}, 0_{8}, 0_{11}, 1_{5}, 1_{6}, 0_{12}, 0_{15}, 1_{9}, 1_{10}\right), \\
& C_{4}=\left(0_{10}, 0_{13}, 1_{7}, 1_{11}, 0_{1}, 0_{14}, 1_{8}, 1_{12}, 0_{2}, 0_{5}, 1_{15}, 1_{0}, 0_{6}, 0_{9}, 1_{3}, 1_{4}\right) .
\end{aligned}
$$

Let $\mathcal{B}_{i}=\left\{C_{t}+(l, 0) \mid l \in Z_{m}\right\}$ for $1 \leq t \leq 4$. Since the subscripts of C_{t} form the set Z_{16}, each \mathcal{B}_{i} is a C_{16}-factor. By counting the edges of $\cup_{i=1}^{4} \mathcal{B}_{i}$, we obtain the required design.

4. Main Results

In this section, we will prove our main results.
Lemma 10. For odd $m \geq 9$ and $r \in\{0,2,4,6,8,16\},(r, 16-r) \in \operatorname{HWP}\left(C_{m}[16] ; 16, m\right)$.
Proof. We consider the four following cases.
Case 1: $r=0,8,16$.
By Theorem 7, the graph $C_{m}[4]$ can be decomposed into $\frac{r}{4} C_{4}$-factors and $4-\frac{r}{4} C_{m}{ }^{-}$ factors for $m \geq 3$. By Theorems 5 and 6 , two graphs $C_{m}[4]$ and $C_{4}[4]$ can be partitioned into four C_{m}-factors and four C_{16}-factors, respectively. Then, we obtain the conclusion by applying Construction 3 .

Case 2: $r=2$.
We obtain two C_{16}-factors from a C_{16}-factorization of $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{ \pm 5\}\right)$ by Lemma 1(5). The required fourteen C_{m}-factors can be obtained through three parts. The graph $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{0, \pm 1, \pm 2\}\right)$ can be decomposed into five C_{m}-factors by

Lemma 1(1). Similarly, we consider two Cayley graphs Cay $\left(Z_{m} \times Z_{16},\{ \pm 1\} \times(\pm\{3,6,7\})\right)$ and $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{ \pm 4,8\}\right)$. They can be partitioned into six C_{m}-factors and three C_{m}-factors by Lemma 1(2) and Lemma 2, respectively.

Case 3: $r=4$.
Four C_{16}-factors are given from a C_{16}-factorization of Cay $\left(Z_{m} \times Z_{16},\{ \pm 1\} \times(\pm\{5,7\})\right)$ by Lemma 1(5). Six of the twelve required C_{m}-factors can be obtained from the decomposition of $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times(\pm\{1,2,3\})\right)$ by Lemma 1(2). The graph Cay $\left(Z_{m} \times\right.$ $\left.Z_{16},\{ \pm 1\} \times\{0, \pm 6\}\right)$ can be decomposed into three C_{m}-factors by Lemma 1(3). The last three C_{m}-factors come from the decomposition of $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{ \pm 4,8\}\right)$ by Lemma 2.

Case 4: $r=6$.
A C_{16}-factorization of $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times(\pm\{5,7\})\right)$ generates four C_{16}-factors by Lemma 1(5). The graph $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{ \pm 1,8\}\right)$ can be decomposed into two C_{16}-factors and a C_{m}-factor by Lemma 3. Now, we have the six required C_{16}-factors. The nine remaining C_{m}-factors are listed below. Six of them can be obtained from a C_{m} factorization of $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times(\pm\{2,4,6\})\right)$ by Lemma 1(2). The last three come from the decomposition of $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{0, \pm 3\}\right)$ by Lemma 1(3).

Lemma 11. For odd $m \geq 9$ and $7 \leq r \leq 23$, the graph $C_{m} 2 K_{16}$ can be partitioned into r C_{16}-factors, $23-r C_{m}$-factors and a one-factor.

Proof. Let the vertex-set be $Z_{m} \times Z_{16}$. We distinguish 12 cases as shown below.
Case 1: $r \in\{7,9,11,13,15,23\}$.
By Theorem 1 and Lemma 10, we have $(0,7) \in \operatorname{HWP}(16 ; m, 16)$ and $\left(16-r_{1}, r_{1}\right) \in$ $\operatorname{HWP}\left(C_{m}[16] ; m, 16\right)$ for odd $m \geq 9$ and $r_{1} \in\{0,2,4,6,8,16\}$, respectively. Applying Construction 1, we obtain $\left(16-r_{1}, r_{1}+7\right) \in \operatorname{HWP}\left(C_{m} \imath K_{16} ; m, 16\right)$.

Case 2: $r=8$.
$\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{8\}\right) \cup m K_{16}$ can be decomposed into eight C_{16}-factors and a one-factor by Lemma 4. Cay $\left(Z_{m} \times Z_{16},\{ \pm 1\} \times(\pm\{1,5,6\})\right)$ and $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\right.$ $(\pm\{3,4,7\}))$ can be partitioned into twelve C_{m}-factors from Lemma 1(2). A C_{m}-factorization of $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{0, \pm 2\}\right)$ can generate three C_{m}-factors by Lemma 1(3).

Case 3: $r=10$.
$\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{ \pm 6,8\}\right) \cup m\left(\cup_{i=11}^{15} I_{i}^{\prime}\right)$ can be decomposed into five C_{16}-factors and a one-factor from Lemmas 8 and 9 . Since $I_{2 j-1}^{\prime} \cup I_{2 j}^{\prime}$ can form a 16-cycle, we can obtain a C_{16}-factor for $1 \leq j \leq 5$ from the graph $m\left(I_{2 j-1}^{\prime} \cup I_{2 j}^{\prime}\right)$. In other words, we obtained ten C_{16}-factors and a one-factor from $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{ \pm 6,8\}\right) \cup m K_{16}$.

Two Cayley graphs Cay $\left(Z_{m} \times Z_{16},\{ \pm 1\} \times(\pm\{1,3,4\})\right)$ and $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\right.$ $(\pm\{2,5,7\}))$ can be partitioned into $12 C_{m}$-factors by Lemma 1(2). The last C_{m}-factor comes from a C_{m}-factorization of $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{0\}\right)$ by Lemma 1(4).

Case 4: $r=12$.
$\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{ \pm 6,8\}\right) \cup m K_{16}$ can be decomposed into ten C_{16}-factors and a one-factor from the above case. By Lemma 1(5), we can obtain the two remaining $C_{16}{ }^{-}$ factors from the decomposition of $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{ \pm 5\}\right)$. Five C_{m}-factors come from a C_{m}-factorization of $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{0, \pm 1, \pm 2\}\right)$ by Lemma 1(1). Cay $\left(Z_{m} \times\right.$ $\left.Z_{16},\{ \pm 1\} \times(\pm\{3,4,7\})\right)$ is precisely divided into six C_{m}-factors by Lemma 1(2).

Case 5: $r=14$.
The Cayley graph Cay $\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{8\}\right) \cup m K_{16}$ can be divided into eight C_{16} factors and a one-factor by Lemma 4. The last six C_{16}-factors come from a C_{16}-factorization of $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times(\pm\{3,5,7\})\right)$ by Lemma 1(5). In addition, $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\right.$ $(\pm\{2,4,6\}))$ can be partitioned into six C_{m}-factors by Lemma 1(2). A C_{m}-factorization of $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{0, \pm 1\}\right)$ contains exactly three C_{m}-factors by Lemma 1(3).

Case 6: $r=16$.
By Lemma 4, $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{8\}\right) \cup m K_{16}$ can be decomposed into eight $C_{16}{ }^{-}$ factors and a one-factor. The last eight C_{16}-factors originate from a C_{16}-factorization of
$\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times(\pm\{1,3,5,7\})\right)$ by Lemma 1(5). Cay $\left(Z_{m} \times Z_{16},\{ \pm 1\} \times(\pm\{2,4,6\})\right)$ can be divided into six C_{m}-factors from Lemma 1(2). The last C_{m}-factor comes from a C_{m}-factorization of $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{0\}\right)$ by Lemma 1(4).

Case 7: $r=18$.
$\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{ \pm 6,8\}\right) \cup m K_{16}$ can be divided into ten C_{16}-factors and a one-factor from Case 3. Similarly, we obtain eight C_{16}-factors from $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\right.$ $(\pm\{1,3,5,7\}))$ by Lemma 1(5). The five required C_{m}-factors originate from a C_{m}-factorization of $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{0, \pm 2, \pm 4\}\right)$ by Lemma 1(1).

Case 8: $r=20$.
$\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times(\pm\{2,4,6\})\right) \cup m\left(\cup_{i=1}^{12} I_{i}\right)$ can be partitioned into twelve C_{16} factors by Lemmas 5 and 6. Cay $\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{8\}\right) \cup m\left(\cup_{i=13}^{15} I_{i}\right)$ can be divided into two C_{16}-factors and a one-factor by Lemma 7. That is to say, Cay $\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\right.$ $\{ \pm 2, \pm 4, \pm 6,8\}) \cup m K_{16}$ can be decomposed into fourteen C_{16}-factors and a one-factor. We can obtain the other six C_{16}-factors from $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times(\pm\{3,5,7\})\right)$ by Lemma 1(5) and obtain three C_{m}-factors from a C_{m}-factorization of $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{0, \pm 1\}\right)$ by Lemma 1(3).

Case 9: $r=22$.
$\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{ \pm 2, \pm 4, \pm 6,8\}\right) \cup m K_{16}$ can be decomposed into fourteen $C_{16^{-}}$ factors and a one-factor from the above case. The other eight C_{16}-factors can be obtained from $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times(\pm\{1,3,5,7\})\right)$ by Lemma 1(5). A C_{m}-factor originates from the decomposition of $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{0\}\right)$ by Lemma 1(4).

Case 10: $r=17$.
Since $I_{2 j-1}^{\prime} \cup I_{2 j}^{\prime}$ form a 16-cycle, the graph $m\left(I_{2 j-1}^{\prime} \cup I_{2 j}^{\prime}\right)$ is actually a C_{16}-factor for any $1 \leq j \leq 5$. Two graphs $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{ \pm 6\}\right) \cup m\left(\cup_{i=12}^{15} I_{i}^{\prime}\right)$ and $\operatorname{Cay}\left(Z_{m} \times\right.$ $\left.Z_{16},\{ \pm 1\} \times(\pm\{3,5,7\})\right)$ can be decomposed into four C_{16}-factors and six C_{16}-factors by Lemma 9 and Lemma 1(5), respectively. We can obtain two C_{16}-factors and a C_{m}-factor from $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{ \pm 1,8\}\right)$ by Lemma 3 and five C_{m}-factors from a C_{m}-factorization of $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{0, \pm 2, \pm 4\}\right)$ by Lemma 1(1). The one-factor is $m I_{11}^{\prime}$.

Case 11: $r=19$.
By Lemmas 5 and 6, the graph $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times(\pm\{2,4,6\})\right) \cup m\left(\cup_{i=1}^{12} I_{i}\right)$ can be divided into $12 C_{16}$-factors. $m\left(I_{13} \cup I_{14}\right)$ is a C_{16}-factor since $I_{13} \cup I_{14}$ can form a 16-cycle. The one-factor is mI_{15}. $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{ \pm 1,8\}\right)$ can be divided into two C_{16}-factors and a C_{m}-factor by Lemma 3. That is to say, we can obtain $15 C_{16}$-factors, a C_{m}-factor, and a one-factor from $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times(\pm\{1,2,4,6\} \cup\{8\})\right) \cup m K_{16}$.

The remaining four C_{16}-factors and three C_{m}-factors come from the factorization of $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times(\pm\{5,7\})\right)$ and $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{0, \pm 3\}\right)$ by Lemma 1(5) and Lemma 1(3), respectively.

Case 12: $r=21$.
Similarly to the above case, we obtain $15 C_{16}$-factors, a C_{m}-factor, and a one-factor from $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times(\pm\{1,2,4,6\} \cup\{8\})\right) \cup m K_{16} . \operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times(\pm\{3,5,7\})\right)$ can be decomposed into six C_{16}-factors by Lemma 1(5). The last C_{m}-factor originates from a C_{m}-factorization of $\operatorname{Cay}\left(Z_{m} \times Z_{16},\{ \pm 1\} \times\{0\}\right)$ by Lemma 1(4).

Proof of Theorem 4. Let the vertex-set of $K_{16 m t}$ be $Z_{m t} \times Z_{16}$. We distinguish the two following cases.

Case 1: t is odd.
The complete graph $K_{m t}$ on the vertex-set $Z_{m t}$ can be decomposed into $\frac{m t-1}{2} C_{m}$-factors by Theorem 1 . We give each vertex of $Z_{m t}$ a weight of 16 to obtain $m t K_{16}$ and $\frac{m t-1}{2} C_{m}$ [16]factors, which are denoted by $P_{i}, 1 \leq i \leq \frac{m t-1}{2}$. Each P_{i} has $t C_{m}[16] \mathrm{s}$, denoted by $Q_{i j}$, $1 \leq j \leq t$.

Let $0 \leq x \leq \frac{m t-3}{2}$, we replace each $P_{i}(1 \leq i \leq x)$ with an $\operatorname{HW}\left(C_{m}[16] ; 16, m ; 16,0\right)$ and $P_{i}\left(x+1 \leq i \leq \frac{m t-3}{2}\right)$ with an $\operatorname{HW}\left(C_{m}[16] ; 16, m ; 0,16\right)$ by Lemma 10.

For $P_{\frac{m t-1}{2}}$ and $1 \leq j \leq t$, the graph $Q_{\frac{m t-1}{2}, j} \cup m K_{16}$ can be partitioned into $r C_{16}$-factors, $23-r C_{m}$-factors, and a one-factor for $7 \leq r \leq 23$ by Lemma 11. We put them together to obtain $r C_{16}$-factors, $23-r C_{m}$-factors, and a one-factor on the vertex-set $Z_{m t} \times \mathrm{Z}_{16}$.

We finally obtain $\alpha=16 x+r C_{16}$-factors, $\beta=16 \times\left(\frac{m t-3}{2}-x\right)+23-r=8 m t-1-$ $(16 x+r) C_{m}$-factors and a one-factor for $0 \leq x \leq \frac{m t-3}{2}$ and $7 \leq r \leq 23$. Here, the range for α is 7 to $8 m t-1$.

Case 2: t is even.
(1) $\alpha=7$.

We can obtain the conclusion by using Construction 2 with an $\operatorname{HW}(16 ; 16, m ; 7,0)$ and an $\operatorname{HW}\left(K_{m t}[16] ; 16, m ; 0,8 m t-8\right)$ from Theorem 1.
(2) $\alpha \geq 15$.

The graph $K_{\frac{m t}{2}}[2]$ can be partitioned into $\frac{m t-2}{2} C_{m}$-factors by Theorem 1. In other words, the graph $K_{m t}$ can be decomposed into $\frac{m t-2}{2} C_{m}$-factors and a one-factor. Giving each vertex of the graph $K_{m t}$ weight 16 , we obtain $\frac{m t-2}{2} C_{m}[16]$-factors which are denoted by $P_{i}, 1 \leq i \leq \frac{m t-2}{2}, m t K_{16}$, and $\frac{m t}{2} K_{2}[16]$.

Let $0 \leq x \leq \frac{m t-4}{2}$. We replace any $P_{i}(1 \leq i \leq x)$ with an $\operatorname{HW}\left(C_{m}[16] ; 16, m ; 16,0\right)$ and $P_{i}\left(x+1 \leq i \leq \frac{m t-4}{2}\right)$ with an $\operatorname{HW}\left(C_{m}[16] ; 16, m ; 0,16\right)$ from Lemma 10.

Similarly to the above case, $P_{\frac{m t-2}{2}} \cup m t K_{16}$ can be partitioned into $r C_{16}$-factors, $23-r C_{m}$-factors, and a one-factor on the whole vertex-set $Z_{m t} \times Z_{16}$ for odd $m \geq 9$ and $7 \leq r \leq 23$. Furthermore, using Theorem 1, $\frac{m t}{2} K_{2}[16]$ can be decomposed into eight C_{16}-factors.

It is not difficult to calculate the number α of C_{16}-factors and the number β of C_{m} factors. We obtained $\alpha=16 x+r+8$ and $\beta=16 \times\left(\frac{m t-4}{2}-x\right)+23-r=8 m t-1-(16 x+$ $r+8)$ for $0 \leq x \leq \frac{m t-4}{2}$ and $7 \leq r \leq 23$. We check that the range for α is 15 to $8 m t-1$.

5. Concluding Remarks

We are working on the existence of an $\operatorname{HW}\left(v ; 2^{l}, m ; \alpha, \beta\right)$ for an odd m. Theorem 4 completes the proof of the case $l=4$ and $\alpha \geq 15$. The construction method in this paper is still useful for other cases. We have some preliminary results and believe that the following conjecture is valid, but there is still a long way to go before the whole problem can be solved completely.

Conjecture 1. For any odd $m \geq 2^{l-1}+1,(\alpha, \beta) \in \operatorname{HWP}\left(2^{l} m t ; 2^{l}, m\right)$ if and only if $\alpha+\beta=$ $2^{l-1} m t-1$, where $\alpha \geq 0, \beta \geq 0$, and $t \geq 1$, except possibly when $\alpha \in\left[1,2^{l-1}-2\right]$ and t is odd or $\alpha \in\left[1,2^{l-1}-2\right] \cup\left[2^{l-1}, 2^{l}-2\right]$ and t is even.

Funding: Research supported by the National Natural Science Foundation of China under Grant Nos. 12071226, 12101441 and Qing Lan Project.

Data Availability Statement: Data are contained within the article.
Acknowledgments: The author would like to thank H. Cao of Nanjing Normal University for helpful discussions, and the anonymous referees for their helpful comments, and suggestions on this paper.

Conflicts of Interest: The author declares no conflicts of interest.

References

Colbourn, C.J.; Dinitz, J.H. (Eds.) The CRC Handbook of Combinatorial Designs, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007. West, D. Introduction to Graph Theory, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2001.
Ray-Chadhuri, D.K.; Wilson, R.M. Solution of Kirkman's schoolgirl problem. Proc. Symp. Pure Math. Am. Math. Soc. 1971, 19, 187-204.
Lu, J.X. Collected Works on Combinatorial Designs; Inner Mongolia People's Press: Hohhot, China, 1990.
5. Alspach, B.; Schellenberg, P.J.; Stinson, D.R.; Wagner, D. The Oberwolfach problem and factors of uniform odd length cycles. J. Comb. Theory Ser. A 1989, 52, 20-43. [CrossRef]
6. Piotrowski, W.L. The solution of the bipartite analogue of the Oberwolfach problem. Discret. Math. 1991, 97, 339-356. [CrossRef]
7. Rees, R. Two new direct product-type constructions for resolvable group-divisible designs. J. Comb. Des. 1993, 1, 15-26. [CrossRef]
8. Baker, R.D.; Wilson, R.M. Nearly Kirkman triple systems. Util. Math. 1977, 11, 289-296.
9. Hoffman, D.G.; Schellenberg, P.J. The existence of C_{k}-factorizations of $K_{2 n}-F$. Discret. Math. 1991, 97, 243-250. [CrossRef]
10. Liu, J. A generalization of the Oberwolfach problem and C_{t}-factorizations of complete equipartite graphs. J. Comb. Des. 2000, 8, 42-49. [CrossRef]
11. Liu, J. The equipartite Oberwolfach problem with uniform tables. J. Comb. Theory Ser. A 2003, 101, 20-34. [CrossRef]
12. Adams, P.; Billington, E.J.; Bryant, D.E.; El-Zanati, S.I. On the Hamilton-Waterloo problem. Graphs Comb. 2002, 18, 31-51. [CrossRef]
13. Bonvicini S.; Buratti, M. Octahedral, dicyclic and special linear solutions of some unsolved Hamilton-Waterloo problems. Ars Math. Contemp. 2018, 14, 1-14. [CrossRef]
14. Danziger, P.; Quattrocchi, G.; Stevens, B. The Hamilton-Waterloo problem for cycle sizes 3 and 4. J. Comb. Des. 2009, 17, 342-352. [CrossRef]
15. Lei, H.; Fu, H. The Hamilton-Waterloo problem for triangle-factors and heptagon-factors. Graphs Comb. 2016, 32, 271-278. [CrossRef]
16. Odabaşı, U.; Özkan, S. The Hamilton-Waterloo problem with C_{4} and C_{m} factors. Discret. Math. 2016, 339, 263-269. [CrossRef]
17. Wang, L.; Chen, F.; Cao, H. The Hamilton-Waterloo problem for C_{3}-factors and C_{n}-factors. J. Comb. Des. 2017, 25, 385-418. [CrossRef]
18. Kamin, D.C. Hamilton-Waterloo Problem with Triangle and C9-Factors. Master's Thesis, Michigan Technological University, Houghton, MI, USA, 2011. Available online: https:/ /digitalcommons/etds/207 (accessed on 25 April 2013).
19. Asplund, J.; Kamin, D.; Keranen, M.; Pastine, A.; Özkan, S. On the Hamilton-Waterloo problem with triangle factors and $C_{3 x}$-factors. Australas. J. Comb. 2016, 64, 458-474.
20. Keranen, M.; Özkan, S. The Hamilton-Waterloo problem with 4-cycles and a single factor of n-cycles. Graphs Comb. 2013, 29, 1827-1837. [CrossRef]
21. Fu, H.; Huang, K. The Hamilton-Waterloo problem for two even cycles factors. Taiwan. J. Math. 2008, 12, 933-940. [CrossRef]
22. Wang, L.; Cao, H. A note on the Hamilton-Waterloo problem with C_{8}-factors and C_{m}-factors. Discret. Math. 2018, 341, 67-73. [CrossRef]
23. Bryant, D.E.; Danziger, P. On bipartite 2-factorizations of $K_{n}-I$ and the Oberwolfach problem. J. Graph Theory 2011, 68, 22-37. [CrossRef]
24. Bryant, D.E.; Danziger, P.; Dean, M. On the Hamilton-Waterloo problem for bipartite 2-factors. J. Comb. Des. 2013, 21, 60-80. [CrossRef]
25. Buratti M.; Danziger, P. A cyclic solution for an infinite class of Hamilton-Waterloo problems. Graphs Comb. 2016, 32, 521-531. [CrossRef]
26. Merola, F.; Traetta, T. Infinitely many cyclic solutions to the Hamilton-Waterloo problem with odd length cycles. Discret. Math. 2016, 339, 2267-2283. [CrossRef]
27. Dinitz, J.H.; Ling, A.C.H. The Hamilton-Waterloo problem: The case of triangle-factors and one Hamilton cycle. J. Comb. Des. 2009, 17, 160-176. [CrossRef]
28. Lei, H.; Shen, H. The Hamilton-Waterloo problem for Hamilton cycles and triangle-factors. J. Comb. Des. 2012, 20, 305-316. [CrossRef]
29. Wang, L.; Lu, S.; Cao, H. Further results on the Hamilton-Waterloo problem. J. Comb. Des. 2018, 26, 27-47. [CrossRef]
30. Keranen, M.; Pastine, A. On the Hamilton-Waterloo problem: The case of two cycles sizes of different parity. Ars Math. Contemp. 2019, 17, 525-533. [CrossRef]
31. Burgess, A.; Danziger, P.; Traetta, T. On the Hamilton-Waterloo problem with odd orders. J. Comb. Des. 2017, 25, 258-287. [CrossRef]
32. Burgess, A.; Danziger, P.; Traetta, T. On the Hamilton-Waterloo problem with odd cycle lengths. J. Comb. Des. 2018, 26, 51-83. [CrossRef]
33. Burgess, A.; Danziger, P.; Traetta, T. On the Hamilton-Waterloo problem with cycle lengths of distinct parities. Discret. Math. 2018, 341,1636-1644. [CrossRef]
34. Burgess, A.; Danziger, P.; Traetta, T. The Hamilton-Waterloo problem with even cycle lengths. Discret. Math. 2019, 342, 2213-2222. [CrossRef]
35. Burgess, A.; Danziger, P.; Pastine, A.; Traetta, T. Constructing uniform 2-factorizations via row-sum matrices: Solutions to the Hamilton-Waterloo problem. J. Comb. Theory Ser. 2024, 201, 105803. [CrossRef]
36. Burgess, A.; Danziger, P.; Traetta, T. A survey on constructive methods for the Oberwolfach problem and its variants. arXiv 2023, arXiv:2308.04307v1.
37. Cao, H.; Niu, M.; Tang, C. On the existence of cycle frames and almost resolvable cycle systems. Discret. Math. 2011, 311, 2220-2232. [CrossRef]
38. Ling, A.C.H.; Dinitz, J.H. The Hamilton-Waterloo problem with triangle-factors and Hamilton cycles: The case $n \equiv 3(\bmod 18)$. J. Comb. Math. Comb. Comput. 2009, 70, 143-147.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

