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Abstract: Quaternions and split quaternions are used in quantum physics, computer science, and in
many areas of mathematics. In this paper, we define and study two new classes of split quaternions,
namely balancing split quaternions and Lucas-balancing split quaternions. Moreover, well-known
properties, e.g., Catalan, d’Ocagne, and Vajda identities, for these quaternions are also presented. We
give matrix generators for balancing split quaternions and Lucas-balancing split quaternions, too.
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1. Introduction

Let C be a set of complex numbers. In 1843, W. R. Hamilton introduced an extension
of complex numbers—the set of quaternions, denoted by H. A quaternion q is defined as

q = x0 + x1i + x2j + x3k , xt ∈ R, t = 0, 1, 2, 3,

where units i, j, and k satisfy the quaternion multiplication rules:

i2 = j2 = k2 = ijk = −1,

ij = k = −ji, jk = i = −kj, ki = j = −ik.

Multiplication of quaternions is non-commutative. The addition, the subtraction, and the
multiplication by scalar s ∈ R for quaternions are defined in the following way:

Let q1 = x0 + x1i + x2j + x3k, q2 = v0 + v1i + v2j + v3k, s ∈ R. Then,

q1 ± q2 = (x0 ± v0) + (x1 ± v1)i + (x2 ± v2)j + (x3 ± v3)k,

sq1 = sx0 + sx1i + sx2j + sx3k.

The quaternion q = x0 + x1i + x2j + x3k can be also represented by the square matrix of
order 4 of the form 

x0 −x1 −x2 −x3
x1 x0 −x3 x2
x2 x3 x0 −x1
x3 −x2 x1 x0

.

Moreover, we can use the matrix of order 2 with complex number entries to define the
quaternion q: [

x0 + x1i x2 + x3i
−x2 + x3i x0 − x1i

]
.

Many authors have studied quaternion matrices (see [1,2]). By analogy with the theory
of complex numbers, the conjugate of the quaternion q = x0 + x1i + x2j + x3k is the
quaternion q = x0 − x1i − x2j − x3k. The norm of the quaternion q is defined as N(q) = q ·
q = x2

0 + x2
1 + x2

2 + x2
3. If q ̸= 0, then the quaternion has a multiplicative invers q−1 = q

N(q) .
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For basic quaternion concepts and some interesting properties of them, see, for
example, [3,4].

The set of split quaternions (coquaternions), denoted by Ĥ, was introduced by J. Cockle
in 1849 [5]. The split quaternion is defined as

p = y0 + y1i + y2 j + y3k , yt ∈ R, t = 0, 1, 2, 3,

where units i, j, and k satisfy the non-commutative multiplication rules:

i2 = −1, j2 = k2 = ijk = 1,

ij = k = −ji, jk = −i = −kj, ki = j = −ik.

We can write the split quaternion as follows:

p = (y0 + y1i) + (y2 + y3i)j = z1 + z2 j, z1, z2 ∈ C.

The scalar and the vector part of a split quaternion are denoted by Sp = y0 and
V⃗p = y1i + y2 j + y3k, respectively. Hence, we can write a split quaternion as p = Sp + V⃗p.

The set of split quaternions is four-dimensional and non-commutative, like the set of
quaternions. The split quaternions contain nilpotent elements, nontrivial idempotents, and
zero divisors. The conjugate of a split quaternion p = y0 + y1i + y2 j + y3k is defined as
p = y0 − y1i − y2 j − y3k. The norm of p has the form

N(p) = pp = y2
0 + y2

1 − y2
2 − y2

3. (1)

For the basics of split quaternion theory, see [6]. Some interesting properties of split
quaternions are presented in [7–11]; for example, De Moivre’s formula and the roots of a
split quaternion are given in [7]. In [8], split quaternion matrices are considered.

Quaternions are used in differential geometry, quantum physics, and in the synthesis
of mechanisms and machines [12]. Split quaternions are used, among others, in color
balance. The model refers to the Jordan algebra of symmetric matrices of order 2 with real
entries; for details, see [13].

2. Balancing and Lucas-Balancing Numbers

Balancing numbers Bn were introduced by A. Behera and G. K. Panda in [14]. A
positive integer n is called a balancing number with balancer r, if it is the solution of the
following equation:

1 + 2 + ... + (n − 1) = (n + 1) + (n + 2) + · · ·+ (n + r),

named a Diophantine equation. For each balancing number n,
√

8n2 + 1 is called a Lucas-
balancing number Cn (see [14]). Moreover, the balancing numbers and Lucas-balancing
numbers are defined recursively:

Bn+1 = 6Bn − Bn−1 for n ≥ 1, B0 = 0, B1 = 1, (2)

Cn+1 = 6Cn − Cn−1 for n ≥ 1, C0 = 1, C1 = 3. (3)

Table 1 includes eight terms of the sequences {Bn} and {Cn}.

Table 1. The values of balancing and Lucas-balancing numbers.

n 0 1 2 3 4 5 6 7

Bn 0 1 6 35 204 1189 6930 40,391
Cn 1 3 17 99 577 3363 19,601 114,243
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Balancing numbers and Lucas-balancing numbers are given by Binet formulas:

Bn =
λn

1 − λn
2

4
√

2
, (4)

Cn =
λn

1 + λn
2

2
, (5)

where

λ1 = 3 + 2
√

2, λ2 = λ−1
1 = 3 − 2

√
2.

Note that

λ1 + λ2 = 6,

λ1 − λ2 = 4
√

2,

λ1λ2 = 1.

(6)

Balancing numbers have a negative extension B−n = −Bn. Hence, the sequence of
balancing numbers . . . ,−35,−6,−1, 0, 1, 6, 35, . . . has a symmetry property.

Some properties of balancing numbers and Lucas-balancing numbers are given
in [14–17]. We recall some of them:

C2
n = 8B2

n + 1

C2n = 16B2
n + 1

Bn+m = BnCm + CnBm

Bn−m = BnCm − CnBm

Cn−m = CnCm − 8BnBm

Cn+m = CnCm + 8BnBm

Bn−rBn+r − B2
n = −B2

r (Catalan identity)

Cn−rCn+r − C2
n = C2

r − 1 (Catalan identity)

Bn−1Bn+1 − B2
n = −1 (Cassini identity)

Cn−1Cn+1 − C2
n = 8 (Cassini identity)

BmBn+1 − Bm+1Bn = Bm−n (d′Ocagne identity)

CmCn+1 − Cm+1Cn = −8Bm−n (d′Ocagne identity)

3Bn − Bn−1 = Cn (7)

Bn+2 − Bn−2 = 12Cn (8)
n

∑
l=0

Bl =
Bn+1 − Bn − 1

4
(9)

n

∑
l=0

Cl =
Cn+1 − Cn + 2

4
. (10)

3. The Balancing Split Quaternions and Lucas-Balancing Split Quaternions

In the literature, the quaternions and split quaternions of the well-known sequences
have been considered. In [18], Horadam considered Fibonacci and Lucas quaternions,
defined in the following way:

FQn = Fn + iFn+1 + jFn+2 + kFn+3,
LQn = Ln + iLn+1 + jLn+2 + kLn+3,
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where Fn is the nth Fibonacci number and Ln is the nth Lucas number, and {1, i, j, k} is the
standard basis of quaternions.

In [19], the split Fibonacci quaternion Qn and split Lucas quaternion Tn were intro-
duced by the following relations:

Qn = Fn + iFn+1 + jFn+2 + kFn+3,

Tn = Ln + iLn+1 + jLn+2 + kLn+3,

where {1, i, j, k} is the standard basis of split quaternions. In the literature, there are
many generalizations of the Fibonacci and Lucas sequences; among others, the k-Fibonacci
sequence {Fk,n} and the k-Lucas sequence {Lk,n} are defined for k ∈ N in the following way:

Fk,0 = 0, Fk,1 = 1, Fk,n = kFk,n−1 + Fk,n−2 for n ≥ 2,

Lk,0 = 2, Lk,1 = k, Lk,n = kLk,n−1 + Lk,n−2 for n ≥ 2.

Some new results for the split k-Fibonacci and split k-Lucas quaternions can be found in [20].
In [21], the authors studied split Pell quaternions SPn and split Pell–Lucas quaternions
SPLn, defined by

SPn = Pn + iPn+1 + jPn+2 + kPn+3,

SPLn = PLn + iPLn+1 + jPLn+2 + kPLn+3,

where Pn and PLn are the nth Pell and Pell–Lucas number, respectively. In [22,23], balancing
quaternions, Lucas-balancing quaternions, and some generalizations of these quaternions
were considered. Inspired by these results, we introduce balancing split quaternions and
Lucas-balancing split quaternions and present some properties of these split quaternions.

Let n ≥ 0. We define the balancing split quaternion sequence {BSQn} in the following way:

BSQn = Bn + iBn+1 + jBn+2 + kBn+3, (11)

where Bn is the nth balancing number and {1, i, j, k} is the basis of split quaternions.
Similarly, we define the Lucas-balancing split quaternion sequence {CSQn}:

CSQn = Cn + iCn+1 + jCn+2 + kCn+3, (12)

where Cn is defined by (3).

Formulas (2), (3), (7), and (8) can be extended to the sequences {BSQn} and {CSQn}.

Theorem 1. Let n ≥ 2 be an integer. Then,

(i) BSQn = 6BSQn−1 − BSQn−2,
(ii) CSQn = 6CSQn−1 − CSQn−2,

where BSQ0 = i + 6j + 35k, BSQ1 = 1 + 6i + 35j + 204k, CSQ0 = 1 + 3i + 17j + 99k, and
CSQ1 = 3 + 17i + 99j + 577k.

Proof. (i) By (11) and (2), we obtain

6BSQn−1 − BSQn−2

= 6(Bn−1 + iBn + jBn+1 + kBn+2)− (Bn−2 + iBn−1 + jBn + kBn+1)

= 6Bn−1 − Bn−2 + i(6Bn − Bn−1) + j(6Bn+1 − Bn) + k(6Bn+2 − Bn+1)

= Bn + iBn+1 + jBn+2 + kBn+3 = BSQn.

We omit the proof of formula (ii).
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Theorem 2. Let n ≥ 1 be an integer. Then,

3BSQn − BSQn−1 = CSQn.

Proof. Using formulas (11) and (7), we have

3BSQn − BSQn−1 = 3(Bn + iBn+1 + jBn+2 + kBn+3)

−Bn−1 − iBn − jBn+1 − kBn+2

= 3Bn − Bn−1 + i(3Bn+1 − Bn)

+j(3Bn+2 − Bn+1) + k(3Bn+3 − Bn+2)

= Cn + iCn+1 + jCn+2 + kCn+3 = CSQn,

which ends the proof.

Corollary 1. Let n ≥ 0 be an integer. Then,

BSQn+1 − 3BSQn = CSQn.

Theorem 3. Let n ≥ 2 be an integer. Then,

BSQn+2 − BSQn−2 = 12CSQn.

Proof. By (11) and (8), we have

BSQn+2 − BSQn−2 = Bn+2 + iBn+3 + jBn+4 + kBn+5

−Bn−2 − iBn−1 − jBn − kBn+1

= Bn+2 − Bn−2 + i(Bn+3 − Bn−1)

+j(Bn+4 − Bn) + k(Bn+5 − Bn+1)

= 12(Cn + iCn+1 + jCn+2 + kCn+3) = 12CSQn.

This completes the proof.

Now, we present some properties of the balancing and Lucas-balancing split quater-
nions. By simple calculations, we obtain the following results.

Theorem 4. Assume that n ≥ 0 is an integer. Then,

BSQn + BSQn = 2Bn,

CSQn + CSQn = 2Cn.

Theorem 5. Assume that n ≥ 0 is an integer. Then,

(i) BSQ2
n + N(BSQn) = 2BnBSQn,

(ii) CSQ2
n + N(CSQn) = 2CnCSQn.

Proof. By formulas (1) and (12), we have

CSQ2
n + N(CSQn) = C2

n − C2
n+1 + C2

n+2 + C2
n+3

+ 2iCnCn+1 + 2jCnCn+2 + 2kCnCn+3

+ C2
n + C2

n+1 − C2
n+2 − C2

n+3

= 2(C2
n + iCnCn+1 + jCnCn+2 + kCnCn+3)

= 2Cn(Cn + iCn+1 + jCn+2 + kCn+3)

= 2CnCSQn.
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The proof of (i) is similar.

Now, we give the Binet formulas for the balancing split quaternions and Lucas-
balancing split quaternions.

Theorem 6. Let n ≥ 0 be an integer. Then,

BSQn =
λ̂1λn

1 − λ̂2λn
2

4
√

2
, (13)

CSQn =
λ̂1λn

1 + λ̂2λn
2

2
, (14)

where
λ1 = 3 + 2

√
2, λ2 = 3 − 2

√
2,

λ̂1 = 1 + iλ1 + jλ2
1 + kλ3

1, (15)

λ̂2 = 1 + iλ2 + jλ2
2 + kλ3

2. (16)

Proof. By formula (5), we have

CSQn = Cn + iCn+1 + jCn+2 + kCn+3

=
1
2
[λn

1 + λn
2 + i(λn+1

1 + λn+1
2 )

+ j(λn+2
1 + λn+2

2 ) + k(λn+3
1 + λn+3

2 )]

=
1
2
[λn

1

(
1 + iλ1 + jλ2

1 + kλ3
1

)
+ λn

2

(
1 + iλ2 + jλ2

2 + kλ3
2

)
]

=
λ̂1λn

1 + λ̂2λn
2

2
.

We omit the proof of formula (13).

4. Some Identities for the Balancing Split Quaternions and Lucas-Balancing
Split Quaternions

In this section, we will present some identities for the balancing split quaternions and
Lucas-balancing split quaternions. By simple calculations, using (6), (15), and (16), we have

λ̂1λ̂2 = 2 + (6 + 4
√

2)i + (34 + 24
√

2)j + (198 − 4
√

2)k,

λ̂2λ̂1 = 2 + (6 − 4
√

2)i + (34 − 24
√

2)j + (198 + 4
√

2)k.
(17)

Moreover,
λ̂1λ̂2 + λ̂2λ̂1 = 4(1 + 3i + 17j + 99k) = 4CSQ0. (18)

Theorem 7. Let r ≥ 0, s ≥ 0, t ≥ 0, and u ≥ 0 be integers such that r + s = t + u. Then,

BSQr · BSQs − BSQt · BSQu

=
1

32
[λ̂1λ̂2(λ

r
1λs

2 − λt
1λu

2 ) + λ̂2λ̂1(λ
r
2λs

1 − λt
2λu

1 )],
(19)

CSQr · CSQs − CSQt · CSQu

=
1
4
[λ̂1λ̂2(λ

r
1λs

2 − λt
1λu

2 ) + λ̂2λ̂1(λ
r
2λs

1 − λt
2λu

1 )],
(20)

where λ̂1λ̂2, and λ̂2λ̂1 are given by (17).
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Proof. By (13), we obtain

BSQr · BSQs − BSQt · BSQu

=
1

32
(λr+s

1 (λ̂1)
2 + λr

1λs
2λ̂1λ̂2 + λs

1λr
2λ̂2λ̂1 + λr+s

2 (λ̂2)
2

− λt+u
1 (λ̂1)

2 − λt
1λu

2 λ̂1λ̂2 − λu
1 λt

2λ̂2λ̂1 − λt+u
2 (λ̂2)

2).

Since r + s = t + u, we obtain formula (19). We omit the proof of formula (20).

Using Theorem 7, we have the well-known identities: Catalan-type identities, Cassini-
type identities, d’Ocagne-type identities, and Vajda-type identities for balancing split
quaternions and Lucas-balancing spit quaternions.

Corollary 2. (Catalan-type identities) Assume that n ≥ 0, m ≥ 0 are integers such that n ≥ m. Then,

BSQn−mBSQn+m − BSQ2
n =

(λm
1 − λm

2 )(λ̂1λ̂2λm
2 − λ̂2λ̂1λm

1 )

32
,

CSQn−mCSQn+m − CSQ2
n =

(λm
2 − λm

1 )(λ̂1λ̂2λm
2 − λ̂2λ̂1λm

1 )

4
.

Corollary 3. (Cassini-type identities) Let n ≥ 1. Then,

BSQn−1BSQn+1 − BSQ2
n =

λ̂1λ̂2λ2 − λ̂2λ̂1λ1

4
√

2
,

CSQn−1CSQn+1 − CSQ2
n = −

√
2(λ̂1λ̂2λ2 − λ̂2λ̂1λ1).

Corollary 4. (d’Ocagne-type identities) Assume that m ≥ 0 and n ≥ 0 are integers such that m ≥ n.
Then,

BSQmBSQn+1 − BSQm+1BSQn =
λ̂1λ̂2λm−n

1 − λ̂2λ̂1λm−n
2

4
√

2
,

CSQmCSQn+1 − CSQm+1CSQn = −
√

2(λ̂1λ̂2λm−n
1 − λ̂2λ̂1λm−n

2 ).

Corollary 5. (Vajda-type identities) Assume that n ≥ 0, m ≥ 0, and k ≥ 0 are integers such that
n ≥ k. Then,

BSQm+kBSQn−k − BSQmBSQn

=
1
32

[
λ̂1λ̂2 λm

1 λn
2

(
1 − (17 + 12

√
2)k
)
+ λ̂2λ̂1 λn

1 λm
2

(
1 − (17 − 12

√
2)k
)]

,

CSQm+kCSQn−k − CSQmCSQn

=
1
4

[
λ̂1λ̂2 λm

1 λn
2

(
(17 + 12

√
2)k − 1

)
+ λ̂2λ̂1 λn

1 λm
2 ((17 − 12

√
2)k − 1)

]
.

In the next theorems, we present other identities for balancing split quaternions and
for Lucas-balancing split quaternions. They show some dependencies between these
split quaternions.

Theorem 8. Assume that m ≥ 0 and n ≥ 0 are integers such that n ≥ m. Then,

BSQnCSQm − CSQnBSQm =
λ̂1λ̂2λn−m

1 − λ̂2λ̂1λn−m
2

4
√

2
.
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Proof. By formulas (4) and (5), we have

BSQnCSQm − CSQnBSQm

=
1

8
√

2
[(λ̂1λn

1 − λ̂2λn
2 )(λ̂1λm

1 + λ̂2λm
2 )− (λ̂1λn

1 + λ̂2λn
2 )(λ̂1λm

1 − λ̂2λm
2 )]

=
1

8
√

2
[2λ̂1λ̂2λn

1 λm
2 − 2λ̂2λ̂1λm

1 λn
2 ]

=
1

4
√

2
[(λ1λ2)

n(λ̂1λ̂2λn−m
1 − λ̂2λ̂1λn−m

2 )] =
λ̂1λ̂2λn−m

1 − λ̂2λ̂1λn−m
2

4
√

2
.

This completes the proof.

Theorem 9. Let m ≥ 0 and n ≥ 0 be integers. Then,

BSQnCSQm + CSQnBSQm =
(λ̂1)

2λn+m
1 − (λ̂2)

2λn+m
2

4
√

2
.

Theorem 10. Assume that n ≥ 0, m ≥ 0, and k ≥ 0 are integers such that m ≥ k. Then,

BSQn+mCSQn+s − BSQn+sCSQn+m =
CSQ0(λ

m−k
1 − λm−k

2 )

2
√

2
.

Proof. By formulas (13), (14), and (18), we have

BSQn+mCSQn+k − BSQn+kCSQn+m

=
1

8
√

2
[(λ̂1λn+m

1 − λ̂2λn+m
2 )(λ̂1λn+k

1 + λ̂2λn+k
2 )

− (λ̂1λn+k
1 − λ̂2λn+k

2 )(λ̂1λn+m
1 + λ̂2λn+m

2 )]

=
1

8
√

2
[λ̂1λ̂2λn+m

1 λn+k
2 − λ̂1λ̂2λn+k

1 λn+m
2

+ λ̂2λ̂1λn+m
1 λn+k

2 − λ̂2λ̂1λn+k
1 λn+m

2 ]

=
1

8
√

2
[(λ1λ2)

n(λ̂1λ̂2 + λ̂2λ̂1)(λ
m
1 λk

2 − λk
1λm

2 )]

=
CSQ0(λ

m
1 λk

2 − λk
1λm

2 )

2
√

2
=

CSQ0(λ
m−k
1 − λm−k

2 )

2
√

2
.

This completes the proof.

Theorem 11. Assume that n ≥ 0 is an integer. Then,

CSQ2
n − 8BSQ2

n = 2CSQ0.

Proof. By simple calculations, using (18), we obtain

CSQ2
n − 8BSQ2

n =

(
λ̂1λn

1 + λ̂2λn
2

2

)2

− 8

(
λ̂1λn

1 − λ̂2λn
2

4
√

2

)2

=
1
4
[(λ1λ2)

n2(λ̂1λ̂2 + λ̂2λ̂1)]

=
λ̂1λ̂2 + λ̂2λ̂1

2
= 2CSQ0,

which ends the proof.
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Theorem 12. Assume that n ≥ 0 is an integer. Then,

CSQ2n − 16BSQ2
n =

1
2

(
λ1

2n(λ̂1 − (λ̂1)
2) + λ2

2n(λ̂2 − (λ̂2)
2
)
+ 2CSQ0.

Theorem 13. Assume that n and m are integers such that n ≥ m. Then,

CSQnCSQm − 8BSQnBSQm =
1
2
(
λn−m

1 λ̂1λ̂2 + λn−m
2 λ̂2λ̂1

)
,

CSQnCSQm + 8BSQnBSQm =
1
2

(
λn+m

1 λ̂1
2
+ λn+m

2 λ̂2
2
)

.

Now, we give summation formulas for the balancing split quaternions and Lucas-
balancing split quaternions.

Theorem 14.
n

∑
l=0

BSQl =
BSQn+1 − BSQn − 1 − i − 5j − 29k

4
, (21)

n

∑
l=0

CSQl =
CSQn+1 − CSQn + 2 + i − 2j − 19k

4
. (22)

Proof. By formula (9), we have

n

∑
l=0

BSQl =
n

∑
l=0

(Bl + iBl+1 + jBl+2 + kBl+3)

=
n

∑
l=0

Bl + i
n

∑
l=0

Bl+1 + j
n

∑
l=0

Bl+2 + k
n

∑
l=0

Bl+3

=
1
4
(Bn+1 − Bn − 1) + i(

1
4
(Bn+2 − Bn+1 − 1)− B0)

+ j(
1
4
(Bn+3 − Bn+2 − 1)− B0 − B1)

+ k(
1
4
(Bn+4 − Bn+3 − 1)− B0 − B1 − B2)

=
1
4
(Bn+1 + iBn+2 + jBn+3 + kBn+4 − (Bn + iBn+1 + jBn+2 + kBn+3)

− (1 + i + j + k))− iB0 − j(B0 + B1)− k(B0 + B1 + B2).

Hence,

n

∑
l=0

BSQl =
BSQn+1 − BSQn − (1 + i + j + k)− (4j + 28k)

4

=
BSQn+1 − BSQn − 1 − i − 5j − 29k

4
.

Using formula (10), we can prove formula (22).

5. Generating Functions and Matrix Representations

In this section, we will present the generating functions and matrix generators for the
balancing split quaternions and Lucas-balancing split quaternions. We recall known results
for sequences {Bn} and {Cn}.

Theorem 15 ([14]). The generating function of the balancing sequence {Bn} is

G(Bn; x) =
x

1 − 6x + x2 .
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Theorem 16 ([24]). The generating function of the Lucas-balancing sequence {Cn} is

G(Cn; x) =
1 − 3x

1 − 6x + x2 .

Theorem 17. The generating function of the sequence {CSQn} is

f (t) =
1 − 3t + (3 − t)i + (17 − 3t)j + (99 − 17t)k

1 − 6t + t2 .

Proof. Let
f (t) = CSQ0 + CSQ1t + CSQ2t2 + . . . + CSQntn + . . . .

By the recurrence CSQn = 6CSQn−1 − CSQn−2, we obtain

6t f (t) = 6CSQ0t + 6CSQ1t2 + 6CSQ2t3 + . . . + 6CSQn−1tn + . . .

t2 f (t) = CSQ0t2 + CSQ1t3 + CSQ2t4 + . . . + CSQn−2tn + . . . .

Hence,

f (t)− 6t f (t) + t2 f (t)

CSQ0 + (CSQ1 − 6CSQ0)t + (CSQ2 − 6CSQ1 + CSQ0)t2 + . . .

= CSQ0 + (CSQ1 − 6CSQ0)t.

Thus,

f (t) =
CSQ0 + (CSQ1 − 6CSQ0)t

1 − 6t + t2 .

Since CSQ0 = 1+ 3i + 17j+ 99k and CSQ1 = 3+ 17i + 99j+ 577k, after simple calculations
we have

f (t) =
1 − 3t + (3 − t)i + (17 − 3t)j + (99 − 17t)k

1 − 6t + t2 ,

which completes the proof.

Theorem 18. The generating function of the sequence {BSQn} is

g(t) =
t + i + (6 − t)j + (35 − 6t)k

1 − 6t + t2 .

In [17], a matrix generator for numbers Bn was given, balancing the Q-matrix, denoted
by QB. The following theorem was presented:

Theorem 19 ([17]). Let QB =

[
6 −1
1 0

]
. Then, for n ≥ 1,

Qn
B =

[
Bn+1 −Bn
Bn −Bn−1

]
.

Analogously, the following result for the Lucas-balancing numbers was proved.

Theorem 20 ([17]). Let RB =

[
3 −1
1 −3

]
. Then, for n ≥ 1,

RBQn
B =

[
Cn+1 −Cn
Cn −Cn−1

]
.

Using these concepts, we can prove the following theorems.
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Theorem 21. Let n ≥ 1 be an integer. Then,[
BSQn+1 −BSQn
BSQn −BSQn−1

]
=

[
BSQ2 −BSQ1
BSQ1 −BSQ0

]
·
[

6 −1
1 0

]n−1

. (23)

Proof. (By induction on n). For n = 1, the result is obvious. Assume that formula (23)
holds for n. We will prove it for n + 1. By the induction’s hypothesis, we have[

BSQ2 −BSQ1
BSQ1 −BSQ0

]
·
[

6 −1
1 0

]n−1

·
[

6 −1
1 0

]

=

[
BSQn+1 −BSQn
BSQn −BSQn−1

]
·
[

6 −1
1 0

]
=

[
6BSQn+1 − BSQn −BSQn+1
6BSQn − BSQn−1 −BSQn

]
.

Since BSQn = 6BSQn−1 − BSQn−2, we obtain[
BSQn+1 −BSQn
BSQn −BSQn−1

]
·
[

6 −1
1 0

]
=

[
BSQn+2 −BSQn+1
BSQn+1 −BSQn

]
,

which ends the proof.

In the same way, using Theorem 2 and Corollary 1, we can prove Theorem 22.

Theorem 22. Let n ≥ 1 be an integer. Then,[
CSQn+1 −CSQn
CSQn −CSQn−1

]
=

[
3 −1
1 −3

]
·
[

BSQ2 −BSQ1
BSQ1 −BSQ0

]
·
[

6 −1
1 0

]n−1

.

Matrix generators are useful tools for obtaining new identities and algebraic representation.

6. Conclusions

In the literature, many authors have studied quaternions and split quaternions with
coefficients that are terms of special integer sequences, among others Fibonacci numbers
and their generalizations. There are many generalizations of balancing numbers and Lucas-
balancing numbers. The second-order recurrences Bn = 6Bn−1 − Bn−2 with B0 = 0 and
B1 = 1 and Cn = 6Cn−1 − Cn−2 with C0 = 1 and C1 = 3 have mainly been generalized in
two ways: first by preserving the initial conditions and second by preserving the recurrence
relations. In [25–27], the authors considered k-balancing numbers Bk

n and k-Lucas balancing
numbers Ck

n, defined as follows: Bk
n = 6kBk

n−1 − Bk
n−2 for an integer k ≥ 1 and n ≥ 2

with initial conditions Bk
0 = 0 and Bk

1 = 1; Ck
n = 6kCk

n−1 − Ck
n−2 for an integer k ≥ 1

and n ≥ 2 with initial conditions Ck
0 = 1 and Ck

1 = 3. Another generalization of the
Lucas-balancing numbers was presented in [28]. The authors introduced numbers Ck,n
defined by the recurrence Ck,n = 6kCk,n−1 − Ck,n−2 for an integer k ≥ 1 and n ≥ 2 with
initial conditions Ck,0 = 1 and Ck,1 = 3k. In [16], the authors studied cobalancing numbers
bn and Lucas-cobalancing numbers cn defined in the following way: b0 = 0, b1 = 0,
bn = 6bn−1 − bn−2 + 2 for n ≥ 2; c0 = −1, c1 = 1, cn = 6cn−1 − cn−2 for n ≥ 2. We can find
other interesting generalizations of balancing numbers in [29–34]. Based on these concepts,
it is natural to consider generalizations of balancing split quaternions and Lucas-balancing
split quaternions.
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