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Abstract: Money laundering is an illicit activity that seeks to conceal the nature and origins of
criminal proceeds, posing a substantial threat to the national economy, the political order, and
social stability. To scientifically and reasonably predict money laundering risks, this paper focuses
on the “layering” stage of the money laundering process in the field of supervised learning for
money laundering fraud prediction. A money laundering and fraud prediction model based on deep
learning, referred to as MDGC-LSTM, is proposed. The model combines the use of a dynamic graph
convolutional network (MDGC) and a long short-term memory (LSTM) network to efficiently identify
illegal money laundering activities within financial transactions. MDGC-LSTM constructs dynamic
graph snapshots with symmetrical spatiotemporal structures based on transaction information,
representing transaction nodes and currency flows as graph nodes and edges, respectively, and
effectively captures the relationships between temporal and spatial structures, thus achieving the
dynamic prediction of fraudulent transactions. The experimental results demonstrate that compared
with traditional algorithms and other deep learning models, MDGC-LSTM achieves significant
advantages in comprehensive spatiotemporal feature modeling. Specifically, based on the Elliptic
dataset, MDGC-LSTM improves the Macro-F1 score by 0.25 compared to that of the anti-money
laundering fraud prediction model currently considered optimal.

Keywords: money laundering; fraud prediction; dynamic graph convolution; spatiotemporal feature
modeling

1. Introduction

Money laundering refers to the process of disguising, concealing, and transforming
illicitly obtained funds through a series of legal or seemingly legal economic transactions [1].
The purpose of this behavior is to obscure the true origins of funds, making them appear to
have come from legitimate channels, thus evading legal tracking and regulatory oversight
by law enforcement agencies [2]. The negative impacts of money laundering on society
are multifaceted. First, money laundering facilitates the legitimization of funds from
criminal activities, thereby increasing the sustainability and scale of criminal operations.
This not only enables criminals to continue engaging in illicit activities but also may lead
to worsening public safety and rising crime rates. Second, money laundering disrupts
the normal economic order, subjecting legitimate businesses and individuals to an unfair
competitive environment. Since money launderers typically utilize legitimate enterprises
or transactions for fund laundering, this distorts market prices, undermining the fairness
and transparency of the economy.

In recent years, digital financial technology has led to an extensive transformation of
the financial sector, offering more efficient, convenient, and innovative services [3]. Digital
financial technology utilizes advanced digital and information technologies, including
blockchain technology, artificial intelligence, big data analytics, and cloud computing, thus
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altering and optimizing traditional financial services and transaction methods [4]. While the
development of digital financial technology has brought convenience to our lives, it has also
triggered a range of societal issues, one of which is digital money laundering. Criminals
exploit the anonymity of digital financial transactions and the automatic execution of
smart contracts to engage in complex money laundering schemes [5]. The global nature of
digital financial transactions, along with the liquidity of virtual assets and cryptocurrencies,
has increased the difficulty of tracking and law enforcement [6]. From the beginning to
the end of 2017, the total cryptocurrency market value increased from just $18 billion to
more than $600 billion [7]. Recent reports have highlighted cases in northern Myanmar
where telecommunications fraudsters engaged in money laundering through property
purchases in Singapore, virtual currency transactions, encrypted payments, and online
payments. Consequently, money laundering prediction has become a crucial component of
the national security strategy employed in this new era.

Traditional money laundering prediction methods rely on a series of detection, identi-
fication, and reporting procedures to assist financial institutions and regulatory authorities
in detecting suspicious transactions and taking appropriate countermeasures [8]. However,
with the continuous advancement of technology, emerging digital financial technologies
and intelligent criminal methods have also propelled innovation in money laundering
prediction technologies [9]. Statistical methods and machine learning methods are playing
increasingly important roles in money laundering prediction strategies and are currently
the most widely used approaches in the field. Statistical methods include rule-based
screening [10], descriptive statistics [11,12], time series analysis [13], and collaborative
filtering [14]. Machine learning methods include heuristic algorithms [15], logistic re-
gression [16,17], support vector machines (SVMs) [18,19], ensemble learning [20], and
multilayer perceptrons (MLPs) [21]. In recent years, the rapid development of deep learn-
ing, especially because of its outstanding ability to automatically extract features, has led to
its widespread application in financial risk prediction scenarios.

Money laundering transactions often exhibit characteristics such as short-term frequent
small transactions, unusual transaction timings, sudden large transactions, and periodic
transactions. These features reveal patterns, trends, and cyclical time series characteristics in
transaction time sequences. Due to their excellent sequence modeling capabilities, recurrent
neural networks (RNNs) [22] can effectively capture the temporal dependencies in input
data. To overcome the issues faced by traditional RNNs when handling long sequences,
improved structures such as long short-term memory (LSTM) [23–25] and gated recurrent
units (GRUs) [26–28] have been proposed, achieving better results in tasks involving time
series data.

Money laundering transactions involve complex currency flow paths, forming spe-
cific connection patterns that constitute a graph network structure of money laundering
transactions. Graph convolutional neural networks (GCNs) [29–36] are effective methods
for capturing node connection relationships by aggregating similar nodes to form spatially
meaningful node clusters, aiding in the discovery of potential money laundering patterns.
Graph convolution can also explain information transmission patterns between nodes,
helping identify potential paths in money laundering activities.

However, considering that money laundering transactions possess both temporal
and spatial structural features, the use of a single model for feature extraction has limi-
tations. Recent research [33,34] has indicated that deep neural network approaches that
integrate both temporal and spatial features can achieve outstanding performance in terms
of predicting money laundering transactions. The method proposed in [33] achieved a
prediction accuracy of more than 96% based on the Elliptic dataset for predicting money
laundering transactions. Nevertheless, the current research relies primarily on the static
design of money laundering transaction graphs and uses static graphs for graph convolu-
tion purposes in dynamic time series prediction tasks, leading to issues such as dynamic
temporal feature neglect and information leakage. Recent studies [37,38] have proposed
an innovative approach in this context, introducing a time attribute based on static graphs
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and transforming them into dynamic graphs based on timestamps to enhance the predic-
tive performance of the constructed model and mitigate the potential risk of excessive
smoothing. The neural network architecture constructed based on the time-series dynamic
model consistently exhibits symmetrical properties at each time step, ensuring persistent
symmetry in the model, which in turn guarantees its robustness and credibility.

In summary, the main contributions of this paper are as follows.

(1) A novel prediction model that integrates dynamic graph convolution and LSTM is
proposed to address the shortcomings of the previous models in terms of capturing
the dynamic spatial features contained in the static graph consisting of all transactions.

(2) A dynamic graph convolution method is constructed based on snapshots to reduce
the risk of excessively smoothing the transaction nodes.

(3) Comprehensive experimental studies are conducted to significantly improve the
performance of the proposed money laundering prediction model.

2. Related Works

To mitigate the harm caused by money laundering transactions, many scholars have
attempted to use statistical methods and traditional machine learning methods for pre-
dicting the risks associated with such transactions. However, rule-based methods [10]
are often constrained by predefined rule sets, making it challenging for such models to
adapt to new money laundering patterns. Descriptive statistical methods [11,12] mainly
focus on overall data characteristics, but in money laundering prediction tasks, they may
overlook the details of individual anomalous transactions, making it challenging to cap-
ture the complex relationships between different transactions. Time series analysis [13]
performs well in terms of handling periodic money laundering patterns but struggles to
capture the nonlinear relationships between transactions exhibiting complex nonperiodic
patterns. Heuristic algorithms [15], limited by their manually designed heuristic rules, face
challenges when attempting to automatically learn more abstract and complex patterns
in large-scale and high-dimensional datasets. Logistic regression [16,17], which is a linear
model, has a limited ability to model complex nonlinear relationships. SVMs [18,19] ex-
hibit good fitting capabilities in high-dimensional spaces but are time-consuming when
trained on large datasets and relatively limited regarding modeling temporal and spatial
relationships. The performance of ensemble learning [20] strongly depends on the diversity
of the base learners and requires significant effort for parameter tuning and selection. The
performance of an MLP [21] is restricted by the input data volume and the required training
time, and MLPs struggle to capture the higher-order spatiotemporal relationships among
money laundering transactions.

In recent years, the rapid development of deep learning technology has positioned
deep learning models as powerful tools in the field of financial risk prediction. Deep
learning models possess advantages such as automatically learning abstract features from
data, being suitable for handling high-dimensional and large-scale data, and supporting
end-to-end learning. Consequently, several scholars have applied deep learning techniques
to financial risk prediction. Financial transactions usually exhibit temporal characteristics,
and deep neural networks based on RNNs have inherent advantages in terms of extracting
temporal features. LSTM, an RNN variant, is well suited for extracting features from
datasets formed in a big data environment. Alghofaili Y et al. [24] proposed a deep learning
fraud detection method based on LSTM, which achieved outstanding performance in
credit card fraud detection applications. Yan et al. [25] introduced an innovative deep
prediction model that combines LSTM with empirical mode decomposition (EMD) and
principal component analysis (PCA), achieving good stock market prediction results. A
GRU is another RNN algorithm known for its higher computational efficiency than that
of LSTM. Luo et al. [27] demonstrated the effectiveness of using a GRU to extract deep
temporal features from information flows, contributing to the exploration of dynamic
temporal dataset features. Labanca D et al. [28] proposed using a GRU to automatically
extract implicit temporal features from bank transaction data and built a fusion model



Symmetry 2024, 16, 378 4 of 22

with features extracted using self-attention mechanisms as an alternative to traditional rule-
based methods. Additionally, several works have proposed using transformer models [39],
which were originally designed for processing language sequences and have achieved good
results. Tatulli M P et al. [40] adopted a hierarchical transformer, introducing attention
mechanisms at both the transaction and temporal levels, and achieved excellent fraud
transaction detection results.

During financial transactions, currency flows between transactions, allowing for the
construction of financial transaction graphs. Different spatial structure features exist among
different transaction nodes based on edge relationships. The spatial structure features of
financial transactions can be explored to effectively complement the limitations encountered
when exploring only temporal features. Early works used GCNs for spatial structure feature
mining and achieved better predictive performance than random forests [29]. In recent
years, research on graph neural networks (GNNs) has gained widespread attention, with
many scholars dedicated to optimizing them. You et al. [30] addressed the expression
limitations of homogeneous graph message passing and proposed an innovative method
that implements multi-round heterogeneous message passing. Additionally, Li et al. [31]
incorporated key technologies derived from convolutional neural networks (CNNs), such
as residual connections and dilated convolutions, into a GCN, successfully constructing a
deep GCN with up to 112 layers. Through validations conducted on specific datasets and
tasks, the authors demonstrated the effectiveness of this approach.

The use of a single model for feature extraction may not fully capture the diversity
and abstraction levels in complex data, limiting the ability of the model to effectively
represent comprehensive information. Considering the feature extraction limitations of
a single model, Luo et al. [27] proposed merging different neural networks to produce
a model with an enhanced ability to comprehensively learn features, thereby further
improving the performance of the prediction model. Xia et al. [33] and Alarab et al. [34]
successively proposed using a GCN to explore spatial structure features in transactions
and then transferring the mined features to LSTM for temporal feature extraction. The
constructed fusion network exhibited significantly better money laundering transaction
prediction performance than did the single models. Huang H et al. [41] used multi-head
attention mechanisms during the graph convolution process to embed spatial structures
in a graph. Simultaneously, they fused this model with an LSTM model and achieved
outstanding money laundering transaction prediction results.

However, the existing research is limited to representing the relationships between
transaction nodes using static graphs, overlooking the inherent temporal features of times-
tamps. Static graphs constructed based on all transaction information suffer from infor-
mation leakage issues, and after performing graph convolution operations for multiple
timestamps, the resulting node features are prone to excessive smoothing. This paper
addresses these challenges by constructing dynamic graph snapshots, modeling transaction
information for each timestamp, utilizing an MLP layer for dynamic node updates, and in-
tegrating the results with an LSTM network to form a fusion prediction model. This fusion
strategy effectively enhances the illegal transaction prediction performance of the model.

3. Construction of the MDGC-LSTM Model

To more effectively detect illicit money laundering activities in financial transactions,
this paper proposes a money laundering prediction model based on a dynamic GCN and
LSTM (MDGC-LSTM). Figure 1 illustrates the overall algorithmic process of MDGC-LSTM.

In the algorithmic process depicted in Figure 1, each transaction is treated as a node
in a graph, and currency flows are regarded as edge relationships in the graph. The
experiments in this paper focus on snapshot representations of dynamic graphs, where
nodes and edges arrive in batches according to their timestamps. At each timestamp node
of a transaction, the features of the transaction nodes are obtained from the transaction set
of the current timestamp, and the snapshot representation of the current dynamic graph is
obtained from the currency flows of the current timestamp. Within each timestamp, only
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one dynamic graph snapshot is retained on the GPU, and message passing is conducted
solely on this dynamic graph snapshot to obtain transaction node features.
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At each timestamp, graph convolution operations are initially performed to extract the
spatial structural features between different transaction nodes (see Section 3.1 for details).
Subsequently, these features are fed into an LSTM network to further extract the temporal
features from the transaction information (see Section 3.2). Finally, the spatiotemporal
features extracted by the LSTM are input into a classification network to be modeled (see
Section 3.3). Each timestamp outputs a dynamic model based on the current timestamp,
and the subsequent timestamp loads the model from the previous timestamp, achieving
dynamic iterative updates for the model. At each timestamp, the system also outputs
prediction results based on the current timestamp.

3.1. Spatial Feature Extraction
3.1.1. Message Passing and Aggregation

To more effectively identify illicit activities in money laundering transactions, each
transaction in this study is considered a node in a graph, and the flow of funds between a
pair of transactions is considered an edge. Thus, a graph can be represented as follows:

G = (Vertex, Eage) (1)

where Vertex = {V1, . . . , Vn} represents the set of transaction nodes and Eage ⊆ V × V
represents the set of edges in the graph. Each transaction node has a corresponding feature
E0, which is used to represent detailed information about the transaction.

The objective of GNNs is to learn embedded representations of nodes by iteratively
aggregating the information derived from the neighboring nodes within the local network.
In this paper, we use an embedding matrix E(l) =

{
E(l)

v

}
to represent the collection of
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embeddings for all nodes after applying the l-th layer of the GNN. After the nodes pass
through the l-th layer of the GNN, the changes in their embedded representations can be
expressed as follows:

E(l) = GNN(l)
(

E(l−1)
)

(2)

Here, E(l) represents the collection of embeddings for all nodes after applying the l-th
graph convolution layer, and GNN(l) denotes the GCN layer at the l-th level.

The graph convolution operation is essentially a series of message passing and ag-
gregation operations within the constructed graph. In the graph convolution layer, the
message passing and aggregation process for the target node can be expressed as follows:

m(l)
u→v = MSG(l)

(
E(l−1)

u , E(l−1)
v

)
E(l)

v = AGG(l)
({

m(l)
u→v

∣∣∣u ∈ N(v)
}

, E(l−1)
v

) (3)

where E(l−1)
v represents the embedding of the target node in layer l − 1, E(l−1)

u represents
the embedding of the neighboring nodes in layer l − 1 that are adjacent to the target node,
MSG(l) denotes the message passing function, N(v) is the set of neighbors of the target
node, and AGG(l) represents the message aggregation function.

During the message passing and aggregation process, different nodes may contain
varying amounts of information. Therefore, during the node embedding update process, it
is necessary to consider the degrees of the transaction nodes. The update rule for the node
embeddings can be expressed as follows:

E(l) =

σ

(
D−

1
2

v AD−
1
2

u E(l−1)W(l−1)
)

l ≥ 1

E0 l = 0
(4)

where Dv represents the input degree matrix of the target node, Du represents the output
degree matrix of the neighboring nodes, A represents the adjacency matrix of the target
node, E(l) represents the embedding output of the l-th layer GNN, W(l) represents the
feedforward network layer added after the l-th layer graph convolution, and σ denotes the
message aggregation process.

The message passing and aggregation process defined in Equation (4) is commonly
referred to as a static GCN. It is designed for learning node features from a preconstructed
static graph and therefore cannot capture the structural information evolving in dynamic
graphs over time.

3.1.2. Dynamic Graph Snapshots

In a dynamic graph, the feature of each node includes a timestamp Sv, and each
currency flow includes a timestamp feature Se. When addressing dynamic graphs, it is nec-
essary to construct timestamp-based dynamic graph snapshots based on the currency flows
of different timestamps. A dynamic graph representing money laundering transactions can
be expressed as follows:

GD =
{

G(t)
}T

t=1
(5)

where GD represents a collection of graph snapshots and each snapshot G(t) = (Vertext, Edget)
is a static graph with Vertext = {v ∈ V|Sv = t} and Edget = {e ∈ E|Se = t}. By modeling
the constructed transaction graph snapshots, automatic addition and deletion operations
can be implemented on nodes according to the order of the timestamps, as different graph
snapshots may contain distinct sets of nodes.
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3.1.3. Dynamic Graph Convolution

A static GNN typically consists of L graph convolution layers, and the message
passing and aggregation operations in each layer follow Equation (3), where E(l) represents
the information aggregated from the neighbors within l hops of the target node. The
embedded values calculated at each timestamp t are denoted as Et. When considering only
the dynamic graph convolution operation, the model fine-tuning process is as illustrated in
Figure 2.
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As illustrated in Figure 2, during dynamic graph convolution, at each time step t, the
model fine-tunes the GNN using the node embeddings and labels yt of the current time
step, updating the node embedding values Et.

In conventional approaches [42–44], a temporal model built on a GNN typically retains
and updates the embeddings E(l) of the top graph convolution layer. However, for the
node states E(l)

t at each timestamp, the network must be retrained based on new graph
snapshots. Nevertheless, the key to extending static GNNs to dynamic GNNs, as proposed
in reference [37], lies in how to update the layered node states over time. Therefore, in
this paper, we preserve the layered node embeddings E(1)

t , . . . , E(l)
t for all timestamps

and employ an MLP layer at each timestamp to dynamically update the node states by
following the updating rule outlined below:

E(l)
t = MLP

(
Concat

(
E(l)

t−1, E(l−1)
t

))
(6)

where E(l)
t−1 represents the embedding values of the l-th graph convolution layer at the

previous timestamp and El−1
t denotes the embedding output of layer l − 1 at the cur-

rent timestamp.

3.2. Temporal Feature Extraction

Money laundering transactions often exhibit significant temporal dependencies, as
launderers may gradually increase the sizes of their transactions and frequently change
transaction partners to evade detection. Therefore, temporal feature extraction must be
performed on money laundering transactions to delve into the complex temporal relation-
ships hidden within them. LSTM is an RNN variant that was designed for sequence data;
it specifically aims to capture long-term temporal dependencies. Thus, this paper employs
LSTM to extract the temporal features of money laundering transactions.

LSTM introduces mechanisms such as memory units, input gates, forget gates, and
output gates to address the vanishing gradient problem encountered by traditional RNNs,
enabling the network to better handle long sequence data. The basic structure of LSTM is
illustrated in Figure 3.

In Figure 3, the memory unit in an LSTM network is a critical network component that
is responsible for storing and transmitting information. It enables the network to selectively
remember or forget certain information, facilitating the better capture of long-term sequence
dependencies. Additionally, the network structure of LSTM includes input gates, forget
gates, and output gates. Specifically, an input gate controls how much new information is
added to the memory unit, a forget gate determines which information should be deleted
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from the memory unit, and an output gate decides how much information is output from
the memory unit. The specific structures of these gates are outlined below:

It = σ(XtUi + Ht−1Wi)
Ct = tanh(XtUc + Ht−1Wc)

ft = σ
(

XtU f + Ht−1W f

)
Ot = σ(XtUO + Ht−1WO)

Ct = ftCt−1 + ItCt
Ht = Ot × tanh(Ct)

(7)

where It and Ct denote the input gate and ft, Ot, and Ct represent the forget gate, output
gate, and memory unit, respectively. Ht represents the output of the LSTM network at time
t, and Xt represents the feature input of the model at time t. Ui and Uc represent the weight
matrices for the input gate; U f and UO represent the weight matrices for the forget gate
and output gate, respectively; and W f , Wc, Wi and WO are bias terms. σ and tanh represent
the sigmoid and tanh activation functions, respectively.

Symmetry 2024, 16, x FOR PEER REVIEW 8 of 23 
 

 

performed on money laundering transactions to delve into the complex temporal relation-

ships hidden within them. LSTM is an RNN variant that was designed for sequence data; 

it specifically aims to capture long-term temporal dependencies. Thus, this paper employs 

LSTM to extract the temporal features of money laundering transactions. 

LSTM introduces mechanisms such as memory units, input gates, forget gates, and 

output gates to address the vanishing gradient problem encountered by traditional RNNs, 

enabling the network to better handle long sequence data. The basic structure of LSTM is 

illustrated in Figure 3. 

 

Figure 3. Structural diagram of the LSTM. The “*” symbol represents the elementwise Hadamard 

product, and the “+” symbol indicates feature addition. 

In Figure 3, the memory unit in an LSTM network is a critical network component 

that is responsible for storing and transmitting information. It enables the network to se-

lectively remember or forget certain information, facilitating the better capture of long-

term sequence dependencies. Additionally, the network structure of LSTM includes input 

gates, forget gates, and output gates. Specifically, an input gate controls how much new 

information is added to the memory unit, a forget gate determines which information 

should be deleted from the memory unit, and an output gate decides how much infor-

mation is output from the memory unit. The specific structures of these gates are outlined 

below: 

𝐼𝑡 = 𝜎(𝑋𝑡𝑈𝑖 + 𝐻𝑡−1𝑊𝑖)

𝐶�̅� = 𝑡𝑎𝑛ℎ(𝑋𝑡𝑈𝑐 + 𝐻𝑡−1𝑊𝑐)

𝑓𝑡 = 𝜎(𝑋𝑡𝑈𝑓 + 𝐻𝑡−1𝑊𝑓)

𝑂𝑡 = 𝜎(𝑋𝑡𝑈𝑂 + 𝐻𝑡−1𝑊𝑂)

𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝐼𝑡𝐶�̅�

𝐻𝑡 = 𝑂𝑡 × 𝑡𝑎𝑛ℎ(𝐶𝑡)

 (7) 

where 𝐼𝑡 and 𝐶�̅� denote the input gate and 𝑓𝑡, 𝑂𝑡, and 𝐶𝑡 represent the forget gate, out-

put gate, and memory unit, respectively. 𝐻𝑡 represents the output of the LSTM network 

at time 𝑡, and 𝑋𝑡 represents the feature input of the model at time 𝑡. 𝑈𝑖 and 𝑈𝑐 repre-

sent the weight matrices for the input gate; 𝑈𝑓 and 𝑈𝑂 represent the weight matrices for 

the forget gate and output gate, respectively; and 𝑊𝑓, 𝑊𝑐, 𝑊𝑖 and 𝑊𝑂 are bias terms. 𝜎 

and 𝑡𝑎𝑛ℎ represent the sigmoid and tanh activation functions, respectively. 

Figure 3. Structural diagram of the LSTM. The “*” symbol represents the elementwise Hadamard
product, and the “+” symbol indicates feature addition.

3.3. Modeling Spatiotemporal Features

As analyzed earlier, money laundering transactions typically exhibit both temporal
and spatial structural features. The combined spatiotemporal modeling strategy using
MDGC and LSTM enables the comprehensive capture of multilayered relationships in
money laundering transaction data. The MDGC effectively extracts the spatial structural
relationships between nodes through dynamic graph convolution operations, and the
obtained spatial money laundering features are subsequently passed to the LSTM layer to
capture the temporal features of the transaction data. The algorithmic process of MDGC-
LSTM is summarized in Algorithm 1.

As in the design philosophy of dynamic graph convolution described in Section 3.1, at
each timestamp, the model trained on the previous timestamp is loaded. Simultaneously,
graph convolution operations are performed on the constructed graph snapshot using the
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data from the current timestamp. Based on the above analysis, the computational process
of MDGC-LSTM is as follows:

It = σ
(

E(l)
t Ui + Ht−1Wi

)
Ct = tanh

(
E(l)

t Uc + Ht−1Wc

)
ft = σ

(
E(l)

t U f + Ht−1W f

)
Ot = σ

(
E(l)

t UO + Ht−1WO

)
Ct = ftCt−1 + ItCt
Ht = Ot × tanh(Ct)

(8)

Here, E(l)
t represents the dynamic graph convolution embedding calculated at times-

tamp t using Equation (6). In the MDGC-LSTM model, dynamic graph convolution is
employed to extract the spatial features of money laundering transactions. These spatial
features are subsequently conveyed to the LSTM network for further temporal characteris-
tic extraction. After obtaining the spatiotemporal features, they are then forwarded to the
fully connected layer and the output layer for classification purposes, yielding classification
results for money laundering prediction.

Algorithm 1 Model Based on Dynamic Graph Convolutional and LSTM (MDGC_LSTM)

Input: Dynamic Snapshot GD =
{

G(t)
}T

t=1
, Features Xt

Output: Prediction
∼
yt

(val)
, MDGC_LSTM model

1: E(0)
t ← X(train)

t ; //Initialize embedding from GD and Xt
2: for t = 1, . . . , T do
3: Load the model from the previous time step;
4: for l = 1, . . . , L do

5: E(l) = GNN(l)
(

E(l−1)
)

; //Equation (2)

6: E(l)
t = MLP

(
Concat

(
E(l)

t−1, E(l−1)
t

))
; //Equation (6)

7: Ht = LSTM
(

E(l)
t

)
; //Equation (8)

8:
∼
yt

(train)
= So f tmax(ReLU(MLP(Ht)));

9: Update model via back propagation based on
∼
yt

(train)
, y(train)

t ;

10:
∼
yt

(val)
← EVALUATE

(
model; X(val)

t

)
4. Experimental Design and Analysis
4.1. Experimental Setup
4.1.1. Description of the Dataset

This study leverages two widely adopted standard graph datasets, namely, the Ellip-
tic [16] and OGB-Arxiv [45] datasets, to serve as the experimental foundation for validating
the effectiveness of the proposed methodology. The datasets are randomly partitioned
into training, validation, and test sets at an 8:1:1 ratio, ensuring consistency during the
partitioning process through the use of the same random seed. The Elliptic dataset has
extensive applications in the domains of money laundering prevention and fraud detection.
Detailed descriptions of both datasets are provided in Table 1.

Table 1. Statistical information of the utilized datasets.

Dataset Categories Timestamps Feature Dimensions Nodes Edges

Elliptic 2 49 166 203,769 234,355

OGB-Arxiv 40 41 129 169,343 1,166,243
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The Elliptic graph dataset is a publicly available Bitcoin transaction dataset associated
with illicit money laundering activities that was jointly released by the Elliptic blockchain
analytics company and the Massachusetts Institute of Technology (MIT). This dataset
documents 203,769 Bitcoin transactions that are worth approximately $6 billion. Among the
203,769 nodes and 234,355 edges, 2% of the nodes were labeled illicit, 21% were labeled licit,
and the remaining 77% were unlabeled. In this graph, each node represents a transaction,
and the edges denote the flow of Bitcoin between pairs of transactions. Each node is
characterized by 166 features, including timestamp information, with timestamp values
ranging from 1 to 49. Figure 1 illustrates the variations exhibited by the sample quantities of
different categories over time in the Elliptic dataset, with a time interval of approximately
two weeks between adjacent timestamps.

To validate the effectiveness and generalizability of the proposed method, given the
scarcity and sensitivity of the available financial transaction graph datasets, we select the
OGB-Arxiv graph dataset as an additional experimental control group. OGB-Arxiv is
an open benchmark graph dataset released by Stanford University in 2019 that contains
169,343 nodes and 1,166,243 edges. In this dataset, nodes represent academic papers, and
edges denote citation relationships between papers. Each node is associated with a 128-
dimensional feature vector representing the keywords of the corresponding paper and a
temporal feature named “year,” indicating the publication year of the paper and ranging
from 1979 to 2019. Due to the relatively limited number of data samples before 2006, a
data merging process was applied in the experiments to alleviate the excessive parameter
fluctuations that occurred at early timestamps. The primary task of the OGB-Arxiv graph
dataset is to predict the main categories of Arxiv academic papers, encompassing a total of
40 different classes.

Compared to the Elliptic graph dataset, the OGB-Arxiv graph dataset exhibits similar
dynamic node features but possesses more intricate edge relationships and a richer set of
categories. Therefore, this dataset is better suited for validating the predictive performance
of the method proposed in this study when addressing complex graph datasets.

4.1.2. Evaluation Metric Selection

In the experiments conducted in this paper, a series of evaluation metrics are employed
to gauge the performance of the proposed model, including the micro-precision, micro-recall,
micro-F1, macro-precision, macro-recall, and macro-F1 values. The computational formulas for
these evaluation metrics are outlined in Equation (9):

Micro− Precision = ∑n
i=1 TPi

∑n
i=1 TPi+∑n

i=1 FPi

Micro− Recall = ∑n
i=1 TPi

∑n
i=1 TPi+∑n

i=1 FNi

Micro− F1 = 2 × Micro − Precision × Micro − Recall
Micro − Precision + Micro − Recall

Macro− Precision = 1
n

n
∑

i=1
Precisioni

Macro− Recall = 1
n

n
∑

i=1
Recalli

Macro− F1 = 2 × Macro − Precision × Macro − Recall
Macro − Precision + Macro − Recall

(9)

In the provided formulas, n represents the total number of categories, TPi denotes
the number of samples in category i that are correctly predicted as positive, FPi indicates
the number of samples in category i that are erroneously predicted as positive, and FNi
represents the number of samples in category i that are correctly predicted as negative.
Precisioni signifies the probability that the samples predicted by the model as positive for
category i are indeed positive. Recalli represents the probability that the model correctly
predicts the samples that actually belong to the positive class for category i.

In this paper, the macro-F1 score is adopted as the primary evaluation metric; this
choice is motivated by the highly imbalanced sample distribution in the Elliptic dataset. As



Symmetry 2024, 16, 378 11 of 22

depicted in Figure 4, the number of nodes associated with illicit money laundering in the
Elliptic dataset is significantly lower than that associated with legitimate nodes. In such
a scenario, models tend to achieve better performance on categories with larger sample
distributions, while their performance diminishes on categories with fewer samples. Given
that our research emphasis lies in predicting illicit money laundering transactions, strong
emphasis must be placed on relatively scarce illicit transaction samples.
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Figure 4. Distribution of money laundering transaction nodes across dynamic timestamps.

To validate the advantages of employing the macro-F1 score as an evaluation metric,
we illustrate the trends exhibited by various evaluation metrics during the model training
process across different training epochs in Figure 5. Additionally, Figure 6 shows the
variations in each element of the confusion matrix as the number of epochs increases.
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As shown in Figure 5, the MDGC-LSTM model induces the lowest loss in the validation
set after 25 training epochs, with the micro-F1 score approaching 0.9. The confusion matrix
in Figure 6 indicates that at this moment, the predictions produced by the model for
legitimate transaction samples are nearly perfect. However, its ability to detect illicit money
laundering transactions is quite limited, as reflected by the fact that the true negative (TN)
values approach zero.

As the number of training epochs approaches 75, the micro-F1 score stabilizes, while the
macro-F1 score continues to gradually increase, which is consistent with the trend exhibited
by the TN values in Figure 6. This finding suggests an ongoing improvement in the ability of
the model to predict illicit money laundering transactions. These observations underscore
the rationale behind using the macro-F1 score as an evaluation metric, particularly when
addressing highly imbalanced sample distributions.

4.1.3. Model Parameter Selection

The experiments in this paper build upon prior research findings [30] and incorporate
the latest advancements in dynamic graph convolution theory [32]. Consequently, the
primary parameter configurations in these experiments align with those used in a preceding
study [33]. Message passing and aggregation operations are implemented on the given
money laundering transaction graph using the open-source DGL toolkit [46]. Detailed
information regarding the experimental parameters is provided in Table 2.

In contrast with the previous study in [33], we do not employ an early stopping
mechanism. This decision is informed by the observed trends in the model evaluation
metrics across different training epochs, as depicted in Figure 5. It is evident that the model
achieves its minimum loss on the validation set after approximately 25 epochs, while the
macro-F1 score begins to stabilize at approximately 150 epochs. Therefore, this study opts
not to use an early stopping mechanism and instead maintains a consistent model training
process for 220 epochs.

In Table 2, “RNN_layers” denotes the number of layers in RNN models such as LSTM
and a GRU, while “Graph_layers” represents the number of layers in the graph convolution
model. The “Support” parameter signifies the depth of the node neighborhood during the
graph convolution process, where a “Support” value of 2 indicates the adoption of second-
order neighborhood nodes for graph convolution purposes. “Lr” represents the initial
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learning rate of the model. We determine the optimal settings for these two parameters by
referencing prior research [33].

Table 2. Parameter settings for training the MDGC-LSTM model.

Parameter Value

Training set proportion 80%

Validation set proportion 10%

Test set proportion 10%

RNN_layers 2

Graph_layers 2

Support 2

Training epochs 220

Lr 0.001

Loss function Cross entropy

Optimizer Adam

Weight_decay 5 × 10−5

Activation function ReLU

During the experimental process, we utilize the cross-entropy loss function to assess
the disparity between the model predictions and the actual values. For a multiclass
classification problem with N classes, given the true class label y for a particular sample
and the model output probability p, the formula for calculating the cross-entropy loss is
as follows:

L(y, P) = −
N
∑

i=1
(yilog Pi)

Pi =
eWT

i xi+bi

∑N
j=1 e

WT
j xj+bj

(10)

Here, yi represents the true class of the sample, and Pi denotes the probability value
predicted by the model for class i, i.e., the output of the softmax layer. W represents the
classification weights of the fully connected layer, and b represents the bias term.

In the experiments, we employ adaptive moment estimation (Adam) as the optimizer,
which is an optimization algorithm that combines momentum and adaptive learning rates,
aiding in effectively converging the loss function to its minimum value. Additionally,
we utilize the Weight_decay parameter optimization strategy, which is a regularization
technique that helps control the complexity of the model and reduce the risk of overfitting.
Finally, we apply a rectified linear unit (ReLU) as the activation function, as this method is
widely used in deep learning scenarios to introduce nonlinearity and contributes to better
capturing the complex relationships within data.

4.1.4. Baselines

To validate the effectiveness of the proposed MDGC-LSTM method in the field of
money laundering prediction, we conduct a comprehensive comparison with six traditional
machine learning models and six deep learning-based models.

Among the six traditional machine learning models, the first is logistic regression
(LR) [16,17], which is a widely used linear model for classification problems that predicts
the probabilities of output categories by combining the input features with weights and
applying a logistic function. The second is an SVM [18,19], which is a classification and
regression model that was designed to find an optimal hyperplane for establishing the
maximum margins between data points belonging to different classes. The next model
is a random forest (RF) [20], which is an ensemble learning model based on predictions
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derived from multiple decision trees that achieves enhanced model performance and
robustness through voting or averaging. Backpropagation (BP) [21] is a training algorithm
for shallow neural networks in which the network weights are updated by backpropagating
errors to minimize the discrepancy between the predicted outputs and the actual targets.
Additionally, both extreme gradient boosting (XGBoost) [47] and the light gradient boosting
machine (LightGBM) [48] are gradient boosting tree models, with XGBoost iteratively
training multiple trees to minimize prediction errors and incorporating gradient boosting
and regularization techniques to attain improved model performance. LightGBM employs
a histogram-based learning algorithm to increase training speed and reduce memory usage,
and this method is suitable for large-scale datasets and high-dimensional features.

Among the six deep learning-based models, the GRU [27] and LSTM [24] models
are RNN variants used for handling sequential data. They address the vanishing and
exploding gradient issues faced by traditional RNNs by introducing gate mechanisms
that capture long-term dependencies. Furthermore, a GCN [28] is a deep learning model
for processing graph data that captures the relationships between nodes by performing
convolution operations on the input graph structure. GCN-GRU and MGC-LSTM [33] are
fusion models that execute graph convolution operations on a static graph constructed from
the entire training set in combination with GRUs and LSTM networks, respectively. The
DGCN-GRU constructs graph snapshots using dynamic data for each timestamp, performs
graph convolution operations on these snapshots, and utilizes GRUs to capture sequential
properties, enabling complex time series graph data to be comprehensively modeled.

4.2. Experimental Results and Analysis

This section aims to validate the effectiveness of the proposed MDGC-LSTM method in
the field of money laundering prediction and examine its performance in terms of handling
complex dynamic graph data.

Tables 3 and 4 provide summaries of the model evaluation results obtained by the
baseline deep learning models and the proposed method on the Elliptic and OGB-Arxiv
datasets, respectively. Notably, the evaluation results of different models in the tables
represent the best performance achieved across all 49 timestamps. Additionally, Figure 7
illustrates the variation trends exhibited by the macro-F1 scores of the different deep
learning models at each timestamp during the model training phase.

Table 3. Comparison among the prediction results obtained by MDGC-LSTM and other deep learning
models on the Elliptic dataset.

Dataset Model Micro-Precision Micro-Recall Micro-F1 Macro-Precision Macro-Recall Macro-F1 Ex-Time(s)

Elliptic GRU 0.9345 0.9345 0.9345 0.8670 0.6937 0.7474 12.58

LSTM 0.9364 0.9364 0.9364 0.8651 0.7104 0.7619 14.50

GCN 0.9192 0.9192 0.9192 0.7596 0.8173 0.7844 14.73

GCN-GRU 0.9310 0.9310 0.9310 0.7927 0.8103 0.8012 30.50

MGC-LSTM 0.9351 0.9351 0.9351 0.8107 0.7938 0.8019 32.95

DGCN-GRU 0.9360 0.9360 0.9360 0.8096 0.8109 0.8103 27.20

MDGC-LSTM 0.9435 0.9435 0.9435 0.8380 0.8161 0.8266 30.34

The experimental results demonstrate the significant advantage of the proposed
MDGC-LSTM method in terms of the macro-F1 score. The MDGC-LSTM model clev-
erly integrates spatial correlation features and temporal feature extraction, leveraging the
properties of dynamic graph convolution and LSTM. This integration allows the model
to accurately capture complex dynamic patterns within the given dataset, leading to a
substantial money laundering prediction advantage over the other comparative methods.
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Table 4. Comparison among the prediction results obtained by MDGC-LSTM and other deep learning
models on the OGB-Arxiv dataset.

Dataset Model Micro-Precision Micro-Recall Micro-F1 Macro-Precision Macro-Recall Macro-F1 Ex-Time(s)

OGB-
Arxiv GRU 0.2814 0.2435 0.2331 0.2814 0.2435 0.2331 71.08

LSTM 0.2747 0.2434 0.2398 0.2747 0.2434 0.2398 92.41

GCN 0.2992 0.2495 0.2476 0.2992 0.2495 0.2476 94.66

GCN-GRU 0.3635 0.2589 0.2708 0.3635 0.2589 0.2708 175.69

MGC-LSTM 0.3536 0.2675 0.2804 0.3536 0.2675 0.2804 209.18

DGCN-GRU 0.3157 0.3011 0.2988 0.3157 0.3011 0.2988 162.05

MDGC-LSTM 0.3414 0.3131 0.3169 0.3414 0.3131 0.3169 202.43
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Furthermore, we observe that the macro-recall values of the GRU and LSTM are
notably lower than those of the GCN and the other fusion methods, and their macro-F1
values that are also lower than those of the GCN. This may be attributed to the limitations
of the methods in terms of handling dynamic graph data. The GCN and the other fusion
methods effectively utilize graph convolution operations to better capture the spatial
correlation features within each dataset.

A closer examination reveals that the performances of MDGC-LSTM and DGCN-
GRU, which use dynamic graph convolution, surpass those of MGC-LSTM and GCN-GRU,
which employ static graph convolution. Static graph convolution conducts message passing
among nodes based on a graph constructed from the entire set of transaction behaviors, and
each timestamp involves message passing among the node features within the graph. As
messages are repeatedly passed over multiple timestamps, the features of transaction nodes
from earlier timestamps are involved in multiple message passing operations, leading to
the gradual smoothing of the node features. This smoothing effect causes reductions in the
feature differences among the nodes, making it challenging for the model to distinguish
between different nodes, resulting in suboptimal performance in the task of detecting illicit
money laundering transactions.

In contrast, dynamic graph convolution better simulates real-world scenarios. In a
money laundering prediction task, the transaction behavior at each timestamp is treated as
an independent snapshot, and the temporal features that are inherent to each timestamp can
be effectively mined. Moreover, as future transaction behaviors cannot be detected at the
current timestamp, constructing a static graph based on the entire transaction behavior set
is unreasonable in money laundering prediction scenarios and may result in information
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leakage issues. Therefore, dynamic graph convolution aligns better with the practical
application requirements and effectively enhances the performance of the developed model.

Figure 7 shows that the seven different deep learning methods exhibit similar per-
formance trends across all timestamps. At the initial four timestamps, the GCN performs
exceptionally well, possibly because as a relatively simple model, the GCN is only used to
extract the spatial correlation features of the transaction nodes, resulting in lower model
complexity and faster convergence. However, at later timestamps, the proposed MDGC-
LSTM approach significantly outperforms the other six methods. This can be attributed to
MGDC-LSTM’s utilization of dynamic graph convolution and LSTM for feature extraction
in both temporal and spatial dimensions. Compared to single-dimensional models, MGDC-
LSTM is better equipped to capture the spatiotemporal correlations present in the dataset.
Furthermore, in contrast to static graph convolution, MGDC-LSTM can more effectively ex-
tract temporal features of transaction nodes, thereby achieving optimal detection accuracy.

Notably, at timestamp 43, a significant decline is observed in the predictive perfor-
mance of all the models. This downward trend is attributed to the sudden closure of
the world’s largest black market trading network. The shutdown of the black market
trading network eliminates instances of illicit transactions from the dataset, rendering the
algorithms incapable of capturing the latest features of illicit transactions.

In addition to comparing the proposed approach with different deep learning meth-
ods, this study also conducts a comprehensive comparison between MDGC-LSTM and
traditional machine learning methods. Tables 5 and 6 provide detailed summaries of the
model evaluation results obtained by the baseline traditional machine learning models and
the proposed method on the Elliptic and OGB-Arxiv datasets, respectively.

Table 5. Comparison among the prediction results obtained by MDGC-LSTM and other machine
learning models on the Elliptic dataset.

Dataset Model Micro-Precision Micro-Recall Micro-F1 Macro-Precision Macro-Recall Macro-F1 Ex-Time(s)

Elliptic LR 0.9338 0.9338 0.9338 0.8356 0.7372 0.7755 0.24

SVM 0.9540 0.9540 0.9540 0.9758 0.7584 0.8283 4893

RF 0.9531 0.9531 0.9531 0.9691 0.7558 0.8247 0.34

BP 0.9596 0.9596 0.9596 0.9231 0.8282 0.8681 3.96

XGBoost 0.9600 0.9600 0.9600 0.9119 0.8419 0.8728 0.38

LightGBM 0.9598 0.9598 0.9598 0.9099 0.8428 0.8725 0.45

MDGC-LSTM 0.9742 0.9742 0.9742 0.9491 0.8922 0.9183 30.34

Table 6. Comparison among the prediction results obtained by MDGC-LSTM and other machine
learning models on the OGB-Arxiv dataset.

Dataset Model Micro-Precision Micro-Recall Micro-F1 Macro-Precision Macro-Recall Macro-F1 Ex-Time(s)

OGB-Arxiv LR 0.4102 0.4102 0.4102 0.1344 0.1104 0.0974 1.12

SVM 0.2759 0.2759 0.2759 0.4013 0.1061 0.1351 26084

RF 0.2441 0.2441 0.2441 0.1855 0.2575 0.1687 1.77

BP 0.4425 0.4425 0.4425 0.2814 0.2435 0.2331 21.72

XGBoost 0.3482 0.3482 0.3482 0.1888 0.1069 0.1095 1.92

LightGBM 0.2701 0.2701 0.2701 0.2018 0.2824 0.1873 2.61

MDGC-LSTM 0.5629 0.5629 0.5629 0.4202 0.3486 0.3715 202.43

Traditional machine learning models, such as SVMs, typically differ from neural
networks due to their inability to dynamically load previous model parameters. Their
parameters are typically saved in the form of model coefficients and intercepts, making it
challenging to attain dynamic predictions. According to the experimental results presented
in Tables 5 and 6, the traditional machine learning models undergo a single training session
on the entire training set and are subsequently evaluated on the validation set. This setup
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results in the macro-F1 values in Tables 5 and 6 generally exceeding the dynamic temporal
prediction results provided in Tables 3 and 4.

During the experiments, we meticulously tuned the parameters of all the models.
The parameters for the LR and RF algorithms are referenced from [33], the parameters
for the SVM are referenced from [18], the parameters for the BP algorithm are referenced
from [19], the parameters for the XGBoost model are derived from [47], and the parameters
for the LightGBM model are acquired from [48]. The results presented in Tables 5 and 6
clearly indicate that the proposed MDGC-LSTM method can effectively extract spatial
and temporal features from each dataset, demonstrating a pronounced advantage over
traditional algorithms.

Notably, the performances achieved by the traditional machine learning algorithms
on the OGB-Arxiv dataset are noticeably lower than their performances on the Elliptic
dataset. This might stem from the fact that the OGB-Arxiv dataset contains a greater
number of categories (totaling 40), making its detection task a highly complex multiclass
classification problem. Traditional machine learning methods exhibit certain limitations
when handling such intricate classification problems, as they struggle to fully unleash their
potential performance.

4.3. Model Parameter Comparison and Analysis
4.3.1. Impact of the Graph Convolutional Layer Depth

Figure 8 shows a comparison among the macro-F1 scores produced on the Elliptic
validation set by the MDGC-LSTM model with different graph convolutional layer depths.
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Figure 8 shows that the MDGC-LSTM model achieves optimal performance when the
number of graph convolutional layers is set to 2. As the number of graph convolutional
layers increases from 1 to 2, the performance of the model significantly improves. However,
with further increases in the number of graph convolutional layers, the performance of the
model gradually declines. Therefore, in Table 2, this study sets the parameter representing
the number of graph convolutional layers, Graph_layers, to 2.

Excessive graph convolutional layers can lead to oversmoothing, subsequently dimin-
ishing the illicit money laundering transaction prediction performance of the model [49].
This is because as the number of graph convolutional layers increases, node features are
influenced by more distant nodes, resulting in the averaging of node features. With the
increase in the number of layers, the node features gradually become more homogeneous,
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reducing the feature differences among the nodes. This smoothing effect makes it challeng-
ing for the network to distinguish subtle feature differences among the different nodes,
thereby diminishing the discrimination ability of the network.

4.3.2. Impact of Graph Convolutional Dropout

Figure 9 shows a performance comparison among various evaluation metrics produced
by the MDGC-LSTM model on the Elliptic validation set when employing different dropout
coefficients during the graph convolution process.
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tional dropout coefficients.

Figure 9 shows that when the dropout coefficient is set to 0.2, the model achieves
its maximum macro-F1 score on the validation set, indicating optimal money laundering
transaction prediction performance at this dropout rate. During the training process with
dropout introduced in the graph convolution layers, neural network units are temporarily
removed from the network with a certain probability. Each graph convolution step involves
only message passing and aggregation for a subset of nodes. This approach is equivalent to
training the model using a subgraph of the overall transaction graph each time, effectively
preventing the model from overfitting on the training set. With an increase in the dropout
parameter, the macro-recall value steadily improves, validating the effective reduction in
the risk of overfitting through the use of graph convolution dropout.

However, when the dropout coefficient increases to 0.3, although the macro-recall
value continues to improve, the validation precision of the model significantly decreases,
indicating that excessively high dropout rates lead to difficulty in terms of learning on
the training set and result in underfitting. Therefore, considering the macro-F1 evaluation
metric of the model, this study sets the dropout coefficient in the graph convolution layers
to 0.2.

4.3.3. Impact of the Weight Decay Coefficient

Figure 10 shows a comparison among the macro-F1 values produced on the Elliptic
validation set by the MDGC-LSTM model during the training process with different weight
decay coefficients.
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As a regularization technique, Weight_decay imposes an L2 norm penalty on the
model weights within the loss function, restraining the growth of the model weights to
reduce the complexity of the model and alleviate overfitting. For the MDGC-LSTM model,
with the introduction of the Weight_decay parameter, the weight updating rule is as follows:

Wt+1 = Wt − γ

(
∂L0

∂Wt
+ λWt

)
(11)

Here, Wt represents the model parameters at update step t, ∂L0
∂Wt

denotes the raw
gradient computed from the loss value, γ is the learning rate, and λ is the Weight_decay
coefficient.

Figure 10 shows that the integration of the Weight_decay parameter into the MDGC-
LSTM model results in a slight improvement in the macro-precision value, while the
macro-recall and macro-F1 values significantly increase. This indicates that without using
weight decay, the model exhibits some overfitting tendencies on the training set, and with
the incorporation of the Weight_decay parameter, the ability of the model to generalize to
new datasets is effectively improved. Therefore, in Table 2, this study sets the Weight_decay
parameter to 5 × 10−5, leading to a noticeable improvement in the money laundering
prediction performance of the model.

5. Conclusions

To mitigate the risks posed by money laundering in financial transactions, we propose
a money laundering prediction model, MDGC-LSTM, based on deep learning to address
the spatiotemporal complexity of money laundering transaction data. By integrating
MDGC and LSTM, MDGC-LSTM can accurately capture the multilayer relationships that
are present within transaction data. The utilization of spatiotemporal relationship graphs
constructed from dynamic graph snapshots enables the model to perform comprehensive
feature modeling on both temporal and spatial structures.

While our approach has achieved some success in dealing with money laundering
transaction data, the scarcity of such data has limited our ability to validate and refine
our methods in more diverse scenarios. Nevertheless, any transaction scenario with clear
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transaction flows and definable transaction features represents a potential application
scenario for our proposed method. Therefore, future research efforts should include
exploring more extensive datasets and transaction scenarios to validate and refine our
methods, extending their applicability to a wider range of practical applications.
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