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Abstract: The unique topic of allocating and scheduling tasks on a single machine in a multitasking
environment is the main emphasis of this research, which also takes into account the effects of
worsening maintenance and job-dependent aging effects. In this scenario, the performance and
efficiency of the machine in handling different tasks should be symmetric, without significant bias
due to the nature or size of the tasks. In a multitasking environment, waiting for jobs can disrupt
the processing of the primary job being currently handled. As a result, the actual time required to
complete a task becomes erratic and contingent upon the duration of the disruption. In addition to
figuring out the best time for maintenance, where to put the due-window, and how big it should be
in a multitasking environment, the primary objective is to minimize the costs associated with meeting
due-window regulations. To tackle this problem, we propose two optimal algorithms. Additionally,
we conduct numerical experiments to compare our approach with the classic due date assignment
problem. Interestingly, we observe that in most cases, the average and minimum percentage costs
tend to increase as the quantity of jobs increases. However, it is noteworthy that, when the number of
jobs is relatively small, specifically when it does not exceed 20, there are instances where these costs
decrease with an increase in the number of jobs.

Keywords: multitasking scheduling; due-window assignment; deteriorating maintenance

1. Introduction

In the classical scheduling problem, a machine needs to complete a job before starting
the next job. However, in some practical situations, the machine may be affected by other
jobs or even be interrupted while processing the current job, so the time required for job
completion will be changed. The mentioned phenomenon is referred to as multitasking,
characterized by the concurrent execution of multiple tasks [1]. Multitasking usually
occurs in various areas such as healthcare, administration, logistics, emergency care, etc.
As an illustration, consider that in the healthcare field, hospital doctors spend 21% of
their working time on multiple activities at the same time [2]; the physician might attend
to a new patient or manage existing cases, all the while awaiting the outcomes of blood
or diagnostic tests [3]. Attending physicians experienced interruptions approximately
every 9 min on average, while residents encountered interruptions about every 14 min on
average [4]. In the administration field, the administrator of a department at a university
works with her team. Their work includes designing promotional programs for academic
activities and writing annual reports. The administrator divides the work into different
parts and arranges them for her colleagues. In addition to finishing her job, she has to
invest time in reviewing the team’s advancements on all pending tasks and providing
them with feedback [5]. Hall, Leung, and Li [5] first used the three-field α|β|γ notation of
Graham et al. [6] to model multitasking scheduling. At present, some studies have found
that multitasking can affect the efficiency of work. Salmon and Farm [7] estimate that, if the
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number of tasks increases from two to three, the loss of productivity will increase from 20%
to 50%. Although most studies express the belief that multitasking can reduce efficiency,
there are some exceptions. The numerical experiment of Hall, Leung, and Li [1] shows
that, by selecting a smaller parameter value in a model, there is potential for a modest net
benefit from multitasking.

Because metaheuristic algorithms can produce nearly optimal solutions within a rea-
sonable time frame, the use of these algorithms in job scheduling has garnered significant
attention in recent times. In the cloud and fog environment, Singh R M et al. [8] provide a
thorough taxonomic overview and analysis of modern metaheuristic scheduling techniques
utilizing extensive evaluation criteria. A novel metaheuristic approach for maximizing col-
laborative job scheduling in cloud data centers was put out by Alboaneen, Dabiah, et al. [9].
For additional findings on multitasking scheduling, readers may consult [10–13].

In the aforementioned example concerning multitasking administration, each signifi-
cant task is accompanied by a designated due date, which serves as a performance metric
for the administrator. To enhance realism, the utilization of a time interval, referred to as
the due-window, presents a more accurate representation of a job’s deadline, rather than a
singular time instant. This approach was initially explored by [14] in the field of schedul-
ing with due-windows. Additional research conducted by Liman et al. [15] focused on
single-machine scheduling with common due- windows. Huo, Yujia, et al. [16] investigated
a multitasking scheduling problem with alternating periods and demonstrated its strong
NP-hardness when jobs were released on different dates. Two polynomial methods were
developed specially to solve the single-machine common due-window problem by Xu,
Chen, et al. [17]. Traditional scheduling studies have typically assumed uninterrupted
machine availability. However, it is important to acknowledge that machines may occa-
sionally require maintenance, rendering them temporarily unavailable for job-processing.
In response, Mosheiov and Sarig [18] extended the problem domain to incorporate mainte-
nance activities as potential options for consideration. In certain actual production systems,
the duration of machine maintenance may vary, depending on the machine’s running time.
To enhance the realism of the problem, Yang [19] introduced a model considering learning,
aging, and deteriorating maintenance. Building upon this, in a study on single-machine
scheduling, Yin et al. [20] looked into generalized position-dependent degrading jobs,
maintenance tasks that deteriorate over time, and assignment due dates.

Liu et al. [21], inspired by the research of Hall, Leung, and Li [5], conducted an
investigation into the concurrent issues of multitasking scheduling and the widespread
assignment of due dates on a solitary machine. Zhu, Zheng, and Chu [22] investigated
rate-modifying activity multitasking scheduling challenges in humans.

To provide a quick and comprehensive understanding of the latest research on multi-
tasking scheduling problems, Table 1 below provides a clear overview of the key informa-
tion from recent studies in this field.

Through a close examination of current studies, we have identified several key limita-
tions. For instance, many studies treat due dates as constant values, rather than intervals,
which may lead to insufficient flexibility in practical applications. Furthermore, the exist-
ing research often assumes that the tasks being processed are undisturbable, which can
pose difficulties when handling emergency tasks or priority changes. Additionally, unlike
machines, human operators experience decreased efficiency as working hours increase and
require periodic rest. If a human operator fails to have sufficient rest, fatigue and illness
may occur, necessitating longer recovery periods known as deteriorating maintenance.
To address these limitations, this research paper aims to bridge the gap by considering
scheduling while multitasking on a single machine, taking into account the effects of aging,
deteriorating maintenance, and treating the due date as an interval, rather than a fixed
point, allowing for greater flexibility and adaptability in real-world scenarios. In keeping
with the nomenclature of traditional machine scheduling, we call the human operator
a “machine”.
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Table 1. Summary of multitasking scheduling studies.

Study Use Case Considerations Optimization Tools

[5] Single-machine
multitasking scheduling

Impact of multitasking
behavior on scheduling

environment
Optimal algorithms

[23]
Parallel-machine

multitasking scheduling
with slack due-windows

Similar parallel machines Scheduling algorithms
with slack due windows

[24] Multitasking scheduling on
unrelated parallel machines

Minimizing total weighted
completion time

Exact branch-and-price
algorithm with inner and
outer column generation

[25]
Extension to multiple

rate-modifying activities
(MRMAs)

Extending single RMA to
multiple activities Introduction of MRMA

[26]
Multi-agent multitasking

scheduling with a common
due date

Scheduling with multiple
agents sharing a due date

Scheduling algorithms for
multi-agent systems

[27]

Multitasking scheduling
with position-dependent

deterioration and rate
improvement

Consideration of
deterioration effects and

upper bounds

Polynomial-time exact
algorithms for

given objectives

The contributions of the paper include the following: (i) We first studied the scheduling
problem that introduced due-window assignments and deteriorating maintenance in a
multitasking environment. (ii) A polynomial algorithm of complexity O(n4) is proposed to
solve this problem. (iii) We performed numerical studies to demonstrate that, with some
combinations of parameters, multitasking is more efficient than non-multitasking.

To more intuitively demonstrate the positioning of our work within the field of job
scheduling research, we designed a classification chart (see Figure 1). This chart highlights
the unique combination of factors considered in our study, including due-window assign-
ment, machine maintenance, and the optimization of multiple objectives such as time and
cost. It further underscores our innovativeness in this domain.

Figure 1. Classification of multitasking job scheduling. Refs. [5,17,24,26–31].

This paper is organized as follows: In Section 2, we provide an overview and definition
of the scheduling model under study, such as the multitasking scheduling environment. In
Section 3, we propose a polynomial-time algorithm to solve the concerns mentioned and
present a numerical instance to show how the approach works. In Section 4, experiments
on the algorithm using randomly generated data are presented to assess the impact of
the algorithm and compare the difference between multitasking and non-multitasking.
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The concluding section wraps up the paper and outlines potential avenues as topics for
future exploration.

2. Problem Formulation

The topic in question can be formally delineated as follows: We possess a collection
of n unrelated jobs, labeled as J = {J1, J2, . . . , Jn}, that must be executed on a consistently
operational machine commencing at time zero. Time zero marks the beginning of each
work’s eligibility for processing, and the machine is capable of handling only a single job
at any given moment. The time taken for the regular processing of job Jj is denoted as
pj, while the point in time when it is completed is represented with Cj. In mathematics
and many other fields, symmetry typically refers to a kind of invariance or consistency in
which the properties or structure of an object or system remain unchanged when subjected
to certain transformations. When a machine exhibits consistency in its performance and
efficiency across different tasks, we say that this performance is symmetrical. In such cases,
the machine’s performance and efficiency should not be influenced by the nature or scale
of the tasks but should maintain symmetry, i.e., without any noticeable bias. However, due
to the machine’s deterioration, the effective processing duration of job Jj, denoted as pjr,
is determined using the formula pjr = pjr

aj , When scheduled in the rth location within a
sequence, the aging factor is represented by aj > 0. This factor takes into account the impact
of aging on the machine’s efficiency during the processing of a specific job. Moreover,
all jobs are bound by a common due-window within which it is highly preferable to
accomplish their processing. In other words, the efficient processing of each job is crucial
to achieving the overall completion objective. Let d1 (≥0) and d2 (≥d1) stand for the
initiation and termination times of the due-window, respectively, and D = d2 − d1 signifies
the span of the due-window. Both d1 and d2, subsequently leading to D, are considered
decision variables that are negotiated and agreed upon with the customer. It is important to
stress that there are no penalties for jobs that are finished within the allotted time window.
Nevertheless, if job Jj is finished before the due-window’s start time, d1, it will face an
earliness penalty, αEj, which is determined by the degree of early completion. Here, we
designate Ej = max{0, d1 − Cj} as the earliness of job Jj. On the contrary, if task Jj is not
completed by the due-window’s ending time, d2, it will face a tardiness penalty, βTj, which
varies based on the degree of delay. In this case, we designate Tj = max{0, Cj − d2} as
the tardiness of job Jj. These penalties are critical factors to consider when optimizing job
scheduling within the due-window to achieve the most favorable outcomes for both the
customer and the overall operation.

To lessen the effects of machine deterioration, an effective strategy involves executing
a single machine maintenance operation within the planning period. By restoring the
machine to its initial level of efficiency, this maintenance procedure enhances the machine’s
overall performance. Consequently, upon the completion of the maintenance, if this is
the initial job to begin processing on the designated machine, the real time it takes to
process a job, Jj, will match its regular processing time. Let us consider ι + 1 as the index
corresponding to the first job scheduled after the maintenance operation. Consequently,
the real time it takes to process a job, Jj, positioned at the rth position after the maintenance,
is expressed as follows: pjr = pjr

aj , if r ≤ ι, and pjr = pj(r − ι)aj otherwise. Moreover,
the length of the maintenance operation is dependent upon the time when it begins. In
precise terms, the actual maintenance duration is defined as m(t) = b + ct, where b > 0
represents the normal maintenance time, and c > 0 serves as the maintenance factor.

In a multitasking environment, similar to the findings in [5], processing a specific job
may encounter interruptions from other unfinished jobs. The designated task is referred
to as the “primary job”. On the other hand, tasks that have undergone partial processing
due to being interrupted by other jobs but have not yet been fully completed are known as
“waiting jobs”. It is forbidden to preempt a primary job unless it is interrupted by a waiting
job. Consequently, one job finishes before another assumes the role of principal job. This im-



Symmetry 2024, 16, 380 5 of 16

plies that each task needs to be selected as the main task exactly once. The partial processing
of a job that occurs during its interruption of other jobs does not require repetition.

To more intuitively illustrate the importance of multitasking mechanisms and their
differences from non-multitasking scheduling, we can use two diagrams for visual explana-
tion and comparison. Assuming we have three Jobs to process, with their processing times
denoted as p1, p2, p3, respectively, and C[1], C[2], C[3] represents the actual completion times
for each job.

In Figure 2, once Job 1 begins processing, the system continues until this job is com-
pleted before moving on to Job 2, followed by Job 3. This approach does not allow for
interruptions or task-switching during processing, so the overall completion time is the
sum of the three individual task times.

In Figure 3, the actual completion time also needs to consider factors such as the
overhead of job-switching, the time required for interruption-handling, and potential
performance degradation due to increased machine runtime.

Figure 2. Scheduling without multitasking.

Figure 3. Scheduling with multitasking.

Assuming that job Jj, where j = 1, 2, . . . , n, is the rth primary job, we let Sj ⊂ N be the
set of corresponding waiting jobs and p

′
l be the remaining normal processing time for any

job, Jl ∈ Sj. The interruption time of job Jl , which refers to the duration during which job Jl

interrupts job Jj, is represented as gl(p
′
l)k

al , where

k =

{
r, if r < ι,
r − ι, otherwise,

(1)

and 0 ≤ gl(p
′
l) < p

′
l . While processing the primary job, Jj, an additional time, f (|Sj|) is

incurred, representing the switching time for handling the interrupting jobs, with f (0) = 0.
Hence, the cumulative interruption duration throughout the processing of job Jj is denoted
as f (|Sj|) + ∑l∈Sj

gl(p
′
l)k

al , where ∑l∈Sj
gl(p

′
l)k

al represents the aggregated time during
which waiting jobs disrupt job Jj.

Regarding the function gl(p
′
l), we introduce hl(r) for 0 ≤ r ≤ n − 1 to represent the

residual normal processing duration of job Jl following the interruption of r primary jobs.
Thus, hl(r) = hl(r − 1)− gl(hl(r − 1)), 1 ≤ r ≤ n − 1 with hl(0) = pl . We postulate that
gl(.) is formulated in a manner such that hl(r) + s(k) remains positive for all values of
0 ≤ r ≤ n − 1 and k ≥ 0. This ensures that the residual processing duration of job Jl is
guaranteed to be positive whenever it assumes the role of the primary job, taking into
account the switching time as well.

This study’s primary goal is to ascertain the following: (i) the optimal primary job
sequence; (ii) the optimal due-window size and starting time; and (iii) the best moment
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to begin the maintenance process. The aim of this optimization is to minimize the cost
function, Z, defined as the sum of αEj, βTj, γd1, and δD over all jobs j from 1 to n. Here,
α, β, γ, and δ are non-negative real numbers standing for penalties for early completion,
tardiness, the beginning of the due-window, and its dimensions, respectively. Using the
standard three-field notation for scheduling issues, we represent this optimization problem
as 1|mt, ma, pjr = p̃jr

aj |∑n
j=1(αEj + βTj + γd1 + δD), where mt denotes multitasking, ma

represents maintenance operations, and p̃j indicates the processing time during multitasking.

3. Preliminary Analysis

This section aims to establish fundamental structural characteristics of optimal sched-
ules. These characteristics will serve as the cornerstone for devising an effective algorithm
to address the problem at hand.

Lemma 1. The most effective schedule meeting the following conditions exists as follows:
(i) The jobs are completed without interruption starting at time zero;
(ii) The due-window’s start (d1) and end (d2) times are either set to zero or align with the

completion periods of certain designated jobs.

Proof. The proof for (i) is straightforward, as the problem’s objective function is regular,
guaranteeing that it does not decrease with the completion periods of the jobs. The proof
has a resemblance to Lemma 3 in [32].

Due to Lemma 1, we can concentrate on schedules that start from time 0 and do not
include any idle periods. Consequently, we will only seek the optimal schedule among
those where d1 and d2 are either set to 0 or correspond to the completion periods of specific
jobs. Let k1 and k2 represent the indices d1 and d2, respectively. The following Lemma
indicates that the values of d1 and d2 are dependent on the cost parameters and remain
unaffected by the positioning and magnitude of the maintenance endeavor.

Lemma 2. There is a schedule that works well for the issue, in which the beginning time (d1)
and ending times (d2) of the due-window are equivalent to C[k1]

and C[k2]
, respectively, where

k1 = ⌈ n(δ−γ)
α ⌉ and k2 = ⌈ n(β−δ)

β ⌉.

Proof. The proof has a resemblance to Lemma 3 in [32].

Lemma 3. Given xi and yi, two non-negative number sequences (for i = 1, 2, . . . , n), the sum of
their corresponding element-wise products, denoted as ∑n

i=1 xiyi, attains its minimum (maximum)
value when the sequences are monotonically decreasing (increasing) in opposite (similar) directions.

Proof. See page 261 in [33].

The variable xjr is a binary flag indicating the assignment of job j to the rth location on
the machine. If job j has been allocated to the rth position, xjr takes the value of 1; otherwise,
it remains at 0.

Consider an arbitrary but fixed job sequence, [J[1], J[2], · · · , J[n]], that adheres to Lemma 3.
For each job, J[j] in this sequence, where j ranges from 1 to n, let C[j] represent its comple-
tion periods, E[j] its earliness, and T[j] its tardiness. To formulate the expression for the
completion periods of jobs J[j], we need to examine three distinct cases.
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Remark 1. According to the proof process of Lemma 1 by Yang et al. [19], when ι < k, suppose
that there exists a sequence about job j that starts at time zero and contains jobs at the k1th and
k2th locations, such that the following applies: C[k1]

< d1 < C[k1+1] and C[k2]
< d2 < C[k2+1]. Let

∆1 = d1 − C[k1]
, ∆2 = d2 − C[k2]

. The total cost can be formulated as Z = A1∆1 + A2∆2 + A3,
where A1 = (nγ + αι), A2 = (δn + β(k2) − βn) and A3 = b(nγ + αι) + ∑ι

j=1[nγ(1 +

c) + α(j − 1 + cι)] p̃[j] j
a[j] + ∑k1

j=ι+1[nγ + α(j − 1)] p̃[j](j − ι)a[j] + ∑k2
j=k1+1 nδ p̃[j](j − ι)a[j] +

∑n
j=k2+1[β(n − j + 1)] p̃[j](j − ι)a[j] . They are comparable to the case of ι < k1 when the mainte-

nance is carried out in the due-window (i.e., k1 ≤ ι < k2) and when the maintenance is carried out
after the due-window (i.e., ι ≥ k2).

Case 1. ι ≤ k1, i.e., the maintenance operation, is implemented before the due-window.
In this case, given j = 1, · · · , n, the remaining processing time of job J[j] is h[j](j − 1) when
job J[j] becomes a primary job since it has interrupted j − 1 primary jobs. During the
execution of the primary job J[r], the switching time incurred by the n − r jobs within the set
{J[r+1], · · · , J[n]} amounts to f (n − r). Additionally, the interruption time due to these n − r

jobs is determined via the sum
n
∑

l=r+1
g(h[l](r − 1)). Consequently, the total time required to

process job J[r] when it serves as the primary job is equal to h[r](r − 1) +
n
∑

l=r+1
g[l](h[l](r −

1)) + f (n − r), denoted as p̃[r]. As a consequence, the completion periods of jobs J[j] is
determined as follows:

C[j] =

{
∑

j
l=1 p̃[l]l

a[l] j = 1, 2, · · · , ι

∑ι
l=1 p̃[l]l

a[l] + ∑
j
l=ι+1 p̃[l](l − ι)a[l] + b + c ∑ι

l=1 p̃[l]l
a[l] j = ι + 1, ι + 2, · · · , n

, (2)

d1 = (1 + c)
ι

∑
l=1

p̃[l]l
a[l] +

k1

∑
l=ι+1

p̃[l](l − ι)a[l] + b, (3)

D = d2 − d1 =
k2

∑
l=k1+1

p̃[l](l − ι)a[l] , (4)

p̃[j] = h[j](j − 1) + f (n − j) +
n

∑
y=j−1

gy(h[j](j − 1)), (5)

n

∑
j=1

αEj = α[
ι

∑
j=1

(d1 − C[j]) +
k1

∑
j=ι+1

(d1 − C[j])]

= α{
ι

∑
j=1

(j − 1) p̃[j] j
a[j] + (b + c

ι

∑
j=1

p̃[j] j
a[j]) +

k1

∑
j=ι+1

(j − 1) p̃[j](j − ι)a[j]}

= α[
ι

∑
j=1

(j − 1) p̃[j] j
a[j] +

k1

∑
j=ι+1

(j − 1) p̃[j](j − ι)a[j] + ι(b + c
ι

∑
j=1

p̃[j] j
a[j])], (6)

n

∑
j=1

βTj = β
ι

∑
j=1

(n − j + 1) p̃[j](j − ι)a[j] , (7)

The following formula can be used to formulate the goal function:



Symmetry 2024, 16, 380 8 of 16

Minimize Z =
n

∑
j=1

(αEj + βTj + γd1 + δD)

=
n

∑
j=1

{ ι

∑
r=1

[nγ(1 + c) + α(r − 1 + cr)][h[r](r − 1)

+ f (n − r) +
n

∑
y=r+1

gy(h[r](r − 1))]ra[j]xjr

+
k1

∑
r=ι+1

[nγ + α(r − 1)](r − 1)[h[r](r − 1) + f (n − r)

+
n

∑
y=r+1

gy(h[r](r − 1))](r − ι)a[j]xjr

+
k2

∑
r=k1+1

nδ[h[r](r − 1) + f (n − r) +
n

∑
y=r+1

gy(h[j](r − 1))]

(r − ι)a[j]xjr +
n

∑
r=k2+1

β(n − r + 1)[h[r](r − 1)

+ f (n − r) +
n

∑
y=r+1

gy(h[r](r − 1))](r − ι)a[j]xjr

}
+ b(nγ + aι),

subject to
n

∑
r=1

xjr = 1, j = 1, 2, · · · , n,

n

∑
j=1

xjr = 1, r = 1, 2, · · · , n,

xjr = 1 or 0, j, r = 1, 2, · · · , n. (8)

Case 2. k1 ≤ ι < k2, the maintenance is in position ι, and it is implemented in the
due-window. Thus,

C[j] =

{
∑

j
l=1 p̃[l]l

a[l] j = 1, 2, · · · , ι

∑n
l=ι+1 p̃[l](l − ι)a[l] + b + c ∑ι

l=1 p̃[l]l
a[l] j = ι + 1, ι + 2, · · · , n

, (9)

d1 =

{
∑k1

l=1 p̃[l]l
a[l] ι > k1

b + (1 + c)∑ι
l=1 p̃[l]l

a[l] ι = k1
, (10)

D = d2 − d1 = b + c
ι

∑
l=1

p̃[l]l
a[l] +

ι

∑
l=k1+1

p̃[l]l
a[l] +

k2

∑
l=ι+1

p̃[l](l − ι)a[l] , (11)

p̃[j] = h[j](j − 1) + f (n − j) +
n

∑
y=j−1

gy(h[j](j − 1)), (12)

n

∑
j=1

αEj = α
k1

∑
j=1

(d1 − C[j]) = α
k1

∑
j=1

(j − 1) p̃[j] j
a[j] , (13)

n

∑
j=1

βTj = β
ι

∑
j=1

(n − j + 1) p̃[j](j − ι)a[j] , (14)

The following formula can be used to formulate the goal function:
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Minimize Z =
n

∑
j=1

(αEj + βTj + γd1 + δD)

=
n

∑
j=1

{ k1

∑
r=1

[nγ + α(r − 1) + nδc][h[r](r − 1)

+ f (n − r) +
n

∑
y=r+1

gy(h[r](r − 1))]ra[j]xjr

+
ι

∑
r=k1+1

[nδ(1 + c)][h[r](r − 1) + f (n − r)

+
n

∑
y=r+1

gy(h[r](r − 1))](r − ι)a[j]xjr

+
k2

∑
r=k1+1

nδ[h[r](r − 1) + f (n − r) +
n

∑
y=r+1

gy(h[r](r − 1))]

(r − ι)a[j]xjr +
n

∑
r=k2+1

β(n − j + 1)[h[r](r − 1)

+ f (n − r) +
n

∑
y=r+1

gy(h[r](r − 1))](r − ι)a[j]xjr

}
+ nδb,

subject to
n

∑
r=1

xjr = 1, j = 1, 2, · · · , n,

n

∑
j=1

xjr = 1, r = 1, 2, · · · , n,

xjr = 1 or 0, j, r = 1, 2, · · · , n. (15)

Case 3. ι ≥ k2, the maintenance, is in position ι and implemented after the due-window.
Thus,

C[j] =

{
∑

j
l=1 p̃[l]l

a[l] j = 1, 2, · · · , ι

∑ι
l=1 p̃[l]l

a[l] + ∑
j
l=ι+1 p̃[l](l − ι)a[l] + b + c ∑ι

l=1 p̃[l]l
a[l] j = ι + 1, ι + 2, · · · , n

, (16)

d1 =
k1

∑
l=1

p̃[l]l
a[l] , (17)

D = d2 − d1 =
k2

∑
l=k1+1

p̃[l]l
a[j] , (18)

p̃[j] = h[j](j − 1) + f (n − j) +
n

∑
y=j−1

gy(h[j](j − 1)), (19)

n

∑
j=1

βTj = β[
ι

∑
j=k2+1

(n − j + 1) p̃[j] j
a[j] +

n

∑
j=ι+1

(n − j + 1) p̃[j](j − ι)a[j]

+ (n − ι)(b + c
ι

∑
j=1

p̃[j] j
a[j])],

(20)
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The following formula can be used to formulate the goal function:

Minimize Z =
n

∑
j=1

(αEj + βTj + γd1 + δD)

=
n

∑
j=1

{ k1

∑
r=1

[nγ + α(r − 1) + βc(n − ι)][h[r](r − 1)

+ f (n − r) +
n

∑
y=r−1

gy(h[r](r − 1))]ra[j]xjr

+
k2

∑
r=k1+1

[nδ + βc(n − ι)][h[r](r − 1) + f (n − r)

+
n

∑
y=r+1

gy(h[r](r − 1))]ra[j]xjr +
ι

∑
r=k2+1

β[(n − r + 1)

+ c(n − ι)][h[r](r − 1) + f (n − r) +
n

∑
y=r+1

gy(h[r](r − 1))]ra[j]xjr

+
n

∑
r=k2+1

β(n − r + 1)[h[r](r − 1) + f (n − r)

+
n

∑
y=r+1

gy(h[r](r − 1))](r − ι)a[j]xjr

}
+ βb(n − ι),

subject to
n

∑
r=1

xjr = 1, j = 1, 2, · · · , n,

n

∑
j=1

xjr = 1, r = 1, 2, · · · , n,

xjr = 1 or 0, j, r = 1, 2, · · · , n. (21)

Drawing upon the analysis above, we present the optimized Algorithm 1 that follows
as a solution to the 1|mt, ma, pjr = p̃jr

aj |∑n
j=1(αEj + βTj + γd1 + δD) problem.

Algorithm 1 Obtaining the Globally Optimal Sequence Based on Minimum Cost

Step 1. Referring to Lemma 2, identify the best locations for the due-window’s start time as
k1 = ⌈ n(δ−γ)

α ⌉ and the finish time as k2 = ⌈ n(β−δ)
β ⌉.

Step 2. For y, execute from 1 to n.
Step 2.1. hy(0) = py.
Step 2.2. Perform hy(j) = hy(j − 1)− gy(hy(j − 1)) for each j between 1 and n − 1.
Step 2.3. Compute the processing time p̃j using an equation with multitasking operations.

Step 3. Set ι = 1.
Step 4. Resolve the task allocation issue to derive a locally optimal schedule and determine
the total cost associated with it.
Step 5. ι = ι + 1, if ι ≤ n, then proceed to 4. Otherwise, proceed to step 6.
Step 6. The globally optimal sequence refers to the one that incurs the minimal cost associated
with the assignment of due dates.

4. Special Case

This is the case as in [5,19]; the aging factor aj = a, for j = 1, 2, · · · , n and the
interruption function is gy(p

′
y) = Qp

′
y, where 0 < Q < 1, and then hj(l) = (1 − Q)l for

l = 0, 1, · · · , n− 1. The actual durations taken for the processing of job Jj that was scheduled
as a primary job is determined via p̃

′
j = (1 − Q)j−1 pj + f (n − j) + Q(1 − Q)j−1 ∑n

y=j+1 py,
for j = 1, 2, · · · , ι. Then, when ι < k1, our objective function reduces to
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Z =
n

∑
j=1

(αEj + βTj + γd1 + δD) =
n

∑
j=1

Wι p̃
′
[j] + b(nγ + αι)

=
n

∑
j=1

Wι[(1 − Q)j−1 p[j] + f (n − j) + Q(1 − Q)j−1
n

∑
y=j+1

p[y]] + b(nγ + αι).

(22)

where

Wj =


(nγ(1 + c) + α(j − 1 + cι))ja j = 1, 2, · · · , ι,
(nγ + α(j − 1))(j − ι)a j = ι + 1, ι + 2, · · · , k1,
nδ(j − ι)a j = k1 + 1, k1 + 2, · · · , k2,
(β(n − j + 1))(j − ι)a j = k2 + 1, k2 + 2, · · · , n,

(23)

when k1 ≤ ι < k2,

Z =
n

∑
j=1

(αEj + βTj + γd1 + δD) =
n

∑
j=1

Wι p̃
′
[j] + nδb

=
n

∑
j=1

Wι[(1 − Q)j−1 p[j] + f (n − j) + Q(1 − Q)j−1
n

∑
y=j+1

p[y]] + nδb.

(24)

where

Wj =


[nγ + α(j − 1) + nδc]ja j = 1, 2, · · · , k1,
nδ(1 + c)ja j = k1 + 1, k1 + 2, · · · , ι,
nδ(j − ι)a j = ι + 1, ι + 2, · · · , k2,
(β(n − j + 1))(j − ι)a j = k2 + 1, k2 + 2, · · · , n,

(25)

when ι ≥ k2,

Z =
n

∑
j=1

(αEj + βTj + γd1 + δD) =
n

∑
j=1

Wι p̃
′
[j] + bβ(n − ι)

=
n

∑
j=1

Wι[(1 − Q)j−1 p[j] + f (n − j) + Q(1 − Q)j−1
n

∑
y=j+1

p[y]] + bβ(n − ι).

(26)

where

Wj =


[nγ + α(j − 1) + βc(n − ι)]ja j = 1, 2, · · · , k1,
(nδ + βc(n − ι))ja j = k1 + 1, k1 + 2, · · · , k2,
β(n − j + 1 + c(n − ι))ja j = k2 + 1, k2 + 2, · · · , ι,
(β(n − j + 1))(j − i)a j = ι + 1, ι + 2, · · · , n,

(27)

Drawing upon the preceding analysis, we present the following optimized Algorithm
2 as a solution to the 1|mt, ma, pjr = p̃jr

aj |∑n
j=1(αEj + βTj + γd1 + δD) problem.

Below, we provide an example to demonstrate the Algorithm 2 for problem
1|mt, ma, pjr = p̃jra|∑n

j=1(αEj + βTj + γd1 + δD).

Example 1. There are n = 7 jobs. We let α = 4, β = 30, γ = 15, and δ = 16. The aging
factor, basic maintenance time, and maintenance factor are a = 0.8, b = 2 and c = 0.1, re-
spectively, according to Lemma 2. We can calculate that k1 = ⌈ n(δ−γ)

α ⌉ = ⌈ 7(16−5)
4 ⌉ = 2 and

k2 = ⌈ n(β−δ)
β ⌉ = ⌈ 7(30−16)

30 ⌉ = 4.
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Algorithm 2 Globally Optimal Sequence with Job-Independent Aging and Minimum Cost

Step 1. Referring to Lemma 2, identify the best locations for the due-window’s start time as
k1 = ⌈ n(δ−γ)

α ⌉ and the finish time as k2 = ⌈ n(β−δ)
β ⌉.

Step 2. For y, execute from 1 to n.
Step 2.1. hy(0) = py.
Step 2.2. Perform hy(j) = hy(j − 1)− gy(hy(j − 1)) for each j between 1 and n − 1.
Step 2.3. Compute the processing time p̃j using an equation with multitasking operations.

Step 3. Set ι = 1.
Step 4. For j = 1, 2, · · · , n calculate the Wj.
Step 5. Put the biggest job on the position with the lowest Wj, the next job on the position
with the next-smallest Wj, and so on. Then, the most efficient sequence of jobs and the value
of the function Z are obtained via Lemma 3.
Step 6. ι = ι + 1, if ι ≤ n, proceed to 4. Otherwise, proceed to step 7.
Step 7. The globally optimal sequence is characterized by the lowest cost associated with
due date assignments.

The usual processing durations are p1 = 2, p2 = 4, p3 = 10, p4 = 12, p5 = 9, p6 = 11,
p7 = 13, based on Hall, Leung, and Li [5]. The interruption factor Q = 0.1, switching
function is f (|Sj|) = |Sj|, with the expression p̃

′
j = (1 − Q)j−1 pj + f (n − j) + Q(1 −

Q)j−1 ∑n
y=j+1 py, and the actual durations taken for processing are as follows:

p̃
′
1 = 13.9, p̃

′
2 = 13.55, p̃

′
3 = 15.75, p̃

′
4 = 14.15, p̃

′
5 = 9.48, p̃

′
6 = 8.26, p̃

′
7 = 6.91.

We will tackle each case individually now:
Case 1 (ι < 2 the maintenance is implemented before the due-window)

According to (23), we have Wj = (115.90, 109.00, 195.00, 269.72, 272.83, 217.43, 125.79). The
times of the beginning and ending within the due-window framework are d1 = 49.32 and
d2 = 92.80, respectively. Via step 5 of Algorithm 2, we obtain the locally best job scheduling
(4, 3, 2, 6, 7, 5, 1). The total solution in Case 1 is Z = 14140.17.

Case 2 (2 ≤ ι < 4, the maintenance is in position i and implemented in the due-
window)
For ι = 2, according to (25), we have Wj = (116.20, 209.28, 112.00, 195.00, 216.74, 181.89, 108.72).
The times of the beginning and ending within the due-window framework are d1 = 28.29
and d2 = 79.77, respectively. Via step 5 of Algorithm 2, we obtain the locally best job
scheduling (1, 6, 4, 5, 7, 2, 3). The total solution in Case 1 is Z = 12765.93. For ι = 3,
Wj = (116.20, 209.28, 296.69, 112.00, 156.70, 144.49, 90.94), d1 = 28.29, d2 = 70.17, the locally
best job scheduling is (1, 6, 7, 4, 5, 2, 3). The total solution in Case 1 is Z = 12078.68.

Case 3 (ι ≥ 4, the maintenance is in position i, and it is implemented after the due-
window)
For ι = 4, 5, 6, and 7, we repeat the procedure as in the above case. Table 2 summarizes the
results for each possible site for the maintenance operation.

As shown in Table 2, the optimal solution on a global scale is obtained in Case 3 for i = 4.
As described in Cases 1 and 2, we have Wj = (116.20, 209.28, 296.69, 112.00, 156.70, 144.49, 90.94),
and the job sequence is (1, 6, 7, 4, 5, 2, 3). The total solution in Case 2 is Z = 12078.68.

Table 2. The optimal sequences of jobs and their corresponding total costs for every conceivable
placement of the MA.

MA Position (d1, d2) Job Sequence Total Cost

1 (49.32, 92.80) (4, 3, 2, 6, 7, 5, 1) 14,140.17
2 (28.29, 79.77) (1, 6, 4, 5, 7, 2, 3) 12,765.93
3 (28.29, 70.17) (1, 6, 7, 4, 5, 2, 3) 12,078.68
4 (30.05, 70.90) (2, 5, 6, 7, 4, 1, 3) 12,477.66
5 (37.49, 81.26) (1, 2, 5, 6, 7, 4, 3) 14,087.38
6 (38.36, 82.13) (4, 1, 5, 7, 6, 2, 3) 16,169.45
7 (39.95, 83.72) (3, 1, 5, 7, 6, 2, 4) 17,731.70
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5. Numerical Results

During the subsequent numerical investigations, we first described the design of
the experiments and then compared the cost between multitasking and non-multitasking
for common due date assignment problems. In order to connect with previous studies
and demonstrate the progress of this research, the design and parameter settings of the
numerical experiments are similar to those in [5,29]. The numerical tests were conducted
using the following parameter settings: The quantity of jobs was fixed at the set values
of (10, 20, 40, 80). The job-processing duration was created at random using the discrete
uniform distribution [5, 20]. α, β, γ, δ, and b were chosen randomly from the discrete
uniform distribution [1, 5]. Assessing how distinct values of Q, a and c impact the multi-
tasking cost, we chose the values from (0.15, 0.25), (0.2, 0.4), and (0.1, 0.3), respectively.
We used (Q, a, c) to represent the choice. Thus, we had eight situations: (0.15, 0.2, 0.1),
(0.15, 0.2, 0.3), (0.15, 0.4, 0.1), (0.15, 0.4, 0.3), (0.25, 0.2, 0.1), (0.25, 0.2, 0.3), (0.25, 0.4, 0.1),
and (0.25, 0.4, 0.3). We generated 100 problem instances. Thereby, we tested a total of
100 × 4 × 8 = 3200 instances.

Consider Z and Z∗ the optimal total cost obtained for the problem 1|mt, ma, pjr =
p̃jra|∑n

j=1(αEj + βTj +γd1 + δD) and 1|ma, pjr = p̃jra|∑n
j=1(αEj + βTj +γd1 + δD), respec-

tively. Let “avg” represent the average quantity of (Z−Z∗)
Z∗ × 100%, over the 100 instances for

each (Q, a, c) combination. If the quantity is negative, it means that multitasking produces
value, whereas if it is positive it means that multitasking increases the cost. “Max” and
“Min” represent the maximum and minimum of the quantity over 100 problem instances,
respectively.

The following conclusions were drawn from the data in Tables 2 and 3.

1. In Table 3, we can see that when n ≤ 30, the average percentage cost is negative; when
n ≤ 50, both the average and minimum percentage costs are negative.
The negative values for both the average and minimum percentage costs shown in
Table 3 indicate that, within these specific ranges of task quantities (n), the multitasking
approach achieves cost savings compared to the classical method. Typically, in cost
comparisons, the savings achieved via one method relative to another are expressed
as a percentage. If the cost of the multitasking approach is lower than that of the
classical method, this difference is represented as a negative percentage.
When n ≤ 30, the negative average percentage cost suggests that multitasking is
generally more cost-effective and efficient than the classical method within this range
of task quantities.
The negative minimum cost further implies that, within the considered range of tasks,
there exists at least one task combination or scenario where the cost of multitasking is
lower than that of the classical approach. This also means that, if our goal is to find the
most cost-saving task allocation strategy, the multitasking approach is a worthwhile
option to consider.

2. In Table 3, when n > 20, the average percentage cost and the minimum percentage
cost will increase with the increase in the number of jobs amounts to n for all the
combinations (Q, a, c). This means that the larger the task volume, the higher the cost
required for multitasking.

3. In Table 3, when the values of Q and c are fixed (i.e., the interruption and maintenance
factor), the average percentage cost will decrease with the increase in the a value; when
the values of a and c are fixed (i.e., the aging and maintenance factor), the proportion of
multitasking’s cost as a percentage will decrease with the value of Q increasing. For ex-
ample, for the combinations (0.15, 0.2, 0.1) and (0.25, 0.2, 0.25), when n = 10, the val-
ues of “Ave”, “Max”, and “Min” will decrease from (−10.39%, 13.57%,−31.66%) to
(−29.10%,−8.45%,−53.32%).

4. When n < 20, we get the exact opposite of n > 20. In Table 4, the average percentage
cost and the minimum percentage cost will decrease with the increase in the quantity
of jobs amounting to n. This indicates that there are fewer than 20 jobs. In this case,
multitasking is more effective.
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5. In Table 4, the value of a is fixed; Q = 0.15. Then, as the c value increases, so do the
minimum and average percentage costs. For example, for combinations (0.15, 0.2, 0.1)
and (0.15, 0.2, 0.3), when n = 15, the values of “Ave” and “Min” will increase from
(−13.61%,−39.85%) to (−13.01%,−39.68%). This indicates that, in this situation, as the
number of job switches increases, the total cost of multitasking also increases accordingly.

Although this study has demonstrated the effectiveness of the algorithm under specific
parameter settings, there are certain limitations. Specifically, variations in parameter
settings during experiments may have an impact on the algorithm’s results. Due to the
complexity of the parameter space, we were unable to conduct comprehensive tests on all
possible parameter combinations. In future research, further exploration of the specific
effects of different parameter settings on algorithm performance can provide more accurate
guidance for practical applications.

Table 3. The price of multitasking for issue 1|mt, ma, pjr = p̃jra|∑n
j=1(αEj + βTj +γd1 + δD) (n ≥ 10).

(Q, a, c) n Ave Max Min (Q, a, c) Ave Max Min (Q, a, c) Ave Max Min

(0.15, 0.2, 0.1)

10 −10.39 13.57 −31.66

(0.15, 0.2, 0.3)

−8.56 18.07 −44.71

(0.15, 0.4, 0.1)

−6.43 14.67 −34.09
20 −13.04 0.63 −37.00 −14.79 3.32 −41.82 −11.86 0.50 −30.85
30 −9.26 8.08 −33.75 −7.51 8.85 −31.34 −8.05 5.59 −29.84
50 12.65 30.46 −8.80 12.65 31.79 −6.52 15.08 28.23 −9.15
70 40.47 55.00 25.08 39.33 55.43 24.98 44.05 57.40 24.54
90 70.07 85.31 51.42 69.42 92.46 49.33 73.23 89.12 56.82
100 85.40 111.53 63.37 83.17 102.45 57.96 89.20 115.97 67.37

(0.15, 0.4, 0.3)

10 −9.04 14.54 −35.45

(0.25, 0.2, 0.1)

−29.10 −8.45 −53.32

(0.25, 0.2, 0.3)

−25.85 −7.13 −55.52
20 −12.88 2.33 −36.79 −30.65 −16.02 −54.41 −30.74 −11.88 −52.04
30 −6.79 8.32 −24.13 −21.61 −1.58 −46.63 −21.49 −6.25 −38.86
50 14.29 28.19 −1.70 2.74 18.29 −13.27 1.42 20.47 −13.15
70 41.75 62.67 21.99 31.52 49.08 13.26 31.43 47.32 12.66
90 73.56 87.66 59.00 62.15 84.98 38.67 61.89 78.64 44.79
100 86.50 106.85 64.64 79.25 97.38 60.46 78.53 104.72 63.29

(0.25, 0.4, 0.1)

10 −27.30 −7.84 −53.10

(0.25, 0.4, 0.3)

−27.48 −7.38 −55.67
20 −29.84 −13.87 −48.85 −28.09 −15.85 −48.31
30 −20.71 −7.38 −38.19 −20.26 −5.95 −34.05
50 6.50 18.86 −8.29 5.69 18.23 −10.24
70 35.88 49.42 18.72 34.04 49.24 18.29
90 67.37 88.29 48.72 64.42 83.61 47.50
100 79.75 97.75 60.63 80.60 99.86 65.75

Table 4. The price of multitasking for issue 1|mt, ma, pjr = p̃jra|∑n
j=1(αEj + βTj +γd1 + δD) (n ≤ 20).

(Q, a, c) n Ave Max Min (Q, a, c) Ave Max Min (Q, a, c) Ave Max Min

(0.15, 0.2, 0.1)

9 −8.65 11.60 −33.00

(0.15, 0.2, 0.3)

−6.61 19.25 −32.89

(0.15, 0.4, 0.1)

−8.31 16.80 −34.14
11 −11.48 8.22 −42.03 −9.05 9.53 −34.97 −9.87 7.59 −38.98
13 −12.34 6.01 −39.63 −12.03 4.44 −38.21 −12.92 2.24 −37.23
15 −13.61 4.30 −39.85 −13.01 3.15 −39.68 −13.02 2.94 −48.44
17 −14.61 3.41 −46.01 −13.40 3.64 −43.92 −13.67 3.71 −38.49
19 −16.46 2.76 −51.58 −14.87 2.30 −45.33 −14.34 0.02 −41.64
20 −13.79 5.50 −40.91 −14.01 6.65 −39.83 −13.66 1.20 −37.36

(0.15, 0.4, 0.3)

9 −8.01 12.95 −33.65

(0.25, 0.2, 0.1)

−26.54 −1.48 −53.80

(0.25, 0.2, 0.3)

−22.55 2.55 −57.86
11 −9.38 11.79 −34.31 −29.05 −8.09 −60.81 −27.76 −6.92 −60.63
13 −11.22 6.18 −36.11 −31.00 −13.38 −55.33 −28.51 −11.19 −55.64
15 −11.78 8.15 −33.42 −31.77 −14.70 −62.25 −30.31 −12.84 −60.40
17 −12.57 3.59 −38.25 −32.38 −8.64 −55.89 −31.63 −11.32 −60.23
19 −13.49 −0.57 −37.80 −33.08 −16.45 −56.56 −31.71 −14.90 −61.79
20 −12.05 3.98 −35.03 −29.76 −12.85 −52.93 −29.01 −15.94 −53.85

(0.25, 0.4, 0.1)

9 −23.84 −3.09 −49.02

(0.25, 0.4, 0.3)

−26.10 −5.61 −53.72
11 −27.88 −7.88 −60.76 −28.64 −10.69 −55.51
13 −29.98 −7.85 −55.17 −29.22 −12.21 −58.03
15 −30.48 −17.64 −54.68 −30.41 −11.23 −54.73
17 −30.92 −16.19 −53.31 −31.30 −15.66 −55.38
19 −31.83 −17.54 −53.96 −31.58 −14.95 −53.89
20 −29.58 −12.18 −53.21 −29.40 −13.28 −51.23
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6. Conclusions and Further Research

This work considered aging impacts and deteriorating maintenance while scheduling
multitasking and due-window assignments on a single system. The aim was to mini-
mize a specific objective function related to the completion times of jobs in a multitasking
environment. Subsequently, we will compare the value of this objective function in this
environment with that in a non-multitasking context in order to evaluate whether multi-
tasking can lead to higher processing efficiency compared to non-multitasking scenarios.
In the particular instance of this issue, we also get an algorithm with lower time complexity.
In addition, We demonstrate how the suggested Algorithm 1 operates using a numerical
example. The computational results show that, for the problem we studied, the effect of
multitasking is superior to non-multitasking when the number of concurrent tasks, n, does
not exceed 30.

Further research may focus on the following: (i) extending the model and algorithm we
studied to parallel machines or other machine environments [34]; (ii) applying a heuristic
approach rooted in the Genetic Algorithm (GA) to tackle the problem addressed in this
paper [35]; and (iii) resource allocation scheduling problems [21].
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