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1. Introduction and Motivations

Hermite polynomials, among the oldest and most valuable orthogonal special func-
tions from the classical era, have found considerable application. It is the set of solutions to
the differential equations that correspond to the quantum mechanical Schrödinger equation
with an oscillator of harmonics. As a bonus, when studying classical boundary-value
problems in parabolic regions with parabolic coordinates, these polynomials play a crucial
role. Hermite polynomials can also be found in the field of signal processing as Hermitian
wavelets in the wavelet transform analysis probability, similar to the Edgeworth series as
well as their relation to Brownian motion, combinatorics as a manifestation of an Appell
series observing the umbral calculus and numerical computation. For further information
concerning Hermite polynomials and their applications, the interested reader may consult
the research papers [1–11].

In [12,13], Dattoli and his co-authors recognized the applications of Hermite polyno-
mials, which have been utilized to address optical beam transport and quantum mechanics
challenges. Within this context, generalized harmonic oscillator eigenfunctions have been
provided, as well as the requisite annihilation creation operator algebra.

Currently, consider how the Hermite polynomials with three variables Hn(x, y, z)
are constructed and defined as a generating function as well as a series. Following is a
generating function that produces the three-variable Hermite polynomials Hn(x, y, z) [14]:

e(xt+yt2+zt3) =
∞

∑
n=0

Hn(x, y, z)
tn

n!
, (1)
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along with the definition of a series [14]:

Hn(x, y, z) = n!
[n/3]

∑
k=0

zk Hn−3k(x, y)
k!(n − 3k)!

. (2)

In the case of three-variable Hermite polynomials Hn(x, y, z), the differential recurrence
relations are provided [14]:

∂

∂x
Hn(x, y, z) = nHn−1(x, y, z), n ≥ 1 , (3)

∂2

∂x2 Hn(x, y, z) = n(n − 1)Hn−2(x, y, z), n ≥ 2, (4)

∂

∂y
Hn(x, y, z) = n(n − 1)Hn−2(x, y, z), n ≥ 2, (5)

∂

∂z
Hn,q(x, y, z) = n(n − 1)(n − 2)Hn−3(x, y, z), n ≥ 3, (6)

∂2

∂x2 Hn(x, y, z) =
∂

∂y
Hn(x, y, z) (7)

and
∂3

∂x3 Hn(x, y, z) =
∂

∂z
Hn(x, y, z). (8)

In [14], the differential equation for the Hermite polynomials of the 3-variable is given:(
3z

∂3

∂x3 + 2y
∂2

∂x2 + x
∂

∂x
− n

)
Hn(x, y, z) = 0. (9)

Quantum calculus, or q-calculus for short, is one of the most important generalizations
of ordinary calculus due to the fact that it has been demonstrated that it is more relevant to
the study of quantum mechanics as well as other subjects of science such as mathematical
numerology, combinatorics, orthogonal polynomials and so on. At first, the framework
of q-calculus was put forward by Jackson [15], then continued by others. The debut of
q-calculus allows for the emergence and investigation of the q-analogues that represent
different elementary and special functions. Recently, several scientists have examined and
studied certain special polynomials associated with q-calculus [16–24].

The q-Hermite polynomials serve a purpose in various fields of mathematics and
science, such as non-commutative probability, quantum physics and combinatorics. The
concept of q-Hermite polynomials arose from the interest of many academics in the q
analogue of these polynomials; we also refer to published findings in particular occurrences
(see, for example, [25–33] and any mentions within).

In 2021, Raza et al. [31] introduced and characterized the 2-variable q-Hermite polyno-
mials (abbreviated as 2VqHP) Hn,q(x, y), adopting the subsequent generating function:

eq(xt)eq(yt2) =
∞

∑
n=0

Hn,q(x, y)
tn

[n]q!
, (10)

along with the definition of a series [31]

Hn,q(x, y) = [n]q!
[n/2]

∑
k=0

xn−2kyk

[n − 2k]q![k]q!
. (11)
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The 2VqHP Hn,q(x, y) had a subsequent operational definition [31]:

Hn,q(x, y) = eq(yD2
q,x)xn. (12)

We were motivated by the applications of 3-variable Hermite polynomials in various
branches of engineering and science [2]. Likewise, multi-variable Hermite polynomials
have been frequently employed in the investigation of charged-beam transport challenges
in traditional mechanics, along with the calculation of quantum-phase-space mechanics,
and umbral techniques have been extensively used to analyze their properties. Also, we
were motivated by the work of Dattoli [14] on the characteristics of the 3-variable Hermite
polynomials and their generalizations [9,12,13]. Further, we were motivated by the several
applications of quantum calculus in modeling quantum computing, non-commutative
probability, combinatorics, functional analysis, mathematical physics, approximation theory
and from the work of Raza and her co-authors [31], introducing 2-variable q-Hermite
polynomials and studying their properties.

In this current article, we present the q-Hermite polynomials in three variables and
describe them using our findings. We conduct research on some of their characteristics,
including their generating function, series definition, recurrence relations, differential
equations and operational identity. Also, we generate some surface plots of q-Hermite
polynomials with three variables Hn,q(x, y, z) by Matlab. In conclusion, many of the
concepts and results established in this work are original and are different from the well-
known results in the literature.

2. Definition of q-Hermite Polynomials with Three Variables

In this section, we will introduce the concept of q-Hermite polynomials with three
variables along with their series definition. Below, we will clearly describe the idea of how
to define q-Hermite polynomials with three variables.

First, we recall some fundamental concepts, symbols and conclusions from our find-
ings in quantum mathematics, which are necessary for the rest of this paper’s discussion.
For each complex number γ, we can define its q-analogue as [1,4,16]:

[γ]q =
1 − qγ

1 − q
=

γ

∑
k=1

qk−1, 0 < q < 1. (13)

The presented quantity for the q-factorial is [1,4,16]:

[r]q! =

{
∏r

t=1[t]q, 0 < q < 1, r ≥ 1
1, r = 0.

Here, we give a definition of the Gauss q-binomial value [1,4,16]:[
t
r

]
q
=

[t]q!
[t − r]q![r]q!

, r = 0, 1, . . . , t. (14)

The definition of the elevating and lowering q-powers is given as [1,4,16]:

(x ± d)r
q =

r

∑
s=0

[
r
s

]
q

q(
s
2)xr−s(±d)s,

where
[

r
s

]
q

is provided by equation (14). The definitions of a pair of q-exponential expres-

sions are as follows (see [1,4,16]):

eq(x) =
∞

∑
n=0

xn

[n]q!
, 0 < q < 1 (15)
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and

Eq(x) =
∞

∑
n=0

q(
n
2) xn

[n]q!
, 0 < q < 1. (16)

Following is the relationship between the previous two q-exponential functions [1,4,16]:

eq(x)Eq(−x) = 1. (17)

We direct the reader to [1,16] and the references therein for more information.
According to [34], a q-derivative with respect to x for function f is described by the

subsequent formula:

Dq,x f (x) =
f (qx)− f (x)

qx − x
, 0 < q < 1, x ̸= 0.

We possess, for particularly
Dq,x xn = [n]qxn−1. (18)

The following are the derivatives of the q-exponential functions that correspond to the
mth order (see [34]):

Dm
q,xeq(αx) = αmeq(αx), m ∈ N (19)

and
Dm

q,xEq(αx) = αmq(
m
2 )Eq(αqmx), m ∈ N,

where notation Dm
q,x indicates the mth order q-derivative relative to x. Moreover, we ob-

served that [34]:

Dq,x
(

f (x)g(x)
)
= f (x)Dq,xg(x) + g(qx)Dq,x f (x). (20)

The q-partial derivative of the exponential eq(xt2) with regard to t is given as [31]:

Dq,t eq(yt2) = yt eq(yt2) + qyt eq(qyt2). (21)

Based on Equations (1) and (10), we construct the q-Hermite polynomials of three
variables Hn,q(x, y, z) with the following generating function:

eq(xt) eq(yt2)eq(zt3) =
∞

∑
n=0

Hn,q(x, y, z)
tn

[n]q!
. (22)

Expanding the left-hand aspect of Equation (22) by utilizing Equation (15), we obtain

∞

∑
n=0

∞

∑
s=0

∞

∑
r=0

xnyszr tn+2s+3r

[n]q![s]q![r]q!
=

∞

∑
n=0

Hn,q(x, y, z)
tn

[n]q!
,

and after utilizing the subsequent series rearrangement method [1]:

∞

∑
n=0

∞

∑
m=0

A(m, n) =
∞

∑
n=0

[n/2]

∑
m=0

A(m, n − 2m), (23)

we obtain
∞

∑
n=0

[n/2]

∑
s=0

xn−2sys tn

[n − 2s]q![s]q!

∞

∑
r=0

zr t3r

[r]q!
=

∞

∑
n=0

Hn,q(x, y, z)
tn

[n]q!
,
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and on utilizing Equation (11), we obtain

∞

∑
n=0

∞

∑
r=0

zr Hn,q(x, y) tn+3r

[r]q![n]q!
=

∞

∑
n=0

Hn,q(x, y, z)
tn

[n]q!
,

which, by employing the next series rearrangement method [1]:

∞

∑
n=0

∞

∑
m=0

A(m, n) =
∞

∑
n=0

[n/3]

∑
m=0

A(m, n − 3m), (24)

gives
∞

∑
n=0

[n/3]

∑
r=0

zr Hn−3r,q(x, y)tn

[r]q![n − 3r]q!
=

∞

∑
n=0

Hn,q(x, y, z)
tn

[n]q!
,

or equivalently, by using Equation (11), gives

∞

∑
n=0

[n/3]

∑
r=0

[(n−3r)/2]

∑
k=0

zrxn−3r−2kyktn

[r]q![k]q![n − 3r]q![n − 3r − 2k]q!
=

∞

∑
n=0

Hn,q(x, y, z)
tn

[n]q!
.

Therefore, when the corresponding values of t from each aspect are compared, we ac-
quire the series definition of 3-variable q-Hermite polynomials (abbreviated as 3VqHP)
Hn,q(x, y, z) as follows:

Definition 1.

Hn,q(x, y, z) = [n]q!
[n/3]

∑
r=0

zr Hn−3r,q(x, y)
[r]q![n − 3r]q!

, (25)

or, equivalently

Hn,q(x, y, z) = [n]q!
[n/3]

∑
r=0

[(n−3r)/2]

∑
k=0

zrxn−3r−2kyk

[r]q![k]q![n − 3r]q![n − 3r − 2k]q!
, (26)

where [ . ] denotes the greatest integer function.

Remark 1. (a) It is easy to see that if we take x = z = 0 and x = y = 0 in Equation (22), then

Hn,q(0, y, 0) =
[n]q!y[n/2]

[n/2]!
and Hn,q(0, 0, z) =

[n]q!z[n/3]

[n/3]!
, n = 0, 1, 2 . . .

Moreover, the subsequent conditions for boundaries are derived by inserting y = 0, z = 0,
and z = 0 into Formula (22) one by one:

Hn,q(x, 0, 0) = xn and Hn,q(x, y, 0) = Hn,q(x, y). (27)

(b) Taking y = 0 in Equation (22), we can obtain the subsequent series immediately:

Hn,q(x, z) = [n]q!
[n/3]

∑
k=0

xn−3kzk

[n − 3k]q![k]q!
, n = 0, 1, 2 . . . . (28)

(c) Further, taking x = [2]qx, y = −1 and z = 0 in Equation (22) gives [25]:

Hn,q
(
[2]qx,−1, 0

)
= Hn,q(x). (29)

Below, some 3D surface diagrams of 3-variable q-Hermite polynomials Hn,q(x, y, z)
are plotted via Matlab to present their geometric appearance (see Figure 1; for n = 1, 2, 3, 4
and q = 1

2 , 1
3 ).
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3. Auxiliary Results and Properties for 3VqHP

In this section, we will introduce some auxiliary results and characteristics for q-
Hermite polynomials with three variables. Also, we establish recurrence connections and
differential equations for 3VqHP Hn,q(x, y, z).

Currently, replacing x, y and z by x1 + x2, y1 +y2 and z1 + z2, respectively, in Equation (22)
gives the following new generating functions for Hn,q(x1 + x2, y, z), Hn,q(x, y1 + y2, z) and
Hn,q(x, y, z1 + z2):

Proposition 1. The following new generating functions for Hn,q(x1 + x2, y, z), Hn,q(x, y1 + y2, z)
and Hn,q(x, y, z1 + z2) hold true:

eq(x1t) eq(x2t)eq(yt2)eq(zt3) =
∞

∑
n=0

Hn,q(x1 + x2, y, z)
tn

[n]q!
, (30)

eq(xt) eq(y1t)eq(y2t2)eq(zt3) =
∞

∑
n=0

Hn,q(x, y1 + y2, z)
tn

[n]q!
(31)

and

eq(xt) eq(yt2)eq(z1t3)eq(z2t3) =
∞

∑
n=0

Hn,q(x, y, z1 + z2)
tn

[n]q!
. (32)

We now establish the series expressions for Hn,q(x1 + x2, y, z), Hn,q(x, y1 + y2, z) and
Hn,q(x, y, z1 + z2) as follows:

Theorem 1. The following series expressions for Hn,q(x1 + x2, y, z), Hn,q(x, y1 + y2, z) and
Hn,q(x, y, z1 + z2) hold true:

Hn,q(x1 + x2, y, z) =
n

∑
k=0

[
n
k

]
q
Hk,q(x1, y, z)xn−k

2 , (33)

Hn,q(x, y1 + y2, z) = [n]q!
[n/2]

∑
k=0

Hk,q(x, , y1, z)yn−2k
2

[k]q![n − 2k]q!
(34)

and

Hn,q(x, y, z1 + z2) = [n]q!
[n/3]

∑
k=0

Hk,q(x, y, z1)zn−3k
2

[k]q![n − 3k]q!
. (35)

Proof. Dilating the left-hand aspect of Equation (30) by utilizing Equation (15), we obtain

∞

∑
n=0

xn
2

tn

[n]q!

∞

∑
k=0

Hk,q(x1, y, z)
tk

[k]q !
=

∞

∑
n=0

Hn,q(x1 + x2, y, z)
tn

[n]q!
.

By examining the corresponding powers of t on each aspect of the above equation and
using Equation (14),we obtain claim (33).

Similar to obtaining the series expression (33), by utilizing Equation (15) to expand the
left-hand aspect of Equations (31) and (32), correspondingly, and then using the identical
procedures applied to prove Equation (33), we obtain the claims (34) and (35). The proof of
Theorem 1 is completed.

From Equation (33), we deduce the following result immediately:

Corollary 1. The following series expressions for Hn,q(x1 + x2, y1 + y2, z) and Hn,q(x1 + x2, y1 +
y2, z1 + z2) hold true:

Hn,q(x1 + x2, y1 + y2, z) =
n

∑
k=0

[
n
k

]
q
Hk,q(x1, y1, z1)Hn−k,q(x2, y2) (36)
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and

Hn,q(x1 + x2, y1 + y2, z1 + z2) =
n

∑
k=0

[
n
k

]
q
Hk,q(x1, y1, z1)Hn−k,q(x2, y2, z2). (37)

Remark 2. Formula (25) makes it easy to verify that

Hn,q(ax, a2y, a3z) = anHn,q(x, y, z), (38)

in which a is a fixed value.

The subsequent theorem is used to prove the q-partial derivatives for 3VqHP Hn,q(x, y, z):

Theorem 2. The following q-partial derivatives for Hn,q(x, y, z) hold true:

Dq,x Hn,q(x, y, z) = [n]qHn−1,q(x, y, z), n ≥ 1, (39)

Dq,y

(
Hn,q(x, y, z)

)
= [n]q[n − 1]qHn−2,q(x, y, z), n ≥ 2, (40)

Dq,z Hn,q(x, y, z) = [n]q[n − 1]q[n − 2]qHn−3,q(x, y, z), n ≥ 3, (41)

Dm
q,x

(
Hn,q(x, y, z)

)
=

[n]q!
[n − m]q!

Hn−m,q(x, y, z), 0 ≤ m ≤ n, (42)

Dm
q,y

(
Hn,q(x, y, z)

)
=

[n]q!
[n − 2m]q!

Hn−2m,q(x, y, z), 0 ≤ m ≤ n
2

(43)

and

Dm
q,z

(
Hn,q(x, y, z)

)
=

[n]q!
[n − 3m]q!

Hn−3m,q(x, y, z), 0 ≤ m ≤ n
3

. (44)

Proof. Applying the q-partial derivative of each aspect of Equation (22) with regard to x
and plugging it into Equation (19) for m = 1, we receive

teq(xt)eq(yt2)eq(zt3) =
∞

∑
n=0

Dq,x Hn,q(x, y, z)
tn

[n]q!
.

Applying Equation (22) on the left part of Equation (3) provides us

∞

∑
n=1

Hn−1,q(x, y, z)
tn

[n − 1]q!
=

∞

∑
n=0

Dq,x Hn,q(x, y, z)
tn

[n]q!
.

Therefore, when the corresponding values of t from each aspect are compared, we obtain
assertion (39).

After that, we take the q-partial derivative of each aspect of Equation (22) with regard
to y and z and then repeat the procedures in the equation’s proof (39), to obtain assertions
(40) and (41), respectively.

Once more, using the techniques from obtaining Equation (39), we take the 2nd or-
der q-partial derivative for two aspects of Equation (22) with regard to x, then utilizing
Equation (19), we obtain

D2
q,x Hn,q(x, y, z) = [n]q[n − 1]qHn−2,q(x, y, z), n ≥ 2. (45)

Likewise, taking the mth degree q-partial derivative of each aspect of Equation (22) with
regard to x, then via Equation (19) and repeating the previous steps of proving Equation (39),
we obtain assertion (42).

In the same way, if we take the mth order q-partial derivatives of each aspect of
Equation (22) with regard to y and z, then continue the exact same procedure, we receive
assertions (43) and (44). The proof of Theorem 2 is completed.

Once more, for m = 2, 3 in Equation (42) and utilizing Equations (40), (41) and (45),
we obtain the subsequent q-partial differential equations for 3VqHP Hn,q(x, y, z):
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Corollary 2. The q-partial differential equations for 3VqHP Hn,q(x, y, z) are listed below:

D2
q,x Hn,q(x, y, z) = Dq,yHn,q(x, y, z) (46)

and
D3

q,x Hn,q(x, y, z) = Dq,z Hn,q(x, y, z). (47)

Following that, we set up the recurrence relations for 3VqHP Hn,q(x, y, z). To accom-
plish this, we have to show the subsequent lemma:

Lemma 1. The q-partial derivative of eq(zt3) with regard to t can be expressed by the following
recurrence relation:

Dq,t eq(zt3) = zt2 eq(zt3) + qzt2 eq(qzt3) + q2zt2 eq(q2zt3), (48)

where the operator Dq,t is defined as Formula (2).

Proof. By (18) and (15), we obtain

Dq,t eq(zt3) =
∞

∑
n=0

zn[3n]qt3−1

[n]q!
. (49)

Using (13), we obtain
[3n]q
[n]q

= 1 + qn + q2n. (50)

Hence, combining (49) and (50) gives

Dq,t eq(zt3) =
∞

∑
n=1

zn(1 + qn + q2n)t3n−1

[n − 1]q!

=
∞

∑
n=0

zn+1t3n+2

[n]q!
+

∞

∑
n=0

(qz)n+1t3n+2

[n]q!
+

∞

∑
n=0

(q2z)n+1t3n+2

[n]q!

= zt2
∞

∑
n=0

(zt3)n

[n]q!
+ qzt2

∞

∑
n=0

(qzt3)n

[n]q!
+ q2zt2

∞

∑
n=0

(q2zt3)n

[n]q!
,

which can be easily simplified as (48) by virtue of Formula (15). The proof of Lemma 1
is completed.

Remark 3. It is easy to see that for q → 1−, we have Dq,t → Dt and eq(zt3) → ezt3
. So, by

applying Lemma 1 with q → 1−, we can obtain the commonly used ordinary calculus result:

Dtezt3
= 3zt2ezt3

,

where Dt represents the t-dependent ordinary derivative.

The subsequent theorem is used to prove the existence of the pure recurrence relation
for the 3VqHP Hn,q(x, y, z):

Theorem 3. For n ≥ 2, the recurrence relation for 3-variable q-Hermite polynomials Hn,q(x, y, z)
can be represented by

Hn+1,q(x, y, z) = xHn,q(x, qy, qz) + y[n]q
(

Hn−1,q(x, y, qz) + qHn−1,q(x, qy, qz)
)

+z[n]q[n − 1]q
(

Hn−2,q(x, y, z) + qHn−2,q(x, y, qz) + q2Hn−2,q(x, y, q2z)
)

.
(51)

Proof. By virtue of Formula (20) for q-differentiation and with the help of the q-derivative
of the two aspects of Equation (22) with regard to t, we can easily acquire
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∑∞
n=0 Dq,t Hn,q(x, y, z) tn

[n]q ! =
[

Dq,teq(xt)eq(qyt2) + eq(xt)Dq,t( eq(yt2)
]
eq(qzt3) +

[
eq(xt)eq(yt2)

]
Dq,teq(zt3). (52)

Using Equations (21) and (48) in the right aspect part of (52) and Formula (18) in the left
aspect part of (52), respectively, we obtain

∑∞
n=1 Hn,q(x, y, z) tn−1

[n−1]q ! = xeq(xt)eq(qyt2)eq(qzt3) + yteq(xt) eq(yt2)eq(qzt3) + qyteq(xt)eq(qyt2)eq(qzt3)

+zt2eq(xt)eq(yt2)eq(zt3) + qzt2 eq(xt)eq(yt2)eq(qzt3) + q2zt2 eq(xt)eq(yt2)eq(q2zt3).
(53)

Finally, utilizing Equation (22) on the left part of (53) and contrasting the two corresponding
powers of t on both parts of the outcome equation, we can derive our claim (51). The proof
of Theorem 3 is completed.

Example 1. Applying Formula (51), we have the following:

H3,2/3(x, y, z) = xH2,2/3

(
x,

2
3

y,
2
3

z
)
+

5
3

y
(

H1,2/3

(
x, y,

2
3

z
)
+

2
3

H1,2/3

(
x,

2
3

y,
2
3

z
))

+
5
3

z
(

H0,2/3(x, y, z) +
2
3

H0,2/3

(
x, y,

2
3

z
)
+

4
9

H0,2/3

(
x, y,

4
9

z
))

,

H4,2/3(x, y, z) = xH3,2/3

(
x,

2
3

y,
2
3

z
)
+

19
9

y
(

H2,2/3

(
x, y,

2
3

z
)
+

2
3

H2,2/3

(
x,

2
3

y,
2
3

z
))

+
1185
243

z
(

H1,2/3(x, y, z) +
2
3

H1,2/3

(
x, y,

2
3

z
)
+

4
9

H1,2/3

(
x, y,

4
9

z
))

,

and

H5,2/3(x, y, z) = xH4,2/3

(
x,

2
3

y,
2
3

z
)
+

65
27

y
(

H3,2/3

(
x, y,

2
3

z
)
+

2
3

H3,2/3

(
x,

2
3

y,
2
3

z
))

+
13715
2187

z
(

H2,2/3(x, y, z) +
2
3

H2,2/3

(
x, y,

2
3

z
)
+

4
9

H2,2/3

(
x, y,

4
9

z
))

.

The following theorem is very important and will be used to prove the existence of a
q-differential recurrence relation for 3-variable q-Hermite polynomials Hn,q(x, y, z).

Theorem 4. The q-differential recurrence relation for 3-variable q-Hermite polynomials Hn,q(x, y, z)
can be represented by

[n]q Hn,q(x, y, z) = xDq,x Hn,q(x, qy, qz) + yD2
q,x

(
Hn,q(x, y, qz) + qHn,q(x, qy, qz)

)
+z[n]qD2

q,x

(
Hn−1,q(x, y, z) + qHn−1,q(x, y, qz) + q2Hn−1,q(x, y, q2z)

)
,

(54)

or, equivalently

[n]q Hn,q(x, y, z) = xDq,x Hn,q(x, qy, qz) + yDq,y

(
Hn,q(x, y, qz) + qHn,q(x, qy, qz)

)
+z[n]qDq,y

(
Hn−1,q(x, y, z) + qHn−1,q(x, y, qz) + q2Hn−1,q(x, y, q2z)

)
.

(55)

Proof. From Equation (38), we obtain

Hn−1,q(x, y, qz) = qn−1Hn−1,q

(1
q

x,
1
q2 y,

1
q2 z

)
,

which, when applied to Equation (39), gives

Hn−1,q(x, y, qz) =
qn

[n]q
Dq,x Hn,q

(1
q

x,
1
q2 y,

1
q2 z

)
. (56)
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Further, by plugging Equation (38) into the right aspect of Equation (56), we have

Hn−1,q(x, y, qz) =
1

[n]q
Dq,x Hn,q

(
x, y, qz

)
. (57)

Similarly, by following the same methods involved in obtaining Equation (57), we have

Hn−1,q(x, qy, qz) =
1

[n]q
Dq,x Hn,q

(
x, qy, qz

)
. (58)

From Equation (38), we achieve

Hn−2,q(x, y, q2z) = qn−2Hn−2,q

(1
q

x,
1
q2 y,

1
q

z
)

.

By plugging in Equation (40) or (42), we attain

Hn−2,q(x, y, q2z) =
qn

[n]q[n − 1]q
Dq,y Hn,q

(1
q

x,
1
q2 y,

1
q2 z

)
, (59)

or, equivalently

Hn−2,q(x, y, q2z) =
qn

[n]q[n − 1]q
D2

q,x Hn,q

(1
q

x,
1
q2 y,

1
q

z
)

. (60)

Once again, utilizing Equation (38) on the right aspect of Equations (59) and (60),
we have

Hn−2,q(x, y, q2z) =
1

[n]q[n − 1]q
Dq,y Hn,q

(
x, y, q2z

)
, (61)

or, equivalently

Hn−2,q(x, y, q2z) =
1

[n]q[n − 1]q
D2

q,x Hn,q

(
x, y, q2z

)
. (62)

Similarly, by following the same methods involved in obtaining Equation (62), we attain

Hn−2,q(x, y, qz) =
1

[n]q[n − 1]q
Dq,y Hn,q

(
x, y, qz

)
, (63)

or, equivalently

Hn−2,q(x, y, qz) =
1

[n]q[n − 1]q
D2

q,x Hn,q

(
x, y, qz

)
. (64)

Using Equations (57), (62) and (64) or (63) in the right aspect of Equation (51), we prove
Formulas (54) or (55). The proof of Theorem 4 is completed.

Applying Theorem 4, we can establish the following new q-differential recurrence
relations for 3-variable q-Hermite polynomials Hn,q(x, y, z):

Theorem 5. The q-differential recurrence relation for 3-variable q-Hermite polynomials Hn,q(x, y, z)
can be represented by

Hn+1,q(x, y, z) = xHn,q(x, qy, qz) + yDq,x

(
Hn,q(x, y, qz) + qHn,q(x, qy, qz)

)
+zD2

q,x

(
Hn,q(x, y, z) + qHn,q(x, y, qz) + q2Hn,q(x, y, q2z))

)
,

(65)
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or, equivalently

Hn+1,q(x, y, z) = xHn,q(x, qy, qz) + yDq,x

(
Hn,q(x, y, qz) + qHn,q(x, qy, qz)

)
+zDq,y

(
Hn,q(x, y, z) + qHn,q(x, y, qz) + q2Hn,q(x, y, q2z))

)
.

(66)

Proof. Changing n in Equation (51) to n − 1 yields

Hn,q(x, y, z) = xHn−1,q(x, qy, qz) + y[n − 1]q
(

Hn−2,q(x, y, qz) + qHn−2,q(x, qy, qz)
)

+z[n − 1]q[n − 2]q
(

Hn−3,q(x, y, z) + qHn−3,q(x, y, qz) + q2Hn−3,q(x, y, q2z))
)

, n ≥ 3.
(67)

As with direct steps involved in obtaining (54) or (55), we obtain Formulas (65) or (66). The
proof of Theorem 5 is completed.

In order to establish the differential equation of the q-Hermite polynomials of three
variables Hn,q(x, y, z), we define the concept of shift operators as follows:

Definition 2. The shift operators La,x, La,y and La,z, which are employed whenever f (x, y, z)
represents a q-function via three variables, are described as follows:

La,x f (x, y, z) = f (ax, y, z), (68)

La,y f (x, y, z) = f (x, ay, z) (69)

and
La,z f (x, y, z) = f (x, y, az), (70)

where a represents a constant.

Remark 4. (a) It is worth mentioning that Formula (68) shows that the shift operator La,x has
the subsequent characteristics:

La,xLb,xLc,x f (x, y, z) = f (abcx, y, z) = Labc,x f (x, y, z). (71)

(b) Specifically, for the case a = b = c, we have

La3,x f (x, y, z) = f (a3x, y, z) = La,xLa,xLa,x f (x, y, z) = L3
a,x f (x, y, z). (72)

(c) If L−1
a,x is the opposite of the expression La,x, then L−1

a,x La,x = I, where I is an identity operator,
which is so I f (x, y, z) = f (x, y, z). In accordance with Equation (68), we have

L−1
a,x f (ax, y, z) = f (x, y, z).

Presently, we demonstrate the next result for a q-differential equation of 3-variable
q-Hermite polynomials Hn,q(x, y, z) by using shift operators:

Theorem 6. The 3-variable q-Hermite polynomials Hn,q(x, y, z) comply with the subsequent
q-differential equation:[

z(1 + qLq,z + q2Lq,z)D3
q,x + y(Lq,z + qLq,z)D2

q,x + xLq,x,yDq,x − [n]q

]
Hn,q(x, y, z) = 0, (73)

where Lq,x,y := Lq,xLq,y (see [31]).

Proof. Following a similar argument as in the proof of (64), we obtain

Hn−3,q(x, y, qz) =
1

[n]q[n − 1]q[n − 2]q
D3

q,x Hn,q

(
x, y, qz

)
. (74)
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Also, in the same procedure it is obvious to obtain

Hn−3,q(x, y, q2z) =
1

[n]q[n − 1]q[n − 2]q
D3

q,x Hn,q(x, y, q2z). (75)

Using Equations (58), (64), (74) and (75) on the right aspect of the Formula (67), we obtain

Hn,q(x, y, z) = x
1

[n]q
Dq,x Hn,q(x, qy, qz) + y[n − 1]q

( 1
[n]q[n − 1]q

D2
q,x Hn,q(x, y, qz)

+ q
1

[n]q[n − 1]q
D2

q,x Hn,q(x, qy, qz)
)
+ [n − 1]q[n − 2]qz

( 1
[n]q[n − 1]q[n − 2]q

D3
q,x Hn,q

(
x, y, z

)
+ q

1
[n]q[n − 1]q[n − 2]q

D3
q,x Hn,q

(
x, y, qz

)
+ q2 1

[n]q[n − 1]q[n − 2]q
D3

q,x Hn,q

(
x, y, q2z

))
,

which on simplification and using Equation (68) gives claim (73). The proof of Theorem 6
is completed.

Example 2. Applying Formula (73), we obtain the following:

[
z
(

1 +
2
3

L2/3,z +
4
9

L2/3,z

)
D3

2/3,x + y
(

L2/3,z +
2
3

L2/3,z

)
D2

2/3,x + xL2/3,x,yD2/3,x − 1
]

H1,2/3(x, y, z) = 0,

[
z
(

1 +
4
5

L4/5,z +
16
25

L4/5,z

)
D3

4/5,x + y
(

L4/5,z +
4
5

L4/5,z

)
D2

4/5,x + xL4/5,x,yD4/5,x −
9
4

]
H2,4/5(x, y, z) = 0,

and[
z
(

1 +
5
6

L5/6,z +
25
36

L5/6,z

)
D3

5/6,x + y
(

L5/6,z +
5
6

L5/6,z

)
D2

5/6,x + xL5/6,x,yDq,x −
91
36

]
H3,5/6(x, y, z) = 0.

Remark 5. For q → 1−, Equations (22) and (25) reduce to Equations (1) and (2) for Hn(x, y, z).
Also, for q → 1−, Equations (39)–(48) reduce to the respective results for Hn(x, y, z) given by
Equations (3)–(8). Further, for q → 1−, Equations (51), (54) or (55) and (65) or (66) give the
differential recurrence relations for 3-variable Hermite polynomials Hn(x, y, z). Finally, for q → 1−,
Equation (73) reduces to Equation (9).

4. Operational and Summation Formulas

In this section, we create operational and summation formulas for 3-variable q-Hermite
polynomials Hn,q(x, y, z) as well as their various q-derivatives. We now demonstrate
the following.

Theorem 7. The 3-variable q-Hermite polynomials Hn,q(x, y, z) satisfy the following opera-
tional identity

Hn,q(x, y, z) = eq(yD2
q,x)eq(zD3

q,x) xn, (76)

where D2
q,x and D3

q,x are the second and third q-derivative operators.

Proof. It is possible to check if the following feature is true for the q-differential operator
Dq,x:

Dr
q,x xn =

[n]q!
[n − r]q!

xn−r. (77)

From Equation (77), we obtain

D3r
q,x Hn,q(x, y) =

[n]q!
[n − 3r]q!

Hn−3r,q(x, y). (78)
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Putting the previous equation into the right part of Equation (25), we attain

Hn,q(x, y, z) =
∞

∑
r=0

(
zD3

q,x

)r
Hn,q(x, y)

[r]q!
.

Utilizing Equation (15) on the right part of the preceding formula provides

Hn,q(x, y, z) = eq(zD3
q,x)Hn,q(x, y).

Therefore, using expression (12) on the right side of the preceding equation yields
Formula (76). The proof is completed.

In the structure of the subsequent statement, we cultivate summation formulas for
the q-Hermite polynomials with three variables Hn,q(x, y, z) in the structure of the subse-
quent statement:

Theorem 8. The 3-variable q-Hermite polynomials Hn,q(x, y, z) fulfill the subsequent
summing formulas:

[n]q!
[n/3]

∑
r=0

Hn−3r,q(x, y, z)q(
r
2)(−z)r

[n − 3r]q![r]q!
= Hn,q(x, y). (79)

In particular, we have the following:

(a) If n = 3m (m ∈ N), then

[3m]q!
[3m/2]

∑
r=0

q(
r
2)(−y)r H3m−2r,q(x, y, z)

[r]q![3m − 2r]q!
= H3m,q(x, z). (80)

(b) If n = 3m + 1 (m ∈ N∪ {0}), then

[3m + 1]q!
[3m+1/2]

∑
r=0

q(
r
2)(−y)r H3m+1−2r,q(x, y)
[r]q![3m + 1 − 2r]q!

= 0. (81)

Proof. In the context of Equation (17), it is clear

eq(xt) eq(yt2)eq(zt3)Eq(−zt3) = eq(xt) eq(yt2), (82)

which, on using Equations (10), (16) and (22), gives

∞

∑
n=0

∞

∑
r=0

Hn,q(x, y, z)q(
r
2)(−z)r tn+3r

[n]q![r]q!
=

∞

∑
n=0

Hn,q(x, y)
tn

[n]q!
.

Utilizing Formula (24) in the left aspect of the previous equation, we obtain

∞

∑
n=0

[n/3]

∑
r=0

Hn−3r,q(x, y, z)q(
r
2)(−z)r tn

[n − 3r]q![r]q!
=

∞

∑
n=0

Hn,q(x, y)
tn

[n]q!
,

Comparing the identical powers of t on each side gives rise to statement (79). Using
Equation (17) once more, we obtain

Eq(−yt2) eq(xt)eq(yt2)eq(zt3) = eq(xt)eq(zt3). (83)
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Putting (16) and (22) into the aforementioned equation provides us

∞

∑
n=0

∞

∑
r=0

q(
r
2)(−y)r Hn,q(x, y, z) tn+2r

[n]q![r]q!
=

∞

∑
n=0

H(3)
n,q (x, z)

tn

[n]q!
,

This, when applied to Equation (23), yields

∞

∑
n=0

[n/2]

∑
r=0

q(
r
2)(−y)r Hn−2r,q(x, y, z)tn

[r]q![n − 2r]q!
=

∞

∑
n=0

H(3)
n,q (x, z)

tn

[n]q!
. (84)

When each of the even as well as odd values of t from each side of Equation (84) are
compared, we obtain statements (80) and (81). The proof is completed.

Remark 6. It is worth to mentioning that the corresponding expression of the summation formula,
provided in Equation (81), is as outlined below:

[3m/2]

∑
r=0

q(
r
2)(−y)r H3m−2r,q(x, y, z)

[r]q![3m − 2r]q!
=

q(
3m+1

2
2 )y

3m+1
2

[ 3m+1
2 ]q!

. (85)

By using Equation (39) in Theorem 8 and Remark 6, we drive the following summation
formulas for the q-derivative of Hn,q(x, y, z) with regard to x.

Corollary 3. The subsequent summation formulas are valid:

[n]q!
[n/3]

∑
r=0

Dq,x Hn+1−3r,q(x, y, z)q(
r
2)(−z)r

[n + 1 − 3r]q![r]q!
= Hn,q(x, y), (86)

[3m]q!
[3m/2]

∑
r=0

q(
r
2)(−y)rDq,x H3m+1−2r,q(x, y, z)

[r]q![3m + 1 − 2r]q!
= H3m,q(x, z) (87)

and
[(3m+1)/2]

∑
r=0

q(
r
2)(−y)rDq,x H3m+2−2r,q(x, y, z)

[r]q![3m + 2 − 2r]q!
=

q(
3m+1

2
2 )y

3m+1
2

[ 3m+1
2 ]q!

. (88)

Similarly, using Equation (40) in Equations (79), (80) and (85), we acquire the subse-
quent summing formulas for the q-derivative of Hn,q(x, y, z) with regard to y:

Corollary 4. The subsequent summation formulas are valid:

[n]q!
[n/3]

∑
r=0

Dq,y Hn+2−3r,q(x, y, z)q(
r
2)(−z)r

[n + 2 − 3r]q![r]q!
= Hn,q(x, y), (89)

[3m]q!
[3m/2]

∑
r=0

q(
r
2)(−y)rDq,y H3m+2−2r,q(x, y, z)

[r]q![3m + 2 − 2r]q!
= H3m,q(x, z), (90)

and
[(3m+1)/2]

∑
r=0

q(
r
2)(−y)rDq,y H3m+2−2r,q(x, y, z)

[r]q![3m + 2 − 2r]q!
=

q(
3m+1

2
2 )y

3m+1
2

[ 3m+1
2 ]q!

. (91)

Furthermore, using Equation (41) in Equations (79), (80) and (85), we acquire the
subsequent summing formulas for Hn,q(x, y, z) with regard to z:

Corollary 5. The subsequent summation formulas are valid:

[n]q!
[n/3]

∑
r=0

Dq,z Hn+3−3r,q(x, y, z)q(
r
2)(−z)r

[n + 3 − 3r]q![r]q!
= Hn,q(x, y), (92)
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[3m]q!
[3m/2]

∑
r=0

q(
r
2)(−y)rDq,z H3m+3−2r,q(x, y, z)

[r]q![3m + 3 − 2r]q!
= H3m,q(x, z), (93)

and
[(3m+1)/2]

∑
r=0

q(
r
2)(−y)rDq,z H3m+3−2r,q(x, y, z)

[r]q![3m + 3 − 2r]q!
=

q(
3m+1

2
2 )y

3m+1
2

[ 3m+1
2 ]q!

. (94)

Example 3. Applying Formulas (79), (86), (89) and (92), we obtain the following:

H7,2/3(x, y, z)− [7]2/3[6]2/3[5]2/3zH4,2/3(x, y, z)
+[7]2/3[6]2/3[5]2/3[4]2/3[3]2/3z2H1,2/3(x, y, z)(2/3) = H7,2/3(x, y),

(95)

1
[4]4/5

D4/5,x H3,4/5(x, y, z)− z[3]4/5[2]4/5D4/5,x H1,4/5(x, y, z) = H3,4/5(x, y), (96)

1
[6]3/4[5]3/4

D3/4,y H6,3/4(x, y, z)− zD3/4,yH3,3/4(x, y, z) = H4,3/4(x, y), (97)

1
[5]3/4[4]3/4[2]3/4

Dq,z H5,q(x, y, z) = H2,q(x, y). (98)

Remark 7. For q → 1−, Equation (76) becomes [14]:

Hn(x, y, z) = e
(

y ∂2

∂x2 +z ∂3

∂x3

)
xn. (99)

Moreover, for q → 1−, Equations (79)–(81), (86)–(88), (89)–(91) and (92)–(94) give summation
formulas for Hermite polynomials via three variables Hn(x, y, z) and its derivatives.

5. Conclusions

Many experts in the field of special functions are interested in q-calculus because
it is an effective tool for models of quantum computing, non-commutative probability,
combinatorics, functional analysis, mathematical physics, approximation theory and other
fields. Also, the q-Hermite polynomials’ recent usefulness in non-commutative probability,
quantum mechanics, combinatorics and other areas has been uncovered. The properties of
classical 3-variable Hermite polynomials have been frequently employed in the investiga-
tion of charged-beam transport challenges in traditional mechanics and also the calculation
of quantum-phase-space mechanics and umbral techniques have been extensively used
to analyze their properties. In this paper, we establish various new features of 3-variable
q-Hermite polynomials, such as generating function, series definition, recurrence relations,
q-differential equations, summation and operation formulas as follows:

• Generating function (see Equation (22)):
The subsequent generating function for q-Hermite polynomials of 3-variables holds true:

eq(xt) eq(yt2)eq(zt3) =
∞

∑
n=0

Hn,q(x, y, z)
tn

[n]q!
.

• Series definition (see Definition 1):
The subsequent series definition for q-Hermite polynomials of 3-variables holds true:

Hn,q(x, y, z) = [n]q!
[n/3]

∑
r=0

zr Hn−3r,q(x, y)
[r]q![n − 3r]q!

,

or, equivalently

Hn,q(x, y, z) = [n]q!
[n/3]

∑
r=0

[(n−3r)/2]

∑
k=0

zrxn−3r−2kyk

[r]q![k]q![n − 3r]q![n − 3r − 2k]q!
,
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where [ . ] denotes the greatest integer function.
• The q-partial derivative of eq(zt3) with regard to t (see Lemma 1):

The q-partial derivative of eq(zt3) with regard to t can be expressed by the following
recurrence relation:

Dq,t eq(zt3) = zt2 eq(zt3) + qzt2 eq(qzt3) + q2zt2 eq(q2zt3),

where the operator Dq,t is defined as Formula (2).
• Pure recurrence relation (see Theorem 3):

For n ≥ 2, the recurrence relation for 3-variable q-Hermite polynomials Hn,q(x, y, z) can be
represented by

Hn+1,q(x, y, z) = xHn,q(x, qy, qz) + y[n]q
(

Hn−1,q(x, y, qz) + qHn−1,q(x, qy, qz)
)

+ z[n]q[n − 1]q
(

Hn−2,q(x, y, z) + qHn−2,q(x, y, qz) + q2Hn−2,q(x, y, q2z)
)

.

• The q-differential equation (see Theorem 6):
The 3-variable q-Hermite polynomials Hn,q(x, y, z) comply with the subsequent q-
differential equation:[

z(1 + qLq,z + q2Lq,z)D3
q,x + y(Lq,z + qLq,z)D2

q,x + xLq,x,yDq,x − [n]q

]
Hn,q(x, y, z) = 0,

where Lq,x,y denoted the shift operator which acts on a q-function of two variables
(see [31]).

• Operational formulas (see Theorem 7):
The 3-variable q-Hermite polynomials Hn,q(x, y, z) satisfy the following operational identity

Hn,q(x, y, z) = eq(yD2
q,x)eq(zD3

q,x) xn,

where D2
q,x and D3

q,x are the second and third q-derivative operators.
• Summation formulas (see Theorem 8):

The 3-variable q-Hermite polynomials Hn,q(x, y, z) fulfill the subsequent
summation formulas:

[n]q!
[n/3]

∑
r=0

Hn−3r,q(x, y, z)q(
r
2)(−z)r

[n − 3r]q![r]q!
= Hn,q(x, y).

In particular, we have the following:

(a) If n = 3m (m ∈ N), then

[3m]q!
[3m/2]

∑
r=0

q(
r
2)(−y)r H3m−2r,q(x, y, z)

[r]q![3m − 2r]q!
= H3m,q(x, z).

(b) If n = 3m + 1 (m ∈ N∪ {0}), then

[3m + 1]q!
[3m+1/2]

∑
r=0

q(
r
2)(−y)r H3m+1−2r,q(x, y)
[r]q![3m + 1 − 2r]q!

= 0.

As applications, some new features for 3-variable q-Hermite polynomials are presented in
Sections 2–4. Our results will assist us in obtaining novel expression results connected to
q-special functions and their technique, as well as the accompanying hybrid polynomials
in future studies.
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