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Abstract: This paper is dedicated to the memory of the esteemed Serbian mathematician Slaviša
B. Prešić (1933–2008). The primary aim of this survey paper is to compile articles on Prešić-type
mappings published since 1965. Additionally, it introduces a novel class of symmetric contractions
known as Prešić–Menger and Prešić–Ćirić–Menger contractions, thereby enriching the literature on
Prešić-type mappings. The paper endeavors to furnish young researchers with a comprehensive
resource in functional and nonlinear analysis. The relevance of Prešić’s method, which generalizes
Banach’s theorem from 1922, remains significant in metric fixed point theory, as evidenced by recent
publications. The overview article addresses the growing importance of Prešić’s approach, coupled
with new ideas, reflecting the ongoing advancements in the field. Additionally, the paper establishes
the existence and uniqueness of fixed points in Menger spaces, contributing to the filling of gaps in the
existing literature on Prešić’s works while providing valuable insights into this specialized domain.

Keywords: metric space; Prešić-type mapping; Kannan–Prešić-type mapping; G-Prešić operator;
Prešić–Picard sequence; weakly Prešić–Picard sequence; Prešić–Menger-type mapping;
Prešić–Ćirić–Menger-type mapping

1. Introduction and Preliminaries

Let X be a nonempty set and u ∈ X. Then, u is called a fixed point of a mapping
T : X → X if Tu = u. The existence of fixed points of self-mappings has been considered by
several authors in different spaces. Most of the results on fixed points are the generalizations
of the famous Banach contraction principle, which ensures the existence and uniqueness
of the fixed point of self-mappings defined on complete metric spaces. It states that: if
T : X → X is a Banach contraction on a complete metric space (X, d), that is, T satisfying
the condition:

d(Tx, Ty) ≤ λ · d(x, y), (1)

for all x, y ∈ X, where λ ∈ [0, 1), then T has a unique fixed point (say) u ∈ X. Moreover, if
x ∈ X is an arbitrary point, then the sequence xn = Tnx is convergent and limn→+∞ xn = u.

After the appearance of the famous result of Banach in 1922 [1] about the unique fixed
point of a contractive mapping defined on the complete metric space, many researchers
successfully generalized that result. For the last 100 years or more, many mathematicians
have continued to work on the generalization of Banach’s result. Details can be found in
the recent monograph by Lj.Ćirić [2], as well as the extensive work of B.E. Rhoades [3]. See
also [4]. All these generalizations went in two directions.

The first one is the change of some of the three axioms of the metric space. This is how
various classes of general metric spaces arose, such as partial metric spaces, metric-like
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spaces, b-metric spaces, b-metric-like spaces, partial b-metric spaces, G-metric spaces,
Gb-metric spaces, S-metric spaces, Sb-metric spaces and others.

The second one is the generalization of the right-hand side λ · d(x, y) in (1), in the
sense that one of the following expressions is taken instead of λ · d(x, y) :

a · d(x, Tx) + b · d(y, Ty), a ≥ 0, b ≥ 0, a + b < 1 (Kannan)

a · d(x, Ty) + b · d(Tx, y), a ≥ 0, b ≥ 0, a + b < 1 (Chatterjea)

a · d(x, y) + b · d(x, Tx) + c · d(y, Ty), a ≥ 0, b ≥ 0, c ≥ 0, a + b + c < 1 (Reich)

a · d(x, y) + b · d(x, Tx) + c · d(y, Ty) + δ · d(x, Ty) + e · d(Tx, y), a ≥ 0, b ≥ 0, c ≥ 0,

δ ≥ 0, e ≥ 0, a + b + c + δ + e < 1 (Hardy–Rogers)

λ max
{

d(x, y),
d(x, Tx) + d(y, Ty)

2
,

d(x, Ty) + d(Tx, y)
2

}
(Ćirić’s generalized

contraction I)

λ max
{

d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(Tx, y)

2

}
(Ćirić’s generalized

contraction II)

λ max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(Tx, y)} (Ćirić’s quasicontraction)

or
φ(d(x, y)) where, φ : [0,+∞) → [0,+∞) (Boyd–Wong i.e., .

weakly contraction).

Now, we list the next two important and well-known contractive conditions, which
are significantly different from the previous ones in that they have both sides left and right
and in which the left is different from d(Tx, Ty). The first is called Meir–Keeler and it reads:

For all ε > 0, there exists δ > 0 such that for every x, y in X, the next implication holds

ε ≤ d(x, y) < ε + δ implies d(Tx, Ty) < ε

(Meir–Keeler contraction).

The second refers to the highly famous contractive condition proposed by D. War-
dowski in 2012, which extends the renowned Banach result. It reads as follows:

There exists τ > 0 so that whenever d(Tx, Ty) > 0, the inequality τ + F(d(Tx, Ty)) ≤
F(d(x, y)) holds, where F is a function that maps (0,+∞) to R and satisfies the following
three conditions:

(F1) F is strictly increasing, i.e., for all α, β ∈ R+ such that α < β, F(α) < F(β);
(F2) For each sequence {αn}n∈N of positive numbers, limn→+∞ αn = 0 if and only if

limn→+∞ F(αn) = −∞;
(F3) There exists k ∈ (0, 1) such that limα→0+ αkF(α) = 0.
In 1965, S. Prešić [5] extended the Banach principle for the mappings defined from prod-

uct Xk (where k is a positive integer) into the space X and proved the following theorem.

Theorem 1. Let (X, d) be a complete metric space, k a positive integer and T : Xk → X a mapping
satisfying the following contractive type condition:

d(T(x1, x2, . . . , xk), T(x2, x3, . . . , xk, xk+1)) ≤
k

∑
i=1

qid(xi, xi+1), (2)

for every x1, x2, . . . , xk, xk+1 ∈ X, where q1, q2, . . . , qk are nonnegative constants such that
q1 + q2 + · · ·+ qk < 1.
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Then there exists a unique point u ∈ X such that T(u, u, . . . , u) = u. Moreover, if x1, x2, . . . , xk
are arbitrary points in X and for n ∈ N, xn+k = T(xn, xn+1, . . . , xn+k−1), then the sequence {xn} is
convergent and

lim
n→+∞

xn = T
(

lim
n→+∞

xn, . . . , lim
n→+∞

xn

)
.

A mapping satisfying (2) is referred to as a Prešić-type contraction. These types of
contractions have found widespread applications across various mathematical domains.
One notable application lies in the convergence of sequences, where the principles of Prešić-
type contractions have been instrumental in understanding the behavior of convergent
sequences [5,6]. Additionally, they have been employed in solving nonlinear difference
equations, offering valuable insights into the dynamics of such equations [7,8]. Further-
more, Prešić-type contractions have proven effective in addressing nonlinear inclusion
problems, providing techniques for determining solutions in complex nonlinear systems [9].
Moreover, they have been instrumental in addressing convergence issues related to non-
linear matrix difference equations, offering methods to analyze the behavior and stability
of such equations under various conditions [10]. The significance and versatility of Prešić-
type contractions in modern mathematics are underscored by their diverse applications.
These contractions transcend theoretical frameworks, offering valuable insights and tools
for understanding and solving problems across various mathematical disciplines. Their
utility is exemplified through numerous practical applications, supported by numerical
examples such as those detailed in References [11–13]. From optimization problems to
dynamical systems, the effectiveness of Prešić-type contractions illuminates their relevance
in addressing real-world challenges and advancing with the new trend in mathematical
theory [14,15].

The first work [16], which extended the scope of previous studies, dates back to 2007.
This work represents the initial positive outcome subsequent to the publications of Prešić’s
works [5,6] in 1965 (also see [17]).

Theorem 2. Let (X, d) be a complete metric space, k a positive integer and T : Xk → X a mapping
satisfying the following contractive type condition

d(T(x1, x2, . . . , xk), T(x2, . . . , xk, xk+1)) ≤ λ max{d(xi, xi+1) : 1 ≤ i ≤ k}, (3)

where λ ∈ (0, 1) is a constant and x1, . . . , xk+1 are arbitrary elements in X. Then, there exists a
point x in X such that T(x, . . . , x) = x. Moreover, if x1, x2, x3, . . . , xk are arbitrary points in X
and for n ∈ N,

xn+k = T(xn, xn+1, . . . , xn+k−1),

then the sequence {xn}+∞
n=1 is convergent and

lim
n→+∞

xn = T
(

lim
n→+∞

xn, lim
n→+∞

xn, . . . , lim
n→+∞

xn

)
.

If, in addition, we suppose that on diagonal △⊂ Xk,

d(T(u, . . . , u), T(v, . . . , v)) < d(u, v)

holds for all u, v ∈ X, with u ̸= v, then x is the unique point in X with T(x, x, . . . , x) = x.

Further, new generalizations of Prešić’s result went in the direction of replacing the
right-hand side in (2) with a more general expression similar to the one in paper [16]. For
this purpose, using already well-known contractive conditions such as Kannan, Chatterjea,
Reich, Hardy–Rogers, Ćirić, Boyd–Wong, Rus, Matkowski and others, the new contractive
conditions and corresponding new results were obtained: Prešić–Kannan, Prešić–Chatterjea,
Prešić–Reich, Prešić–Hardy–Rogers, Prešić–Ćirić, Prešić–Boyd–Wong and others. Taking
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k = 1, in these results, we obtained the old well-known results such as Kannan, Chatterjea,
Reich, Hardy–Rogers, Ćirić, Boyd–Wong and others.

Let k be a positive integer. If T is a mapping from Xk to X and if (x1, x2, . . . , xk) is
a given arbitrary point in Xk, then xn+k = T(xn, xn+1, . . . , xn+k−1) defines the so-called
Prešić–Picard sequence in X. Taking k = 1, we obtain the standard Picard sequence in X.

Important Notice

It is evident that not only in the definition of the Prešić contraction but also in all the
results presented in the previously published papers [11–16,18–59], one can set k = 2. Thus,
Prešić’s contractive condition can be expressed as follows: There are nonnegative numbers
a and b with a + b < 1 such that for every three points x, y, z from X: d(T(x, y), T(y, z)) ≤
a · d(x, y) + b · d(y, z). Note also that in this case, the Prešić–Picard sequence has the form
xn+2 = T(xn, xn+1). Essentially, by assuming that k = 2, no less general results are obtained
compared to those in the above-mentioned works. The only thing that is avoided is the
need for technically more intricate formulations.

Let us also recall that when k = 2, the expression d(T(x, y), T(y, z)) corresponds to the left
side of the original Prešić condition (2), namely d(T(x1, x2, . . . , xk), T(x2, x3, . . . , xk, xk+1)). In
both instances, there exists a specific order: (x, y), (y, z), or (x1, x2, . . . , xk), (x2, x3, . . . , xk, xk+1),
which must be taken into consideration when establishing the results.

It is not challenging to streamline all the previously established results from Prešić’s
mappings into a new, more suitable form, leveraging the fact that k = 2. This approach
proves to be easier and simpler to articulate. Now, let us elucidate the procedure for
locating a point x within X such that for a given mapping T from X2 to X, the condition
T(x, x) = x is satisfied. Initially, a Prešić–Picard sequence is defined for two given points
x0 and x1 from X, where xn+2 = T(xn, xn+1) for n = 0, 1, 2, . . . . If x0 = x1 = x2, then
evidently x0 = T(x0, x0) serves as a fixed mapping point of T in the Prešić sense. However,
if x0 ̸= x1, the sequence xn+2 = T(xn, xn+1) is explored, assuming that xn is distinct from
xn+1 for each n.

2. Application of Rules x, y; y, z

In this section, we aim to reframe well-known published results employing a Prešić-
type contraction. By setting k = 2, we examine the mapping T from X2 to X, where
(X, d) represents the given metric space. It is established that X2 can be equipped with
a metric induced by the metric d on a nonempty set X. Among these metrics, one is
expressed by the formula D((x, y), (u, v)) = d(x, u) + d(y, v), while the other is defined
as D1((x, y), (u, v)) = max{d(x, u), d(y, v)}. Now, Prešić’s theorem from [5,6] in the new
x, y; y, z environment can be stated as follows.

Theorem 3. Let (X, d) be a complete metric space and T : X2 → X a mapping satisfying the
following contractive type condition

d(T(x, y), T(y, z)) ≤ q1d(x, y) + q2d(y, z),

for every x, y, z in X, where q1, q2 are nonnegative constants such that q1 + q2 < 1. Then, there
exists a unique point u in X such that T(u, u) = u. Moreover, if x1, x2, x3 are arbitrary points in
X and for n ∈ N,

xn+2 = T(xn, xn+1),

then there, the sequence {xn}+∞
n=1 is convergent and

lim
n→+∞

xn = T
(

lim
n→+∞

xn, lim
n→+∞

xn

)
.

Similarly, we can obtain the Ćirić–Prešić result from [16] in a new x, y; y, z environment.



Symmetry 2024, 16, 415 5 of 13

3. Prešić-Type Mappings in Menger Spaces

In this section, we introduce a novel class of contractions known as Prešić–Menger and
Prešić–Ćirić–Menger contractions, representing probabilistic versions of their conventional
counterparts. Within this framework, we establish the existence and uniqueness of fixed
points in Menger spaces [60]. The results presented here address a gap in the existing
literature on Prešić’s works, providing valuable insights into this specialized domain.

Let us begin by revisiting some fundamental notations, definitions and topological
properties of Menger spaces. For further elucidation, readers are encouraged to consult [61].

Definition 1. A map ξ : [0,+∞) → [0, 1] is called a distance distribution function if the following
conditions are verified:

1. ξ is left continuous on [0,+∞);
2. ξ is nondecreasing;
3. ξ(0) = 0 and ξ(+∞) = 1.

We denote by ∆+ the class of all distance distribution functions. The subset D+ ⊂ ∆+ is the

set D+ =

{
ξ ∈ ∆+ : lim

x→+∞
ξ(x) = 1

}
.

A specific element of D+ is the Heavyside function ϵ0 defined as:

ϵ0(x) =
{

0 if x = 0,
1 if x > 0.

Definition 2. A triangular norm (briefly t-norm) is a mapping ℸ : [0, 1]× [0, 1] → [0, 1] such
that for all x, y, z ∈ [0, 1], the following conditions are satisfied:

1. ℸ(x, y) = ℸ(y, x);
2. ℸ(x,ℸ(y, z)) = ℸ(ℸ(x, y), z);
3. ℸ(x, y) < ℸ(x, z) for y < z;
4. ℸ(x, 1) = ℸ(1, x) = x.

The most basic t-norms are: ℸM(x, y) = min(x, y), ℸP(x, y) = x · y and
ℸL(x, y) = max(x + y − 1, 0).

Definition 3. If ℸ is a t-norm and (xn)n∈N is a sequence of numbers in [0, 1], ℸn
i=1xi is defined

recurrently by ℸ1
i=1xi = x1 and ℸn

i=1xi = ℸ(ℸn−1
i=1 xi, xn), for all n ≥ 2.

ℸ can also be extended to countable infinitary operation by defining ℸ+∞
i=1 xi for any sequence

(xi)i∈N as lim
n→+∞

ℸn
i=1xi.

Definition 4 ([62]). We say that a t-norm ℸ is of H-type if the family (ℸn(x))n∈N is equi-
continuous at the point x = 1, that is

f or all ϵ ∈ (0, 1), there exists λ ∈ (0, 1) : t > 1 − λ implies ℸn(t) > 1 − ϵ f or all n ≥ 1.

Definition 5. The triple (X, F,ℸ) where X is a nonempty set, F is a function from X × X into ∆+

and ℸ is a t-norm is called a Menger space if the following conditions are satisfied for all p, q, r ∈ X
and x, y > 0:

(i) Fp,p = ϵ0;
(ii) Fp,q ̸= ϵ0 i f p ̸= q;
(iii) Fp,q = Fq,p;
(iv) Fp,q(x + y) ≥ ℸ(Fp,r(x), Fr,q(y)).
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(X, F,ℸ) is a Hausdorff topological space in the topology induced by the family of
(ϵ, λ)-neighborhoods:

N =
{

Np(ϵ, λ) : p ∈ X, ϵ > 0 and λ > 0
}

,

where
Np(ϵ, λ) =

{
q ∈ X : Fp,q(ϵ) > 1 − λ

}
.

Definition 6. Let (X, F,ℸ) be a Menger space. A sequence {xn} in X is said to be:

1. Convergent to x ∈ X if for any given ϵ > 0 and λ > 0 there exists a positive integer N(ϵ, λ)
such that Fxn ,x(λ) > 1 − ϵ whenever n ≥ N.

2. A Cauchy sequence if for any ϵ > 0 and λ > 0 there exists a positive integer N(ϵ, λ) such
that Fxn ,xm(λ) > 1 − ϵ whenever n, m ≥ N.

A Menger space (X, F,ℸ) is said to be complete if each Cauchy sequence in X is convergent to
some point in X.

Now, we will consider the gauge functions from the class Γk of all mapping φ :
[0, 1]k → [0, 1] that verified the following requirement:

1. φ is a continuous and an increasing function.
2. φ(t, . . . , t) ≥ t for all t ∈ [0, 1].

Before stating the first result, we introduce the definition of the Prešić contraction in
the sense of Menger spaces.

Definition 7. Let (X, F,ℸ) be a Menger space, k a positive integer and φ ∈ Γk. A mapping
f : Xk → X is called a Prešić–Menger contraction if

Ff (x1,x2,...,xk), f (x2,x3,...,xk+1)
(qt) ≥ φ

(
Fx1,x2(t), Fx2,x3(t), . . . , Fxk ,xk+1(t)

)
, (4)

where x1, x2, . . . , xk ∈ X, 0 < q < 1 and t > 0.

We now present our initial result as follows:

Theorem 4. Let (X, F,ℸ) be a complete Menger space, k a positive integer and f : Xk → X a proba-
bilistic Prešić contraction. Then, there exists a unique point x in X such that
x = f (x, x, . . . , x). Moreover, if x1, x2, . . . , xk are arbitrary points in X and for n ∈ N,
xn+k = f (xn, xn+1, . . . , xn+k−1), then the sequence {xn} is convergent and

lim
n→+∞

xn = f
(

lim
n→+∞

xn, . . . , lim
n→+∞

xn

)
.

Proof. Suppose x1, x2, . . . , xk are arbitrary points in X, we define a sequence as the following

xn+k = f (xn, xn+1, . . . , xn+k−1),

and we put αn = Fxn ,xn+1(qt). We will show by induction that

αn ≥
(

K − θn

k + θn

)2
, (5)

where θ = 1
q and K = min

{
θ(1+

√
α1)

1−√
α1

, θ2(1+
√

α2)
1−√

α2
, . . . , θk(1+

√
αk)

1−√
αk

}
.
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Clearly, from the definition of K, we see that (5) is true for n = 1. Then, for n + k
we have

αn+k = Fxn+k ,xn+k+1(qt)

≥ φ
(

Fxn ,xn+1(t), Fxn+1,xn+2(t), . . . , Fxn+k ,xn+k+1(t)
)

= φ(αn, αn+1, . . . , αn+k−1)

≥ φ

(K − θn

K + θn

)2
,
(

K − θn+1

K + θn+1

)2

, . . . ,

(
K − θn+k−1

K + θn+k−1

)2


≥ φ

(K − θn+k−1

K + θn+k−1

)2

,

(
K − θn+k−1

K + θn+k−1

)2

, . . . ,

(
K − θn+k−1

K + θn+k−1

)2


≥
(

K − θn+k−1

K + θn+k−1

)2

≥
(

K − θn+k

K + θn+k

)2

.

Thus, inductive proof of (5) is complete.
Now, for p ∈ N and t ∈ [0,+∞), we have

Fxn ,xn+p(t) ≥ ℸ(Fxn ,xn+1(
t
2
), Fxn+1,xn+p(

t
2
))

≥ ℸp
(

Fxn ,xn+1(
t
2
), Fxn+1,xn+2(

t
22 ), . . . , Fxn+p−1,xn+p(

t
2p )

)
≥ ℸp

(
(

K − 2n

K + 2n )
2, (

K − 22n

K + 22n )
2, . . . , (

K − 2np

K + 2np )
2)

)
≥ ℸ+∞

i=1((
K − 2ni

K + 2ni )
2)

≥ 1 − ϵ.

Hence, {xn} is a Cauchy sequence in X and since X is complete, there is z in X such
that xn → z as n → +∞.

Now, we prove that f (z, z, . . . , z) = z. In fact, we have

Ff (z,z,...,z),z(t) = lim
n→+∞

Ff (z,z,...,z),xn+k
(t)

= lim
n→+∞

Ff (z,z,...,z), f (xn ,xn+1,...,xn+k−1)
(t)

≥ lim
n→+∞

ℸk−1
(

Ff (z,z,...,z), f (z,z,...,z,xn)

(
t
2

)
,

Ff (z,z,...,z,xn), f (z,z,...,z,xn ,xn+1)

(
t

22

)
, . . . ,

Ff (z,xn ,...,xn+k−2), f (xn ,xn+1,...,xn+k−1)

(
t

2k−1

))
≥ lim

n→+∞
ℸk−1(φ{Fz,z(t), Fz,z(t), . . . , Fz,xn(t)},

φ
{

Fz,z(t), . . . , Fz,xn(t), Fxn ,xn+1(t)
}

, . . . ,

φ
{

Fz,xn(t), Fxn ,xn+1(t), . . . , Fxn+k−2,xn+k−1(t)
})

→ 1 as n → +∞.
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Thus, Ff (z,z,...,z),z(t) = 1, which means that z is a fixed point of f , which is proof also for

lim
n→+∞

xn = f
(

lim
n→+∞

xn, . . . , lim
n→+∞

xn

)
.

Finally, to show the uniqueness, we suppose that there exists z′ ∈ X such that
z′ = f (z′, z′, . . . , z′). Then, from (12) we obtain

Fz,z′(qt) = Ff (z,z,...,z), f (z′ ,z′ ,...,z′)(t)

≥ φ(Fz,z′(t), Fz,z′(t), . . . , Fz,z′(t))

≥ Fz,z′(t),

which implies that z = z′. Thus, z is the unique point of f in X.

Let us define the Prešić–Ćirić–Menger contraction in the framework of probabilistic
metric spaces.

Definition 8. Let (X, F,ℸ) be a Menger space and k a positive integer. A mapping f : Xk → X is
called a probabilistic Prešić–Ćirić–Menger contraction if

Ff (x1,x2,...,xk), f (x2,x3,...,xk+1)
(qt) ≥ min

1≤i≤k

{
Fxi ,xi+1(t)

}
(6)

where x1, x2, . . . , xk ∈ X, 0 < q < 1 and t > 0.

Expanding upon Theorem 4, we present the following theorem as a broader general-
ization.

Theorem 5. Let (X, F,ℸ) be a complete Menger space under a t-norm of H-type, k a positive
integer and f : Xk → X a Prešić–Ćirić–Menger contraction. Then, there exists a fixed point z in
X such that z = f (z, . . . , z). Moreover, if x1, x2, . . . , xk are arbitrary points in X and for n ∈ N,
xn+k = f (xn, xn+1, . . . , xn+k−1), then the sequence {xn} is convergent and

lim
n→+∞

xn = f
(

lim
n→+∞

xn, . . . , lim
n→+∞

xn

)
.

If, in addition, we suppose that on the diagonal of Xk we have for any z, z′ ∈ X such that
z ̸= z′ and t > 0,

Ff (z,...,z), f (z′ ,...,z′)(t) > Fz,z′(t). (7)

then z is unique.

Proof. Suppose x1, x2, . . . , xk are arbitrary points in X. We define a sequence as the following

xn+k = f (xn, xn+1, . . . , xn+k−1) f or all n ∈ N,

and consider
ψ(t) = min

1≤i≤k

{
θiFxi ,xi+1(t)

}
f or all t > 0,

where θ = q−k. We will show by induction that

Fxn ,xn+1(t) ≥
1
θn ψ(t) f or all n ∈ N and t > 0. (8)
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By the definition of ψ(t), it is obvious that (8) is true for n = 1, 2, . . . , k. Let the
following k inequalities hold, for t > 0,

Fxn ,xn+1(t) ≥
1
θn ψ(t), Fxn+1,xn+2(t) ≥

1
θn+1 ψ(t), . . . , Fxn+k−1,xn+k (t) ≥

1
θn+k−1 ψ(t).

Then, from θ > 1 and the contractivity condition, we obtain,

Fxn+k ,xn+k+1(qt) ≥ min
1≤i≤k

{
Fxn+i ,xn+i+1

}
≥ min

1≤i≤k

{
1

θn+i ψ(t)
}

≥ 1
θn+k ψ(t).

Therefore, (8) is true for all n ∈ N. Now, we show that {xn} is a Cauchy sequence. Let
ϵ ∈ (0, 1) and t > 0. For n, m ∈ N with m > n. By using (8), we obtain

Fxn ,xm(qt) ≥ ℸ
(

Fxn ,xn+1(
t
2
), Fxn+1,xm(

t
2
)

)
≥ ℸm−n

(
Fxn ,xn+1(

t
2
), Fxn+1,xn+2(

t
22 ), . . . , Fxm−2,xm−1(

t
2m−n−2 ), Fxm−1,xm(

t
2m−n−1 )

)
≥ ℸm−n

(
1
θn ψ(

t
2
),

1
θn+1 ψ(

t
22 ), . . . ,

1
θm−2 ψ(

t
2m−n−2 ),

1
θm−1 ψ(

t
2m−n−1 )

)
≥ ℸm−n

(
1
θn ψ(

t
2
),

1
θn ψ(

t
22 ), . . . ,

1
θn ψ(

t
2m−n−2 ),

1
θn ψ(

t
2m−n−1 )

)
.

Next, by taking ϑ = inft>0 ψ(t), we obtain

Fxn ,xm(qt) ≥ ℸm−n
(

1
θn ϑ

)
. (9)

Now, let ϵ > 0 be given. Since ℸ is a t-norm of H-type, there exists λ ∈ (0, 1) such that
ℸn(t) > 1 − ϵ for all n ∈ N when t > 1 − λ. Then, by choosing 1

θn0 ϑ > 1 − λ for all n > n0
we obtain

Fxn ,xm(qt) > 1 − ϵ f or all n, m > n0 and t > 0.

Hence, {xn} is a Cauchy sequence. Since X is complete, there is some x ∈ X such that
xn → z as n → +∞.

We will show that z is a fixed point of f . In fact, for any n ∈ N and t > 0, we have

Fxn+k , f (z,...,z)(t) = Ff (xn ,...,xn+k−1), f (z,...,z)(t)

≥ ℸk
(

Ff (xn ,...,xn+k−1), f (xn+1,...,xn+k−1,z)

(
t
2

)
,

Ff (xn ,...,xn+k−1,z), f (xn+1,...,xn+k−1,z,z)

(
t

22

)
,

. . . ,

Ff (xn+k−1,z,...,z), f (z,...,z)

(
t

2k−1

))
.

(10)

Using (6), we have for all t > 0

Ff (xn ,...,xn+k−1), f (xn+1,...,xn+k−1,z)(
t
2
) ≥ min

{
min

1≤i≤k

{
Fxn+i−1,xn+i (t)

}
, Fxn+k−1,z(t)

}
. (11)
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Letting n → +∞ in (11), we obtain

lim
n→+∞

Ff (xn ,...,xn+k−1), f (xn+1,...,xn+k−1,z)(t) = 1

Similarly, for the other components in (10), we achieve

lim
n→+∞

Fxn+k , f (z,...,z)(t) = 1.

Thus, z is a fixed point of f .
Finally, to prove uniqueness, we suppose that z′ ∈ X exists such that z′ = f (z′, . . . , z′)

with z ̸= z′. Then, from the diagonal condition (7), we have for all t > 0

Fz,z′(t) = Ff (z,...,z), f (z′ ,...,z′)(t) > F(z, z′),

which is a contradiction. Hence, z is unique.

Application of Rules (x, y); (y, z) in Menger Spaces

The Prešić–Menger theorem in the (x, y); (y, z) context is stated as follows:

Theorem 6. Let (X, F,ℸ) be a complete Menger space, φ ∈ Γ2 and f : X × X → X a mapping
satisfying the following contractive-type condition

Ff (x,y), f (y,z)(q(t1 + t2)) ≥ φ
(

Fx,y(t1), Fy,z(t2)
)
, (12)

where x, y, z ∈ X, 0 < q < 1 and t1, t2 > 0. Then, there exists a unique point x in X such that
u = f (u, u). Moreover, if x1, x2, x3 are arbitrary points in X and for n ∈ N, xn+2 = f (xn, xn+1),
then the sequence {xn} is convergent and

lim
n→+∞

xn = f
(

lim
n→+∞

xn, lim
n→+∞

xn

)
.

Similarly, we can obtain the Ćirić–Prešić result in a different setting, where the envi-
ronment is defined by the relationships between x, y, and z as (x, y); (y, z).

Theorem 7. Let (X, F,ℸ) be a complete Menger space under a t-norm of H-type and f : X × X →
X is mapping satisfying the following contractive-type condition

Ff (x,y), f (y,z)(q(t1 + t2)) ≥ min
{

Fx,y(t1), Fy,z(t2)
}

, (13)

where x, y, z ∈ X, 0 < q < 1 and t1, t2 > 0. Then, there exists a fixed point u in X such that
u = f (u, u). Moreover, if x1, x2, x3 are arbitrary points in X and for n ∈ N, xn+2 = f (xn, xn+1),
then the sequence {xn} is convergent and

lim
n→+∞

xn = f
(

lim
n→+∞

xn, lim
n→+∞

xn

)
.

4. Conclusions

In summary, this survey paper consolidates research articles focusing on Prešić-type
mappings since 1965, while also introducing Prešić–Menger and Prešić–Ćirić–Menger
contractions. It serves as a comprehensive resource for young researchers in functional
and nonlinear analysis, highlighting the ongoing relevance of Prešić’s method, which
expands upon Banach’s theorem. The paper underscores the growing importance of
Prešić’s approach in metric fixed point theory and establishes the existence and uniqueness
of fixed points in Menger spaces. By addressing gaps in the existing literature, it contributes
to the advancement of knowledge in this specialized area. All pertinent works related to
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Prešić’s approach have been referenced for further exploration. Meanwhile, it is important
to note three open problems for further exploration:

1. Investigate whether the outcomes presented in [12,37] can be demonstrated solely
under the assumption of property F1 for the function F, particularly in the context of
F-contractions, as discussed in a recent review paper by N. Fabiano et al. [63].

2. Define and formulate the Ćirić–Prešić–Meir–Keeler contraction according to the
x, y; y, z rule. Disprove or prove the formulated theorem, thereby contributing to
the ongoing discourse in this area.

3. In most works on fixed point metric theory and Prešić’s approach, we encounter the
Prešić–Picard sequence given by xn+k = T(xn, xn+1, . . . , xn+k−1), which demonstrates
that the defined sequence xn is Cauchy. If the mapping T is continuous, the existence
of a point u from X such that u = T(u, . . . , u) directly follows. In many works where
Prešić’s approach has been considered, the continuity of the mapping T is not assumed.
The natural question arises: Can we find an example of a metric space (X, d) and a
mapping T from X to itself that is not continuous?

Addressing these open problems could potentially yield valuable insights and ad-
vancements in the field of functional and nonlinear analysis, building upon the foundation
laid out in this survey paper. Additionally, these inquiries offer avenues for future research
and exploration within the domain of Prešić-type mappings and related contractions.
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7. Chen, Y.Z. A Prešić type contractive condition and its applications. Nonlinear Anal. 2009, 71, 2012–2017. [CrossRef]
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17. Marjanović, M.; Prešić, S. B. Remark on the convergence of a sequence. Publ. Fac. d’É lectrotech. L’Univ. 1965, 155, 63–64.

http://doi.org/10.4064/fm-3-1-133-181
http://dx.doi.org/10.1090/S0002-9947-1977-0433430-4
http://dx.doi.org/10.1016/j.na.2009.03.006
http://dx.doi.org/10.1155/2013/295093
http://dx.doi.org/10.1186/s13663-015-0262-0
http://dx.doi.org/10.1186/1687-1847-2012-38
http://dx.doi.org/10.2298/FIL1504713A
http://dx.doi.org/10.1186/1029-242X-2014-149
http://dx.doi.org/10.1142/S1793524523500687
http://dx.doi.org/10.1007/s11075-024-01762-7


Symmetry 2024, 16, 415 12 of 13

18. Ahmad, J.; Al-Mezel, S.A.; Agarwal, R.P. Fixed Point Results for Perov-Ćirić-Prešić-Type Q-Contractions with Applications.
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39. Rao, K.P.R.; Ali, M.M.; Fisher, B. Some Prešić Type Generalizations of the Banach Contraction Principle. Math. Moravica 2011, 15,

41–47. [CrossRef]
40. Rao, K.P.R.; Kishore, G.N.V.; Ali, M.M. A generalization of the Banach contraction principle of Prešić type three maps. Math. Sci.
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45. Shukla, S.; Nashine, H.K. Cyclic-Preš ić-Ćirić operators in metric-like spaces and fixed point theorems . Nonlinear Anal.-Model.

Control 2016, 21, 261–273. [CrossRef]
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