
Citation: Yuan, Z.; Tang, X.; Ning, H.;

Yang, Z. LW-YOLO: Lightweight Deep

Learning Model for Fast and Precise

Defect Detection in Printed Circuit

Boards. Symmetry 2024, 16, 418.

https://doi.org/10.3390/

sym16040418

Academic Editor: Changxin Gao

Received: 1 March 2024

Revised: 26 March 2024

Accepted: 28 March 2024

Published: 3 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

LW-YOLO: Lightweight Deep Learning Model for Fast and
Precise Defect Detection in Printed Circuit Boards
Zhaohui Yuan ∗, Xiangyang Tang ∗ , Hao Ning and Zhengzhe Yang

School of Software, East China Jiaotong University, Nanchang 330013, China;
2022218083500011@ecjtu.edu.cn (H.N.); 2022218083500019@ecjtu.edu.cn (Z.Y.)
* Correspondence: yuanzh@whu.edu.cn (Z.Y.); xytang@ecjtu.edu.cn (X.T.)

Abstract: Printed circuit board (PCB) manufacturing processes are becoming increasingly complex,
where even minor defects can impair product performance and yield rates. Precisely identifying PCB
defects is critical but remains challenging. Traditional PCB defect detection methods, such as visual
inspection and automated technologies, have limitations. While defects can be readily identified
based on symmetry, the operational aspect proves to be quite challenging. Deep learning has shown
promise in defect detection; however, current deep learning models for PCB defect detection still face
issues like large model size, slow detection speed, and suboptimal accuracy. This paper proposes a
lightweight YOLOv8 (You Only Look Once version 8)-based model called LW-YOLO (Lightweight
You Only Look Once) to address these limitations. Specifically, LW-YOLO incorporates a bidirectional
feature pyramid network for multiscale feature fusion, a Partial Convolution module to reduce
redundant calculations, and a Minimum Point Distance Intersection over Union loss function to
simplify optimization and improve accuracy. Based on the experimental data, LW-YOLO achieved an
mAP0.5 of 96.4%, which is 2.2 percentage points higher than YOLOv8; the precision reached 97.1%,
surpassing YOLOv8 by 1.7 percentage points; and at the same time, LW-YOLO achieved an FPS of
141.5. The proposed strategies effectively enhance efficiency and accuracy for deep-learning-based
PCB defect detection.

Keywords: printed circuit boards (PCBs); defect detecting; deep learning; lightweight model; multi-
scale feature fusion

1. Introduction

As the complexity of PCB (printed circuit board) manufacturing processes escalates,
even minor defects can significantly impair product performance, leading to diminished
yield rates [1]. It is critical to precisely identify defects such as shorts, open circuits, spurs,
spurious copper, mouse bites, and missing holes [2] in PCB production and usage to enhance
product yield. Traditional PCB defect detection methods encompass visual inspection and
automated defect detection technology [3,4]. The former hinges on manual observation for
the identification of small surface defects, demanding sustained attention and being prone to
visual fatigue and distraction-induced errors [5]. The latter comprises methods like optical
inspection, X-ray inspection, and infrared thermal imaging [6], providing high detection
efficiency and accuracy but necessitating costly equipment and time. These methods may
even inflict damage on the PCB. Utilizing symmetry features for PCB defect detection can
effectively identify and classify defects such as scratches, cracks, stains, and missing solder
joints, enabling timely rectification of potential issues. Zhang proposed a method based
on convolutional neural networks for accurately classifying and recognizing symmetry in
planar engineering structures [7]. However, the classification accuracy achieved was 86.69%,
indicating a need for further improvement. Hence, devising high-precision and high-efficiency
methods for detecting PCB defects continues to pose a challenge.

Deep learning image recognition algorithms have demonstrated impressive success
across various fields [8–11]. Their integration with PCB defect detection displays good

Symmetry 2024, 16, 418. https://doi.org/10.3390/sym16040418 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16040418
https://doi.org/10.3390/sym16040418
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0009-0007-7943-9698
https://doi.org/10.3390/sym16040418
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16040418?type=check_update&version=1

Symmetry 2024, 16, 418 2 of 20

adaptability [12–14] and has shown progress. The deep learning object detection method
involves training neural network models to identify PCB surface defects, including steps
such as constructing annotated datasets, designing network architectures, and adjusting
training parameters and strategies. During the training process, weight parameters are
continuously updated to reduce loss values, improve accuracy, and ultimately evaluate
model performance through valid or test sets. Research results indicate that this method is
effective in detecting PCB defects. Wei et al. utilized Automatic Optical Inspection (AOI)
technology and CNN for PCB defect detection [15], demonstrating higher accuracy and
stability compared with traditional methods. Due to the complexity of AOI technology
involving multiple fields such as computer science, optoelectronics, machine vision, and
pattern recognition, further improvements are needed in algorithm real-time performance,
preprocessing accuracy, and defect classification precision. Kaya et al. proposed a method
utilizing a deep-learning-based hybrid optical sensor for the noncontact detection and
classification of small-sized defects on large PCBs, addressing issues of time consumption
and fatigue [16]. However, the method involves the use of optical microscopic sensors,
which introduces operational complexity. Kim et al. proposed a PCB detection system based
on a skip-connection convolutional autoencoder, achieving efficient defect detection [17].
However, this method uses manually generated PCB defect images, which requires further
model verification of actual PCB defect data, and the inference speed needs to be improved.

Ding et al. [2] proposed a small defect detection network called TDD-Net, achieving
notable results by leveraging the multiscale and pyramid-level characteristics of deep con-
volutional networks in constructing a feature pyramid with high portability. Hu et al. [18]
proposed an improved Faster-R-CNN model, utilizing ResNet50 as the backbone network
and fusing GARPN (Region Proposal by Guided Anchoring) and ShuffleNetV2 residual
units. Peishu Wu et al. [19] proposed an improved multiscale small target detection method
and validated its efficacy and satisfactory results on the PCB dataset. Liao et al. [20] en-
hanced the YOLOv4 network, proposed the YOLOv4-MN3 model, and achieved accurate
surface defects detection on PCB using the MobileNetV3 backbone network and optimiza-
tion strategy. The experimental results reveal that the model attained performance of
up to 98.64% mAP and 56.98 FPS (Frames Per Second) on six different surface defects.
Cheng et al. [21] proposed a fast Tiny RetinaNet network to address the class imbalance
problem by mitigating the influence of easily classified samples on classification results.
Yu et al. [22] improved small defect detection by proposing DFP (diagonal feature pyramid)
to enhance performance. Other deep-learning-based PCB defect detection algorithms in-
clude [23,24], but most of these methods generally suffer from large model sizes and slow
detection speed issues. For instance, the parameters of the aforementioned models usually
exceed 60 MB, and the detection speed typically falls below 90 FPS, making it challenging
to meet the high-performance demands of PCB industrial production.

To effectively augment the efficiency of deep-learning-based PCB defect detection
algorithms and achieve lightweight detection models, this paper posits the following
improvement strategies based on previous work: Firstly, we design a multiscale feature
fusion structure founded on the characteristics of the BiFPN (Bidirectional Feature Pyramid
Network) [25] network structure to tackle the issue of missing and displaced features in
FPN (Feature Pyramid Network) [26] and PAN (Path Aggregation Network) [27] structures,
thereby enhancing model accuracy while decreasing model size. Secondly, to address the
issue of large calculation load and slow inference speed caused by the Bottleneck structure
used in C2f (CSPDarknet53 to 2-Stage FPN), we utilize PConv (Partial Convolution) to
optimize the conventional convolution structure based on the FasterNet [28] network
structure characteristics, effectively reducing calculation load and boosting model inference
speed. Thirdly, to solve the problem that the CIoU (Complete Intersection over Union) loss
function cannot optimize prediction boxes and ground truth boxes when they share the
same aspect ratio, leading to a complex computation process, we optimize the loss function
based on MPDIoU (Minimum Point Distance Intersection over Union) [29] to improve
accuracy and simplify the computation process.

Symmetry 2024, 16, 418 3 of 20

Drawing on the above research and thinking in addressing the issue of defect detection
in printed circuit boards, this study is grounded in the relevant literature [25,26,28,30],
with a focus on exploring the optimization of detection accuracy and inference speed.
A novel improved model, LW-YOLO, is proposed for this problem, which integrates
three optimization strategies, including network structure enhancement and algorithm
optimization, leading to improved detection accuracy and inference speed. The primary
contributions of this paper are as follows:

1. We propose a straightforward and efficient bidirectional feature pyramid network to
effectively fuse features of different scales, thereby improving object detection accuracy.

2. We optimize the Bottleneck convolution structure based on the FasterNet module
network structure design and introduce it into the new model, reducing redundant
calculations and memory access while enhancing detection speed.

3. We introduce a new loss measurement method based on MPDIoU, which overcomes
existing loss function limitations and improves object detection task convergence
speed and regression result accuracy.

The rest of this paper is organized as follows: Section 2 introduces the proposed
method in detail, and Section 3 introduces image preprocessing and related information
about the dataset used in this paper. In Section 4, we evaluate the performance of this model
through ablation experiments and comparative experiments. Finally, Section 5 summarizes
the entire paper.

2. Methodology
2.1. YOLOv8 Model

The YOLOv8 algorithm is an efficient one-stage object detection method that consists
of several key modules: input preprocessing, backbone network, neck module, and output
processing. In the input preprocessing stage, the algorithm processes the input image
through techniques such as data augmentation, adaptive anchoring calculation, and adap-
tive grayscale filling. The backbone network and neck module are the core of the YOLOv8
network, extracting features of different scales from the input image through a series of
convolution and feature extraction operations. The neck module, an improvement on the
C3 module, leverages the advantages of the ELAN structure [31] and introduces bottleneck
modules to enhance gradient branches for better capture of gradient flow information.
Overall, the YOLOv8 algorithm retains its lightweight characteristics while enhancing the
richness of gradient information. Figure 1 illustrates the basic structure of this algorithm.

C C2f

C C2f

U

U
C C2f

C2f
Conv

Conv
C

Detect
Detect
Detect

4×reg_max

nc

P1

P2

P3

P4

P5

P3

P4

P5
Bbox.

Cls.

CIoU
+DFL

BCE

YOLOv8
Neck

YOLOv8
Backbone

YOLOv8
Head

YOLOv8
Loss

Figure 1. YOLOv8 network structure diagram.

The backbone network and Neck section integrate the design principles of YOLOv7
ELAN, replacing the C3 structure in YOLOv5 with the C2f structure to enhance feature
representation capability. Additionally, they employ a decoupled head structure to separate
classification and detection tasks. The introduction of TaskAlignedAssigner for positive
sample assignment strategy and Distribution Focal Loss for loss calculation comprehen-
sively improves object detection performance.

2.2. LW-YOLO Model

This study draws upon the YOLOv8 model, proposing three enhancements to address
its limitations, resulting in a novel network model termed LW-YOLO. The network structure

Symmetry 2024, 16, 418 4 of 20

of LW-YOLO is depicted in Figure 2, while Figure 3 demonstrates the detailed structure
of LW-YOLO, which comprises three components, Backbone, Neck, and Head, which are
elaborated upon in the following sections.

F

C2f

U

F

C2f

F

U

F

CBS

C2f

F

CBS

C2f

C2f

CBS

Head

Head

Head

CSPDarknet Backbone BiFPN Neck Decoupled Head

MPDIoU
+DFL

BCE

4×reg_max

nc

Bbox

Cls

CBS : Conv+BN+SiLU

U : Upsample

F : Fusion(BiFPN)

C2f : C2f

Head : Bbox Loss+Cls Loss
P1

P2

CBS

CBS

CBS

P3

P4

P5

(a) (b) (c) (d)

Figure 2. The network architecture of LW-YOLO: (a) The C2f in the backbone network undergoes
lightweight transformation. (b) BiFPN is introduced as the Neck to enable feature propagation across
different levels. (c) MPDIoU is used as the loss function to simplify the computation. (d) Module
Explanation.

CBS 0

CBS 1
C2f_Faster 2

CBS 3

C2f_Faster 4

CBS 5

C2f_Faster 6

CBS 7

C2f_Faster 8
SPPF 9

CBS 19
CBS 10

CBS 11 CBS 12

Upsample 13Fusion 14C2f 15Upsample 16Fusion 17C2f 18Fusion 20

C2f 21 CBS 22 Fusion 23 C2f 24 CBS 25 Fusion 26 C2f 27

Detect Detect Detect

...

640×640×3

BackboneInput

P1

P2

P3 P4 P5

160×160×128×w 160×160×128×w 80×80×256×w 40×40×512×w 20×20×512×w×r

10×10×256×w×r20×20×256×w

40×40×256×w

80×80×256×w

20×20×256×w×(r+1)
20×20×256×w×r

40×40×256×w80×80×512×w
80×80×512×w

40×40×256×w 40×40×512×w 20×20×256×w 20×20×512×w×（r+1）

80×80×256 40×40×256
20×20×256

Neck

Head

Figure 3. The LW-YOLO adopts a flexible network structure, where the size of feature maps is
controlled by parameters w (width) and r (ratio). By adjusting these parameter values, the model size
can be customized to meet specific requirements for different application scenarios.

The Backbone extracts the feature representation of the input image and conveys it
to subsequent layers for detection. This component incorporates a convolutional neural
network, specifically CSPDarknet53 [32], renowned for its high precision, lightweight
design, robust feature extraction capability, and transferability. The C2f module employs
the compact FasterNet module structure to minimize the model’s size without significantly
compromising accuracy.

The Neck is utilized to extract multiscale features based on the backbone network. In
LW-YOLO, we integrated the BiFPN structure, which effectively disseminates both high-level
semantic information and low-level detail information. This integration aids in accurately
locating and recognizing objects, delivering more precise detection results across various scales.
Furthermore, BiFPN incorporates a lightweight feature fusion module, reducing network
parameters and computational complexity while enhancing efficiency and speed.

Symmetry 2024, 16, 418 5 of 20

The Head, the central component of the LW-YOLO model, generates the output results
of object detection. It comprises a series of convolutional layers and fully connected layers,
amalgamating classifiers and regressors. The classifier identifies the presence of objects
in the image and categorizes them accordingly. The regressor predicts the bounding box
position and size of the objects. LW-YOLO employs the MPDIoU loss function, facilitating
accurate prediction of the position and shape of bounding boxes, thereby boosting the
model’s performance and precision.

To facilitate readability, we provided annotations for the abbreviations used in this
article, as shown in Table 1.

Table 1. Explanation of abbreviations.

Abbreviation Explanation

YOLO You Only Look Once
YOLOv8 You Only Look Once version 8

SSD Single Shot MultiBox Detector
RCNN Regions with CNN Features

Fast R-CNN Fast Region-Based CNN
GARPN Region Proposal by Guided Anchoring

FPS Frames Per Second
DFP Diagonal Feature Pyramid

BiFPN Bidirectional Feature Pyramid Network
FPN Feature Pyramid Network
PAN Path Aggregation Network
C2f CSPDarknet53 to 2-Stage FPN

PConv Partial Convolution
CIoU Complete Intersection over Union

MPDIoU Minimum Point Distance Intersection over
Union

Conv Contrary to Standard Convolution
PWConv Pointwise Convolution

IoU Intersection over Union
mAP mean Average Precision

mAP0.5 mean Average Precision at Intersection over
Union (IoU) Thresholds of 0.5

mAP0.5:0.95 mean Average Precision at Intersection over
Union (IoU) Thresholds of 0.5:0.95

P Precision Rate
R Recall Rate

FLOPs Floating Point Operations Per Second

2.3. Feature Extraction Network

In deep learning network models, an increase in the number of layers can lead to
information distortion or compression at each layer, resulting in feature loss. The inte-
gration of feature information from multiple scales can augment the model’s detection
capability and enhance detection result accuracy. In the YOLOv8 model, the Neck network
employs the FPN and PAN network structures. While FPN propagates semantically rich
features from deep layers to shallow layers via upsampling, fusing feature information
from different scales, PAN propagates position information contained in shallow feature
layers to deep feature layers through downsampling, augmenting position and semantic
correlations. Despite enhancing the network’s feature extraction capability, this combina-
tion introduces issues: PAN’s input primarily depends on the multiscale features supplied
by FPN, potentially leading to the loss or partial replacement of some low-level original
features. Consequently, unique details and local information in the backbone network may
not be fully transmitted to the PAN network. To rectify these limitations of the original
feature extraction network, we introduce an adjusted network structure termed BiFPN.
This novel structure combines top-down and bottom-up feature fusion to enhance object

Symmetry 2024, 16, 418 6 of 20

detection task accuracy and performance by addressing shallow feature loss. Figure 4
contrasts the structures of FPN, PAN, and BiFPN, clearly illustrating BiFPN’s advantages.

(a) FPN structure (b) PAN structure (c) BiFPN structure

P7

P6

P5

P4

P3

P7

P6

P5

P4

P3

P7

P6

P5

P4

P3

Figure 4. The design of the feature network: (a) FPN with a top-down pathway. (b) PAN adding a
bottom-up pathway on top of FPN. (c) BiFPN implementing two optimizations for cross-scale connections.

BiFPN is an improved structure based on the PAN network. With respect to bidirec-
tional cross-scale connections, we implement several key steps to enhance the feature fusion
effect. Firstly, we eliminate nodes with only one input edge due to their relatively minor
contribution to the results, thereby simplifying the network structure and reducing compu-
tational costs. Secondly, we establish a connection between the original input node and
the output node, enabling more feature information to be fused at a lower cost, increasing
feature diversity, and enhancing overall expressive power. Lastly, we merge top-down and
bottom-up paths into a single module, allowing the module to be stacked repeatedly for
higher-level feature fusion. These enhancements render BiFPN more potent and efficient
in terms of feature fusion capability. To fuse weighted features, BiFPN introduces a rapid
normalization fusion method, as demonstrated in Equation (1). In this method, each feature
learns a weight to represent its importance and differentiate between various features for
discriminative fusion.

In Equations (1)–(3), Wi denotes the weight learned through the Rectified Linear
Unit (ReLU) activation function, which modulates the contribution levels of various input
features. The symbol ε represents a small value (for instance, 0.0001), employed to augment
the stability of the denominator in the equation. The weights learned, Wi (Wi ≥ 0 , Ii
representing input features), are confined to non-negative ranges by the ReLU activation
function, ensuring weight stability and rationality. This fusion methodology intensifies
feature fusion effects and bolsters the model’s adaptability to diverse features.

O = ∑
i

wi

ε + ∑j wj
· Ij (1)

Ptd
6 = Conv

(
W1 · Pin

6 + W2 · Resize(Pin
7)

W1 + W2 + ε

)
(2)

Pout
6 = Conv

(
w

′
1 · Pin

6 + w
′
2 · Ptd

6 + w
′
3 · Resize(Pout

5)

w′
1 + w′

2 + w′
3 + ε

)
(3)

For performing cross-scale connections and weighted feature fusion, BiFPN extracts P2,
P3, P4, and P5 features from the backbone as BiFPN input. Using node P6 as an illustration,
the fusion process of two features is depicted in Figure 4c. Ptd

6 symbolizes intermediate
features from top-down (the blue circle in the middle); Pout

6 signifies output features from
bottom-up (the blue circle on the right); and Pin

6 and Pin
7 represent left input features. Resize

is typically used for resolution matching through upsampling or downsampling interpola-

Symmetry 2024, 16, 418 7 of 20

tion, while Conv is generally employed for feature processing via convolution operations.
By leveraging mutual connections and fusion between different levels, BiFPN successfully
achieves bidirectional cross-scale transmission and efficiently integrates information via
rapid normalization fusion.

2.4. Bottleneck Lightweighting

As neural networks increase in layer quantity, the number of feature map channels also
expands. However, as multiple channels of feature maps may contain similar or identical
information, redundancy between feature maps may occur. This redundancy necessitates
additional floating-point operations (FLOPs), resulting in increased computational delay.

For an input feature of size h × w × c , when performing convolutional operations
using a k × k convolutional kernel, the required memory access can be calculated using
Equation (4), where c is the number of input data channels.

h × w × 2c + k2 × c ≈ h × w × 2c (4)

DWConv (Depthwise Convolution) [33] computes output channel features using
sliding operations on each input channel, and the required memory access can be calculated
as Equation (5), where c′ is the number of input data channels.

h × w × 2c′ + k2 × c′ ≈ h × w × 2c′ (5)

DWConv is often used with PWConv (Pointwise Convolution) [34] to improve model
accuracy, which means c′ > c , where the memory access of PWConv is typically larger than
that of Conv(Contrary to standard Convolution), leading to increased latency. To improve
detection speed and reduce memory access, a new convolution module needs to be introduced
to replace the conventional convolution and solve the inefficiency problem of DWConv.

Unlike Conv and DWConv, PConv in FasterNet applies regular convolution to a
subset of input channels to extract spatial features, rather than convolving the entirety
of the input channel. If the feature maps are stored in a continuous or regular pattern in
memory, the first or last continuous channel can adequately represent the entire feature
map. Experimental findings [28] demonstrate that PConv, when compared with standard
Conv, markedly diminishes computational complexity, necessitating only 1/16 of the
computational operations. Similarly, PConv also curtails memory access to merely 1/4 of
that required by traditional convolution.

Drawing parallels to DWConv, FasterNet introduces PWConv based on PConv to
capture correlations between input channels. As depicted in Figure 5, by integrating
PWConv with PConv, two distinct structures are formed: a T-shaped Conv structure and
two independent convolution structures.

k 1

k c
1

k

k

c-cp

cp
k

k

c

(a) (b) (c)

Figure 5. The structures of different convolution modules. (a) PConv+PWConv. (b) T-shaped Conv.
(c) Regular Conv.

The T-shaped convolution structure incorporates a Pointwise Convolution (PWConv)
layer on the foundation of Partial Convolution (PConv), performing convolutional oper-

Symmetry 2024, 16, 418 8 of 20

ations on the spatial dimension to further extract features. Compared with conventional
Conv, the T-shaped Conv places greater emphasis on features at the central position.
Although the T-shaped convolution module can directly adopt higher computational effi-
ciency, it demands more FLOPs and is computationally more complex relative to PConv
and PWConv. For identical input and output feature maps, the FLOPs of T-shaped Conv
and two independent convolutions are demonstrated in Equation (6) and Equation (7),
respectively. Here, c > cp and c − cp > cp, cp are the first or last channel numbers of the
channels stored contiguously in memory.

FLOPsT-shaped = h × w × (k2 × cp × c + c × (c − cp)) (6)

FLOPs(PConv+PWConv) = h × w × (k2 × c2
p + c × cp) (7)

The FasterNet module comprises three convolutional layers, as depicted in Figure 6,
one of which is the PConv layer and the remaining two are PWConv layers. The Bottleneck
module of C2f is supplanted by the FasterNet module, as illustrated in Figure 7. By imple-
menting PConv, we can reduce model computation while preserving accuracy. Relative to
the original Bottleneck structure, each FasterNet module incurs a computational cost of
approximately 1/16. This is attributable to the fact that in the FasterNet module, we only
convolve 1/4 of the original channel number, and the computational cost of subsequent
1 × 1 convolution is relatively marginal. Consequently, the computational cost of the
entire FasterNet module can be roughly 1/16 of the Bottleneck structure. By optimizing
the Bottleneck structure in YOLOv8, our enhancement scheme yielded significant results
in reducing computational load and improving inference speed, a fact that is thoroughly
corroborated in the experimental section in Section 4.

c

h

w

cp

 : Filter

...

k

k
cp

ch

w

c
p

*

identity

input output

 : Convolution
Patial Convolution

(PConv)

PConv

PWConv

BN

ReLU

PWConv

+

FasterNet
Block

*

Figure 6. The structure of the FasterNet module.

Symmetry 2024, 16, 418 9 of 20

CBS

CBS

C2f

CBS

C2f

CBS

C2f

CBS

C2f

SPPF

CBS

split

Bottleneck

Bottleneck

Concat

CBS

... ...n

CBS

split

FasterBlock

FasterBlock

Concat

CBS

... ...n

Figure 7. The improvement in the backbone network by introducing the FasterNet module, replacing
the Bottleneck in C2f.

2.5. Loss Function

Given that defects on Printed Circuit Boards are typically minuscule, a judiciously de-
signed loss function can significantly enhance the model’s target detection performance. In
target detection, the bounding box regression loss function is pivotal and directly influences
the model’s performance. While the Complete Intersection over Union (CIoU) [35] loss
function factors in a penalty term for aspect ratio during the computation of the bounding
box regression loss, it exhibits a limitation: when the actual bounding box and predicted
bounding box share the same aspect ratio but differ in terms of width and height values,
the CIoU loss function fails to accurately represent the true disparities between these two
bounding boxes. This leads to a reduction in the convergence speed and accuracy of
bounding box regression. The formula for CIoU can be articulated as Equation (8):

LCIoU = 1 − IoU +
ρ2(b, bgt)

c2
w + c2

h
+

4
π2 (tan−1 wgt

hgt − tan−1 w
h
) (8)

As Equation (8) shows, the Intersection over Union (IoU) denotes the ratio of the inter-
secting area of the predicted bounding box and the actual bounding box to their combined
area. The parameters implicated in the formula are illustrated in Figure 8. The term ρ(b, bgt)
signifies the Euclidean distance between the center of the actual box and the predicted box;
h and w, respectively, correspond to the height and width of the predicted box; hgt and wgt,
respectively, represent the height and width of the actual box; and ch and cw, respectively,
denote the height and width of the smallest enclosing box formed by the predicted box and
actual box.

Symmetry 2024, 16, 418 10 of 20

����(�, ���)

�(�, ���)

���

��

��

�

�
(��� , ���)

(���
��, ���

��)

Predicted
box

Real box

�
�

Figure 8. The CIoU loss function.

MPDIoU is a bounding box similarity measurement technique predicated on minimum
point distance. It holistically considers various related factors in existing loss functions.
Compared with other loss functions, MPDIoU simplifies the similarity comparison between
bounding boxes, is suitable for bounding box regression considering both overlapping
and nonoverlapping scenarios, and attains superior efficiency and accuracy in bounding
box regression tasks. MPDIoU employs a novel IoU-based measurement approach, which
directly minimizes the distance between the upper-left corner and lower-right corner points
of the predicted bounding box and actual bounding box to assess their similarity. This
method circumvents traditional area measurement and concentrates on specific positional
information of bounding boxes, thereby measuring their similarity with greater precision.
The computation method of MPDIoU is as follows:

As Equations (9)–(12) show, A and B are two arbitrary convex polygons, and the
parameters involved in the formula are shown in Figure 9. w and h are, respectively, the
width and height of the input image. (xA

1 , yA
1), (xA

2 , yA
2), (xB

1 , yB
1), (xB

2 , yB
2), respectively,

represent the coordinates of the upper-left corner and lower-right corner points of A and B.

d2
1 = (xB

1 − xA
1)

2 + (yB
1 − yA

1)
2 (9)

d2
2 = (xB

2 − xA
2)

2 + (yB
2 − yA

2)
2 (10)

MPDIoU =
I

Agt + Aprd + I
−

d2
1

w2 + h2 −
d2

2
w2 + h2 (11)

LMPDIoU = 1 − MPDIoU (12)

The MPDIoU loss function is used in target detection tasks to help the model accurately
predict the position and shape of bounding boxes by measuring their correlation and
overlap. Compared with the original CIoU loss function, the MPDIoU loss function
provides a more accurate way to measure bounding boxes, which can effectively improve
the performance and accuracy of detection models during training and optimization.

Symmetry 2024, 16, 418 11 of 20

(��
���, ��

���)

(��
��, ��

��)

(��
��, ��

��)

(��
���, ��

���)
h

w

d1

d2

���

����

�
Real box

Predicted box

Figure 9. The LW-YOLO loss function.

3. Image Preprocessing and Dataset

The dataset employed for experimentation in this study is derived from the PCB defect
dataset released by the Open Laboratory of Peking University. The dataset comprises
1386 PCB images, each averaging a pixel size of 2777 × 2138. It encompasses six distinct
types of defects: missing hole, open circuit, short, spur, spurious copper, and mouse bite.
Figure 10 presents sample images of these defects. Given the relatively limited number of
training samples in the original dataset, the model is susceptible to overfitting on these
sparse samples, leading to issues such as poor generalization capability, imprecise parame-
ter estimation, overly intricate network, etc. These challenges can be effectively mitigated
by suitably enhancing the original images and augmenting the number of images [36].
Concurrently, various transformations can be applied to the images to bolster the model’s
generalization capability, robustness, and curb overfitting, thereby enhancing the model’s
performance and efficacy (Figure 11). In this study, following random flipping, rotation,
translation, scaling, and cropping operations, the quantity of images in the dataset was
expanded to 2272. To train and evaluate the model, the dataset was partitioned into a
training set, validation set, and test set in a ratio of 7:2:1. Table 2 exhibits the distribution of
each type of defect image data in the dataset. Post data augmentation, the mean Average
Precision (mAP) escalated from 91.81% to 94.20% in Table 3.

Table 2. The types and quantities of PCB datasets.

Defects Number

missing hole 460
open circuit 464

short 464
spur 460

spurious coper 464
mouse bite 460

total 2272

Symmetry 2024, 16, 418 12 of 20

Table 3. The original dataset with the augmented dataset.

Category Original Dataset Augmented Dataset

Number of images 1386 2272
Number of defects 5906 11,812

mAP:0.5(%) 91.81 94.20

(a) short (b) open circuit (c) spur

(d) spurious copper (e) mouse bite (f) missing hole

Figure 10. Six types of defects on printed circuit boards: (a) short, (b) open circuit, (c) spur, (d) spuri-
ous copper, (e) mouse bite and (f) missing hole.

Random
rotate,
flipping,
cropping.etc

Figure 11. Images obtained using augmentation techniques.

4. Experimental Analysis and Discussion
4.1. Evaluation Metrics

To quantitatively assess the performance of the proposed model, we employed multi-
ple evaluation metrics such as P, R, AP, mAP0.5 and mAP0.5:0.95, Floating Point Operations
Per Second (FLOPs), model size, and FPS, as Equation (13)–(17). Precision represents the
accuracy of the model’s predictions on a specific dataset, while recall evaluates the compre-
hensiveness of the model’s detections. AP denotes the model’s precision within a given

Symmetry 2024, 16, 418 13 of 20

category. TP and False FP represent the number of accurately and inaccurately identified
samples, respectively, while False Negatives FN signifies the number of samples incorrectly
identified as negative or overlooked by the model. N is the number of PCB defect categories.
FPS measures the real-time processing speed of the algorithm in terms of the number of
images processed per unit time, as depicted in Equation (16), where Fn is the number
of images detected by the model, and T is the time taken to detect the images. IoU is a
metric employed in deep learning to measure the overlap between predicted results and
the ground truth targets.

P =
TP

TP + FP
(13)

R =
TP

TP + FN
(14)

AP =
∫ 1

0
Pi(ri)d((ri)), mAP =

AP
N

(15)

FPS =
Fn

T
(16)

IoU(boxgt,boxp) =

∣∣boxgt ∩ boxp
∣∣

boxgt ∪ boxp
=

TP
FN + FP + TP

(17)

4.2. Model Training

The experimental setup comprises an Ubuntu 20.04 operating system and PyTorch
deep learning framework. Please refer to Table 4 for more detailed information regarding
the experimental environment. Parameters used during training can be found in Table 5.

Table 4. Experimental Environment.

Category Configuration

CPU Intel(R) Xeon(R) Platinum 8255C
GPU NVIDIA GeForce RTX 2080 Ti 11G

System environment Ubuntu20.04
Framework PyTorch 1.12.0

Programming environment Python 3.8

Table 5. Training Parameters.

Parameter Value

Image Size 640 × 640
Learning Rate 0.01
Weight Decay 0.0005
Momentum 0.937
Optimizer SGD
Batch Size 32
Dataloader 8

Epoch 550

Figure 12 illustrates the loss values for each iteration during the model’s training
process. The training loss encompasses box loss, classification loss, and dynamic feature
learning loss, denoted by train/box_loss, train/cls_loss, and train/dfl_loss, respectively.
It can be observed that the loss values for each class initially fluctuate significantly but
gradually stabilize and decrease as training progresses.

Symmetry 2024, 16, 418 14 of 20

train/dfl_losstrain/box_loss train/cls_loss

Figure 12. Loss curve during training.

4.3. Defect Detection Test Results

LW-YOLO undergoes numerous iterations of training to update and optimize param-
eters on the training set, culminating in a set of optimal weights for detection on the test
set. As depicted in Table 6, the experimental outcomes suggest that Missing Hole, Open
Circuit, Short, and Spurious Copper exhibit higher precision, recall, and Average Precision
(AP) values. This can be attributed to these defect categories possessing distinct features,
fixed shapes, and being less susceptible to other random shapes or external factors such
as background interference. Conversely, the spur and mouse bite categories demonstrate
lower recall and AP compared with other categories due to their random shapes and
similarity, rendering them more prone to false detections when there are ample defect
instances. By employing image processing techniques such as cropping and brightness
adjustment to modify the background information, we can accentuate defect features for
improved detection. As shown in Figure 13, the results indicate that both spur and mouse
bite types of defects possess AP values surpassing 0.9. Figure 14 illustrates the detection
results for various defects, where all defects are successfully detected with confidence
scores exceeding 0.8.

Table 6. Test Results for Detection of Six Types of Defects.

Defects Missing Hole Open Circuit Short Spur Spurious Copper Mouse Bite

Precision 0.983 0.977 0.988 0.986 0.981 0.971
Recall 0.997 0.92 0.994 0.905 0.987 0.92

AP 0.995 0.974 0.993 0.971 0.985 0.92
mAP 0.964

Pr
ed

ic
te

d

True
True

missing
_hole

mouse_
bite

open_cir
cuit

short

spur

spurious
_copper

backgro
und FN

missing
_hole

mouse_
bite

open_cir
cuit

short spur spurious
_copper

backgro
und FP

1.0

0.8

0.6

0.4

0.2

0.0

Figure 13. Confusion matrix of LW-YOLO.

Symmetry 2024, 16, 418 15 of 20

Figure 14. Visualization of the test set.

Figure 15 presents the variation in key evaluation metrics during the training process
of our proposed model compared with YOLOv8. These metrics help us understand the
model’s performance and training progress. The results indicate that our proposed model
outperforms YOLOv8 in the first three detection metrics (mAP@50, mAP@50:95, precision)
with significant improvements in the first two metrics. Additionally, our model starts to
stabilize after approximately 150 epochs of training. Compared with YOLOv8, our model
demonstrates better performance in terms of training speed and detection accuracy.

(a) (b)

(c) (d)

mAP@0.5 Comparison

Precision Comparison

mAP@0.5:0.95 Comparison

Recall Comparison

—— YOLOv8
—— LW-YOLO

—— YOLOv8
—— LW-YOLO

—— YOLOv8
—— LW-YOLO

—— YOLOv8
—— LW-YOLO

EpochEpoch

Epoch

m
A

P@
0.

5

m
A

P@
0.

5:
0.

95

Pr
ec

is
io

n

R
ec

al
l

Epoch
0 50 100 150 200 250 3000 50 100 150 200 250 300

0 50 100 150 200 250 300 0 50 100 150 200 250 300

0.6

0.5

0.4

0.3

0.2

0.1

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

Figure 15. (a) Training Curve of mAP0.5 for LW-YOLO and YOLOv8. (b) Training Curve of
mAP0.5:0.95 for LW-YOLO and YOLOv8. (c) Training Curve of Precision for LW-YOLO and YOLOv8.
(d) Training Curve of Recall for LW-YOLO and YOLOv8.

Symmetry 2024, 16, 418 16 of 20

4.4. Ablation Experiment

Table 7 illustrates that the integration of the Bidirectional Feature Pyramid Network
(BiFPN) module enhances precision by 0.5%, while concurrently reducing FLOPs, thereby
improving computational efficiency, conserving energy, and facilitating effective deploy-
ment of the model. The BiFPN module adaptively adjusts feature weights based on their
significance using a dynamic weighting scheme, mitigating feature imbalance and boosting
object detection accuracy. Additionally, by sharing weights and reusing features, the BiFPN
module effectively curtails computational complexity and augments the computational
efficiency of the model. The incorporation of the FasterNet module significantly diminishes
FLOPs. The introduction of the Partial Convolution (PConv) module mitigates computa-
tional redundancy and memory access while enhancing algorithm speed. The addition
of MPDIoU escalates mAP% by 0.5% and precision by 0.9%. MPDIoU is an evaluation
metric that holistically considers target overlap and directional relationships, simplifying
similarity comparisons between two bounding boxes. It is suitable for both overlapping
and nonoverlapping bounding box regression and aids in improving the efficacy and
performance of object detection algorithms.

Table 7. Results of Model Ablation Experiments (Bold and Underlined Data in the Table Represent
the Best Results).

BiFPN FasterNet MPDIoU P (%) R (%) mAP0.5 (%) mAP0.5:0.95 (%) FLOPs (G) FPS

95.4 93.2 94.2 60.1 8.9 138.2
✓ 95.9 92.3 95.6 61.8 7.1 137.1
✓ ✓ 95.8 92.7 95.9 63.0 6.2 144.8
✓ ✓ ✓ 97.1 93.5 96.4 63.4 6.8 141.5

4.5. Performance Comparison of Different Detection Algorithms

In order to evaluate the performance of LW-YOLO objectively, comparative experi-
ments were conducted against other classical single-stage and two-stage detection algo-
rithms. The single-stage detection algorithms incorporated EfficientDet [25], Single Shot
MultiBox Detector (SSD), YOLOv4 with CSPDarknet53 serving as its backbone network,
YOLOv5 supplemented with additional data augmentation strategies and Focus structure,
and YOLOv7 with Efficient Local Attention Network (ELAN) architecture. The represen-
tative two-stage detection algorithm employed was Faster R-CNN, which utilizes region
proposal networks and region classification networks for object detection. The results of
the comparative experiments are presented in Table 8.

Table 8. Comparison of Experimental Results with Different Algorithms (Bold and Underlined Data
in the Table Represent the Best Results).

Models P (%) R (%) mAP0.5 (%) FPS Model Size (MB)

Faster-R-CNN [37] 97.2 92.9 96.3 82.1 478.49
EfficientDet [25] 81.2 89.4 87.4 140.3 68.5

SSD [30] 82.5 81.3 81.9 129.2 91.6
YOLOv4 [38] 68.5 69.4 68.1 115.2 244.07
YOLOv5 [39] 91.2 90.3 91.1 129.3 5.3
YOLOv7 [31] 92.9 91.3 93.8 131.4 12.4

YOLOv8 95.4 93.2 94.2 138.2 6.3
LW-YOLO(Ours) 97.1 93.5 96.4 141.5 6.5

Based on the experimental outcomes, while EfficientDet exhibits superior detection speed,
its detection accuracy remains suboptimal, rendering it unsuitable for detecting surface defects
on PCBs. Early YOLO series algorithms (such as YOLOv4) possess intricate network structures
and a large quantity of parameters, yet their detection accuracy is relatively low. Conversely,
YOLOv5n, YOLOv7, and YOLOv8 adopt smaller model sizes and fewer parameters, leading
to enhanced detection performance. LW-YOLO surpasses algorithms such as YOLOv4,
YOLOv5, and YOLOv7 in terms of mAP and detection speed. When its detection speed

Symmetry 2024, 16, 418 17 of 20

is comparable to that of the YOLOv8 algorithm, LW-YOLO exhibits a higher mAP value,
demonstrating superior detection performance. Compared with the Faster R-CNN model,
LW-YOLO achieves a similar mAP but a significantly faster detection speed. Furthermore,
the improved algorithm model has a compact size of only 6.5 MB, which is substantially
smaller than the Faster R-CNN model and marginally larger than the YOLOv8 model, but
it outperforms in terms of detection accuracy and frame rate speed. These results suggest
that our proposed algorithm not only satisfies the prerequisites for real-time detection but
also enhances detection accuracy and provides greater versatility by minimizing model size,
indicating significant potential and practical value for PCB defect detection.

4.6. Loss Function Comparison

To substantiate the superiority of our proposed loss function, we executed a compar-
ative experiment on the loss function, assessing the impact of employing MPDIoU and
several mainstream loss functions on the LW-YOLO model, while maintaining consistency
in other training and classification conditions. The test outcomes, as displayed in Table 9,
suggest that utilizing MPDIoU as the bounding box regression loss yields the most optimal
detection performance. Moreover, the use of MPDIoU results in a 0.5% mAP enhancement
compared with the usage of CIoU, further underscoring the efficacy of the MPDIoU loss
function in bolstering detection performance.

Table 9. Comparison of Detection Results with Different Loss Functions Introduced by LW-YOLO
(Bold and Underlined Data in the Table Represent the Best Results).

Metrics P (%) R (%) mAP0.5 (%) mAP0.5:0.95 (%)

CIoU 95.4 92.7 95.9 60.1
DIoU [35] 95.9 92.6 96.0 63.1
GIoU [40] 94.8 92.8 96.2 62.8
EIoU [41] 94.1 92.5 95.1 62.8
SIoU [42] 97.2 93.4 96.1 62.8
WIoU v1 94.8 92.9 95.8 62.8
WIoU v2 96.1 92.8 95.9 60.1

WIoU v3 [33] 96.9 93.2 96.2 63.2
MPDIoU 97.1 93.5 96.4 63.4

4.7. Performance Comparison on the DeepPCB Dataset

DeepPCB is a PCB defect dataset on GitHub consisting of 1500 PCB images, each con-
taining six types of defects. The original images are 16 k × 16 k pixels, cropped into 640 × 640
subimages and aligned through template matching. The dataset is divided into training and
testing sets, with the trained model tested on the testing set, as shown in Table 10.

Table 10. Comparison of Experimental Results on the DeepPCB Dataset (Bold and Underlined Data
in the Table Represent the Best Results).

Models P (%) R (%) mAP0.5 (%) FPS Model Size (MB)

Faster-R-CNN 91.3 92.8 92.2 22 478.49
SSD 85.4 84.3 86.2 125.3 91.6

YOLOv4 92.1 89.5 92.5 62.8 244.07
YOLOv5 95.3 96.1 93.2 90.8 5.3
YOLOv7 89.2 91.2 94.3 112.3 12.4
YOLOv8 96.3 94.8 94.5 129.1 6.3

LW-YOLO (Ours) 96.7 95.7 95.2 138.1 6.5

Table 10 shows that LW-YOLO outperforms other models in terms of accuracy, mAP0.5 value,
and FPS, achieving 96.7%, 95.2%, and 138.1, respectively. Although the model size of LW-
YOLO is slightly larger than YOLOv8, its accuracy and FPS are superior to YOLOv8.
Compared with YOLOv5, LW-YOLO has a slightly lower recall rate, but it is still within
satisfactory range. Furthermore, compared with the original YOLOv8, LW-YOLO performs

Symmetry 2024, 16, 418 18 of 20

better in terms of accuracy, mAP0.5 value, and recall. Therefore, it can be considered an
excellent model for PCB defect detection.

5. Conclusions

Compared with prevalent object detection network models, this paper introduces a
lightweight model, LW-YOLO, specifically designed for detecting PCB defects. Initially,
this paper addresses the issue of feature information loss in the backbone network by fully
leveraging feature information at various levels, thereby enhancing the model’s detection
capability for objects of different scales. Concurrently, lightweight feature fusion modules
are employed in the BiFPN to diminish the network parameter count and computational
complexity, thus enhancing network computational efficiency and speed. Subsequently, the
lightweight FasterNet module structure is utilized to rectify the redundancy issue of channel
information in feature maps and augment the model’s inference speed. Finally, a novel
MPDIoU loss function is employed to guide the model in accurately predicting the position
and shape of bounding boxes, effectively boosting model performance and accuracy.

The experimental results unequivocally demonstrate that the LW-YOLO object detec-
tion model developed in this study exhibits significant advantages on the PCB dataset. This
model not only outperforms in terms of detection accuracy and speed but also fulfills the
requirements for lightweight deployment. This implies that our model showcases superior
performance in practical industrial applications. It can effectively detect defects or anoma-
lies on PCB, meet the high-precision object detection requirements in the industrial field,
and provide reliable solutions for other domains such as automated production processes,
quality control, and fault detection.

Author Contributions: Writing—original draft, X.T. Writing—review and editing, H.N. and Z.Y.
(Zhengzhe Yang). Supervision, Z.Y. (Zhaohui Yuan). All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Province Science Foundation of Jiangxi, with grant
numbers 20224BAB202030 and 20202ACBL202009.

Data Availability Statement: The data were published in the Open Lab on Human–Robot interaction
of Peking University at https://robotics.pkusz.edu.cn/resources/dataset/, accessed on 1 March 2024.

Acknowledgments: The authors would like to express their sincere thanks to the referees for their
careful reading and suggestions which helped us to improve the paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Liu, Z.; Qu, B. Machine vision based online detection of PCB defect. Microprocess. Microsyst. 2021, 82, 103807. [CrossRef]
2. Ding, R.; Dai, L.; Li, G.; Liu, H. TDD-net: A tiny defect detection network for printed circuit boards. CAAI Trans. Intell. Technol.

2019, 4, 110–116. [CrossRef]
3. Li, Y.T.; Kuo, P.; Guo, J.I. Automatic industry PCB board DIP process defect detection with deep ensemble method. In

Proceedings of the 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), Delft, The Netherlands, 17–19 June
2020; pp. 453–459.

4. Moganti, M.; Ercal, F.; Dagli, C.H.; Tsunekawa, S. Automatic PCB inspection algorithms: A survey. Comput. Vis. Image Underst.
1996, 63, 287–313. [CrossRef]

5. Thomas, S.S.; Gupta, S.; Subramanian, V.K. Smart surveillance based on video summarization. In Proceedings of the 2017 IEEE
Region 10 Symposium (TENSYMP), Cochin, India, 14–16 July 2017; pp. 1–5.

6. Büchi, G.; Cugno, M.; Castagnoli, R. Smart factory performance and Industry 4.0. Technol. Forecast. Soc. Chang. 2020, 150, 119790.
[CrossRef]

7. Zhang, P.; Fan, W.; Chen, Y.; Feng, J.; Sareh, P. Structural symmetry recognition in planar structures using convolutional neural
networks. Eng. Struct. 2022, 260, 114227. [CrossRef]

8. Adibhatla, V.A.; Chih, H.C.; Hsu, C.C.; Cheng, J.; Abbod, M.F.; Shieh, J.S. Defect detection in printed circuit boards using
you-only-look-once convolutional neural networks. Electronics 2020, 9, 1547. [CrossRef]

9. Lin, G.; Tang, Y.; Zou, X.; Cheng, J.; Xiong, J. Fruit detection in natural environment using partial shape matching and probabilistic
Hough transform. Precis. Agric. 2020, 21, 160–177. [CrossRef]

https://robotics.pkusz.edu.cn/resources/dataset/
http://doi.org/10.1016/j.micpro.2020.103807
http://dx.doi.org/10.1049/trit.2019.0019
http://dx.doi.org/10.1006/cviu.1996.0020
http://dx.doi.org/10.1016/j.techfore.2019.119790
http://dx.doi.org/10.1016/j.engstruct.2022.114227
http://dx.doi.org/10.3390/electronics9091547
http://dx.doi.org/10.1007/s11119-019-09662-w

Symmetry 2024, 16, 418 19 of 20

10. Fu, G.; Sun, P.; Zhu, W.; Yang, J.; Cao, Y.; Yang, M.Y.; Cao, Y. A deep-learning-based approach for fast and robust steel surface
defects classification. Opt. Lasers Eng. 2019, 121, 397–405. [CrossRef]

11. Zhao, Z.Q.; Zheng, P.; Xu, S.t.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 2019,
30, 3212–3232. [CrossRef]

12. Tsai, D.M.; Chou, Y.H. Fast and precise positioning in PCBs using deep neural network regression. IEEE Trans. Instrum. Meas.
2019, 69, 4692–4701. [CrossRef]

13. Yoon, H.; Lee, J. Pcb component classification algorithm based on yolo network for pcb inspection. J. Korea Multimed. Soc. 2021,
24, 988–999.

14. Silverstone, A.E.; Rosenbaum, P.F.; Weinstock, R.S.; Bartell, S.M.; Foushee, H.R.; Shelton, C.; Pavuk, M.; Consortium, A.E.H.R.
Polychlorinated biphenyl (PCB) exposure and diabetes: Results from the Anniston Community Health Survey. Environ. Health
Perspect. 2012, 120, 727–732. [CrossRef] [PubMed]

15. Wei, P.; Liu, C.; Liu, M.; Gao, Y.; Liu, H. CNN-based reference comparison method for classifying bare PCB defects. J. Eng. 2018,
1528–1533. [CrossRef]

16. Ustabas Kaya, G. Development of hybrid optical sensor based on deep learning to detect and classify the micro-size defects in
printed circuit board. Measurement 2023, 206, 112247. [CrossRef]

17. Kim, J.; Ko, J.; Choi, H.; Kim, H. Printed Circuit Board Defect Detection Using Deep Learning via A Skip-Connected Convolutional
Autoencoder. Sensors 2021, 21, 4968. [CrossRef]

18. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

19. Zeng, N.; Wu, P.; Wang, Z.; Li, H.; Liu, W.; Liu, X. A small-sized object detection oriented multi-scale feature fusion approach
with application to defect detection. IEEE Trans. Instrum. Meas. 2022, 71, 1–14. [CrossRef]

20. Liao, X.; Lv, S.; Li, D.; Luo, Y.; Zhu, Z.; Jiang, C. YOLOv4-MN3 for PCB surface defect detection. Appl. Sci. 2021, 11, 11701.
[CrossRef]

21. Cheng, M.; Bai, J.; Li, L.; Chen, Q.; Zhou, X.; Zhang, H.; Zhang, P. Tiny-RetinaNet: A one-stage detector for real-time object
detection. In Proceedings of the Eleventh International Conference on Graphics and Image Processing (ICGIP 2019), Hangzhou,
China, 12–14 October 2019; SPIE: Bellingham, WA, USA, 2020; Volume 11373, pp. 195–202.

22. Yu, Z.; Wu, Y.; Wei, B.; Ding, Z.; Luo, F. A lightweight and efficient model for surface tiny defect detection. Appl. Intell. 2023,
53, 6344–6353. [CrossRef]

23. Hu, B.; Wang, J. Detection of PCB surface defects with improved faster-RCNN and feature pyramid network. IEEE Access 2020,
8, 108335–108345. [CrossRef]

24. Mehta, D.; Lu, H.; Paradis, O.P.; MS, M.A.; Rahman, M.T.; Iskander, Y.; Chawla, P.; Woodard, D.L.; Tehranipoor, M.; Asadizanjani,
N. The big hack explained: Detection and prevention of PCB supply chain implants. Acm J. Emerg. Technol. Comput. Syst. 2020,
16, 1–25. [CrossRef]

25. Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790.

26. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2016; pp. 2117–2125.

27. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18-23 June 2018 ; pp. 8759–8768.

28. Chen, J.; Kao, S.h.; He, H.; Zhuo, W.; Wen, S.; Lee, C.H.; Chan, S.H.G. Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural
Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada,
17–24 June 2023; pp. 12021–12031.

29. Siliang, M.; Yong, X. MPDIoU: A Loss for Efficient and Accurate Bounding Box Regression. arXiv 2023, arXiv:2307.07662.
30. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of

the Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings,
Part I 14; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37.

31. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object
detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada,
17–24 June 2023; pp. 7464–7475.

32. Wang, C.Y.; Liao, H.Y.M.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. CSPNet: A new backbone that can enhance learning
capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
13–19 June 2020; pp. 390–391.

33. Tong, Z.; Chen, Y.; Xu, Z.; Yu, R. Wise-IoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism. arXiv 2023,
arXiv:2301.10051.

34. Hua, B.S.; Tran, M.K.; Yeung, S.K. Pointwise convolutional neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 984–993.

35. Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU loss: Faster and better learning for bounding box regression. In
Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12993–13000.

http://dx.doi.org/10.1016/j.optlaseng.2019.05.005
http://dx.doi.org/10.1109/TNNLS.2018.2876865
http://dx.doi.org/10.1109/TIM.2019.2957866
http://dx.doi.org/10.1289/ehp.1104247
http://www.ncbi.nlm.nih.gov/pubmed/22334129
http://dx.doi.org/10.1049/joe.2018.8271
http://dx.doi.org/10.1016/j.measurement.2022.112247
http://dx.doi.org/10.3390/s21154968
http://dx.doi.org/10.1109/TIM.2022.3153997
http://dx.doi.org/10.3390/app112411701
http://dx.doi.org/10.1007/s10489-022-03633-x
http://dx.doi.org/10.1109/ACCESS.2020.3001349
http://dx.doi.org/10.1145/3401980

Symmetry 2024, 16, 418 20 of 20

36. Mushtaq, Z.; Su, S.F. Environmental sound classification using a regularized deep convolutional neural network with data
augmentation. Appl. Acoust. 2020, 167, 107389. [CrossRef]

37. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 28, 1440-1448. [CrossRef] [PubMed]

38. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
39. Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection

on drone-captured scenarios. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC,
Canada, 11–17 October 2021; pp. 2778–2788.

40. Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized intersection over union: A metric and a loss
for bounding box regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long
Beach, CA, USA, 15–20 June 2019; pp. 658–666.

41. Zhang, Y.F.; Ren, W.; Zhang, Z.; Jia, Z.; Wang, L.; Tan, T. Focal and efficient IOU loss for accurate bounding box regression.
Neurocomputing 2022, 506, 146–157. [CrossRef]

42. Gevorgyan, Z. SIoU loss: More powerful learning for bounding box regression. arXiv 2022, arXiv:2205.12740.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.apacoust.2020.107389
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1016/j.neucom.2022.07.042

	Introduction
	Methodology
	YOLOv8 Model
	LW-YOLO Model
	Feature Extraction Network
	Bottleneck Lightweighting
	Loss Function

	Image Preprocessing and Dataset
	Experimental Analysis and Discussion
	Evaluation Metrics
	Model Training
	Defect Detection Test Results
	Ablation Experiment
	Performance Comparison of Different Detection Algorithms
	Loss Function Comparison
	Performance Comparison on the DeepPCB Dataset

	Conclusions
	References

