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Abstract: Nowadays, one of the main challenges facing green innovation management is how to
enhance the performance of innovation processes by utilizing asymmetric input and output data.
Therefore, this paper develops an improved SBM model analysis framework for evaluating the green
innovation efficiency of asymmetric input and output data. The framework is applied to assess the
technical (TE), managerial (PTE), and scale (SE) efficiencies of new energy companies under three
input variables (R&D personnel input, R&D capital input, and comprehensive energy consumption
input), two desirable output variables (green technology output and economic output), and one
undesirable output variable (greenhouse gas emissions). Then, environmental factors and random
factors are eliminated from the obtained input slack variables based on the SFA model, placing
decision-making units in a homogeneous environment. The results demonstrate that TE, PTE, and SE
are improved after eliminating environmental factors and random factors. Subsequently, based on the
entropy method, this paper classifies companies’ green innovation patterns into four categories and
provides targeted solutions. The purpose of this paper is to provide an evaluation method for new
energy companies to understand green innovation efficiency and assist decision makers in identifying
the most optimal resource allocation approach. The proposed improved SBM model contributes to the
literature and to industry practice by (1) providing a reliable evaluation of green innovation efficiency
under asymmetric input and output data; (2) determining effective improvement actions based on
a slack analysis of environmental variables and random variables that lead to improved process
performance; and (3) making fuzzy innovation performance efficient to facilitate understanding and
managing innovation resource allocation quality.

Keywords: improved SBM model; entropy method; asymmetric data; green innovation efficiency

1. Introduction

Currently, economic development faces resource and environmental constraints, ur-
gently requiring a transformation to green and low-carbon development modes. This trans-
formation greatly depends on green innovation support. As important market-oriented
green innovation participants, new energy companies have significantly contributed to
promoting renewable energy development and applications, achieving sustainable devel-
opment and addressing climate change. However, the inception of China’s new energy
companies is relatively late, with core green technologies still suffering from “hollowness”.
Moreover, there is a shortage of funds and high transition costs, posing challenges for green
innovation [1,2]. Therefore, evaluating green innovation efficiency and optimizing green
innovation resource allocation have become problems worthy of in-depth exploration in
the new energy industry.

In practice, different units use different types and quantities of input resources in
the production process and produce different types and quantities of output products or
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services. This diversity leads to asymmetry in data. Companies in different industries
may face completely different market conditions, technologies, and production constraints.
Even in the same industry, there are differences in technical levels and management levels
between companies, which will lead to asymmetric characteristics of input and output data.
This makes it necessary to take asymmetry into account when accurately evaluating the
relative efficiency levels of decision-making units. The strength of the DEA model lies in its
ability to operate without presupposing the form of the production function, thus rendering
it applicable to various types of production systems and asymmetric data. The DEA model
is applicable in asymmetric data scenarios as it represents a non-parametric method for
evaluating efficiency, thereby obviating the need to assume specific data distribution
forms. This characteristic enables DEA to flexibly handle diverse data types, including
asymmetric datasets. In situations involving asymmetric data, traditional parametric
methods may encounter limitations as they typically require data to adhere to specific
distribution assumptions, such as normal distribution. However, real-world data often
exhibit complex distributional features and do not always conform to these assumptions.
Given that DEA does not necessitate assumptions regarding data distribution, it can better
accommodate such circumstances. Furthermore, DEA also effectively handles cases with
multiple inputs and outputs, providing an advantage when assessing the efficiency of
various organizational entities. Hence, in situations characterized by asymmetric and
multiple data, the non-parametric nature and flexibility of DEA render it a suitable choice.

Data Envelopment Analysis (DEA) is a non-parametric linear programming method
used to evaluate the relative efficiency levels of decision-making units (DMUs) with multi-
inputs and multi-outputs. Two DEA models commonly used include the CCR model
and the BCC model. The CCR model was first introduced under the assumption of con-
stant returns to scale by researchers Charnes, Cooper, and Rhodes [3]. Subsequently,
Banker, Charnes, and Cooper [4] modified the assumption to allow for variable returns
to scale, presenting the BCC model. However, these DEA models struggle to handle
undesirable outputs like environmental pollution emissions. To remedy this deficiency,
Tone [5] proposed the SBM model, considering slack variables and incorporating undesir-
able output indicators.

In existing studies, the evaluation of green innovation performance is mainly con-
sidered from a financial perspective along with influencing factors, and rarely from an
input–output perspective, without considering the influence of asymmetric data. In addi-
tion, there is relatively limited literature focusing on the micro-enterprise level, with more
emphasis placed on regional and industrial levels. Studies on new energy companies lack
exploration from the perspective of green innovation, ignore environmental pollution in the
process of green innovation, and fail to consider undesirable outputs. In this context, this
paper constructs an improved SBM model analytical framework, removing the influence of
environmental factors and random factors on green innovation efficiency, and considering
environmental pollution emissions in the innovation process as an undesirable output. This
helps to accurately evaluate green innovation efficiency based on asymmetric input and
output data. Evaluating green innovation efficiency can help companies optimize resource
allocation, promote development in a more environmentally friendly and sustainable direc-
tion, and make a positive contribution to the realization of the dual goals of high-quality
economic development and environmentally sustainable development.

The main contributions of this paper are as follows: (1) providing a reliable evaluation
of green innovation efficiency under asymmetric input and output data; (2) determining
effective improvement actions based on the slack analysis of environmental variables
and random variables that lead to improved process performance; and (3) making fuzzy
innovation performance efficient to facilitate understanding and managing innovation
resource allocation quality.

The remaining sections of this paper are organized as follows: Section 2 provides an
overview of existing studies on green innovation efficiency. Section 3 details the research
methodology, presenting the specific formulas for the improved SBM model and the entropy
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method used in this paper. Section 4 investigates green innovation efficiency based on the
improved SBM model and discusses green innovation patterns. Section 5 summarizes the
research findings, highlights the limitations of the paper, and outlines future prospects.

2. Literature Review

Green innovation refers to the process of producing green products, as well as re-
ducing environmental pollution, raw material use, and energy consumption through
technology [6,7]. Green innovation efficiency is a critical indicator for measuring the level
of green innovation, reflecting the optimized allocation of green innovation resources. As
green innovation becomes an increasingly hot research topic, the evaluation of green innova-
tion efficiency has also become an important concern for scholars [8–10]. At present, studies
on green innovation efficiency are primarily conducted at the regional level [11–13] and
industry level [14–19]. However, at the enterprise level, there is a relative lack of research
on green innovation efficiency [20–22]. The input–output variables of green innovation
efficiency are summarized in Table 1.

Table 1. Summary of input–output variables of green innovation efficiency.

Authors Input Variables Output Variables

Zhang and Huang [23]
Full-time equivalence of R&D personnel;

Internal expenditure on R&D expenses; Coal
consumption.

New product sales revenue; Number of
invention patent items; Environmental
pollution index (undesirable outputs).

Chen and Leng [24]
Full-time equivalence of R&D personnel;

Internal expenditure on R&D expenses; Total
energy consumption.

Number of green patents; New product
sales revenue.

Luo et al. [25]

S&T (science and technology) personnel;
Expenditure on green technology

transformation; Expenditure on green
technology import; Expenditure on

development of new green products.

Sales revenue of new green products;
Admissibility of domestic patent applications;

Green technology market turnover.

Liu et al. [26]
Full-time equivalence of R&D personnel;

Internal expenditure index of
R&D expenditure.

Domestic patent application volume; New
product sales revenue; Industrial wastewater

and waste gas emissions
(undesirable outputs).

Li et al. [27]

Energy consumption of CNY 10,000 GDP;
Industrial R&D personnel full-time
equivalent; Internal expenditure on

industrial R&D expenses; Industrial new
product development funds; Industrial

technology introduction and
transformation funds.

Number of green patents; New product sales
revenue; Industrial waste gas emissions;

Industrial wastewater discharge; Industrial
solid emissions (undesirable outputs).

An increasing number of studies on evaluating green innovation efficiency are based
on the input–output perspective of the DEA model. In the evaluation of green innovation
efficiency, various DEA models have been widely applied. Some studies have used a
two-stage DEA model to evaluate R&D and achievement transformation efficiency in the
innovation process [28,29]. The SBM model is used to consider undesirable outputs [27].
The super-efficient SBM model provides the possibility for the comparison and ranking
of efficient DMUs [30–32]. The EBM model can not only consider the radial proportion of
target value and actual value, but also deal with radial and non-radial relaxation changes,
so as to measure efficiency more comprehensively and accurately [33,34]. A comparative
analysis of the pros and cons of different DEA models is shown in Table 2.
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Table 2. Comparative analysis of DEA models.

Model Pros Cons

CCR model [3] Simpler and easier to
understand.

The assumption of constant
returns to scale, may lead to
distorted evaluation results.

BCC model [4]

The assumption of variable
returns to scale allows for a

better treatment of scale
effects and has better

applicability.

Unable to deal with situations
where an undesirable output

is produced.

SBM model [5]

Considers not only
equal-proportional

improvement but also slack
improvement and

incorporates undesirable
output variables.

The measured efficiency
values are highly influenced
by the external environment.

Two-stage DEA model [35]

Accurately reflects the
complex innovation process,
dividing the whole process

into two stages and evaluating
each stage separately.

It is necessary to consider the
relationships between the two
phases. This will increase the
complexity of model building

and interpretation.

DEA window model [36]
Measures dynamic trends in

the efficiency of
decision-making units.

Faces high data requirements,
high computational

complexity, and difficulty in
interpreting results.

The innovation process is full of risks and uncertainties. The new energy industry is
in a rapidly changing technological environment and is highly sensitive to environmen-
tal changes [37]. The external environment has great influence on the green innovation
efficiency of new energy companies. Environmental regulation [38,39], industrial agglom-
eration [40,41], foreign investment [42,43], and other external environmental factors affect
green innovation efficiency to varying degrees. While the DEA model has been widely used
for efficiency evaluation, traditional DEA models overlook the influence of the external un-
certain environment on green innovation. Meanwhile, studies on the innovation efficiency
of new energy companies have been continuously carried out [44–47], but have not been
further explored from the perspective of green innovation [48], ignoring the influence of
resource waste and environmental pollution on new energy companies.

In this context, this paper has established an improved SBM model that eliminates
environmental factors and random factors to effectively measure green innovation efficiency
under uncertain environments. Under the background of achieving the “double carbon”
goal, greenhouse gas emissions are regarded as an undesirable output in the DEA model.
Considering the advantage of the entropy method in objective weighting [49], this paper
chooses an entropy method to assign weight to green innovation input variables and
then acquire the green innovation comprehensive input. Moreover, based on the green
innovation comprehensive input and green innovation efficiency, the green innovation
modes are divided into four categories. The improved SBM model and entropy method are
combined to help new energy companies achieve high performance from the perspective
of green innovation efficiency.

3. Research Methodology
3.1. The Improved SBM Model

The framework of the improved SBM model for green innovation efficiency analysis
using asymmetric data is shown in Figure 1.
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3.1.1. The Initial Stage: SBM Model

In this paper, a non-oriented SBM model is utilized to evaluate efficiency from both
input and output perspectives. The formula for the SBM model is as follows:

min
1 − 1

m ∑m
i=1

s−i
xik

1 +
1

s1 + s2

(
∑s1

r=1
sg

r

yg
rk
+∑s2

r=1
sb

r

yb
rk

)

s.t.


xk = Xλ + s−

yg
k = Ygλ − sg

yb
k = Ybλ + sb

s− ≥ 0, sg ≥ 0, sb ≥ 0, λ ≥ 0

where vectors s− ∈ Rm and sb ∈ Rs2 represent the slack variables for inputs and non-
desirable outputs; sg stands for the residual variable for desirable outputs; m, s1, and
s2 denote the numbers of input, desirable output, and non-desirable output variables,
respectively;

(
xk, yg

k , yb
k

)
represents the vector values of the k-th decision-making unit’s

inputs, desirable outputs, and non-desirable outputs; and
(

X, Yg, Yb
)

represents the vector
values of all decision-making units’ inputs, desirable outputs, and non-desirable outputs.
Assuming there are n decision-making units, λ ∈ Rn signifies the weights of the decision-
making units.

3.1.2. The Adjustment Stage: SFA Model

Decompose the input slack variables into a function that includes environmental
factors, random factors, and managerial inefficiency; then, exclude the environmental
factors and random factors to obtain the input redundancy of the decision-making units
caused solely by managerial inefficiency. The expression is as follows:

Snk = f n(Zk; βn) + Vnk + Unk
n = 1, 2, ..., N; k = n = 1, 2, ..., K

where Snk represents the slack variable of the k-th decision-making unit on the n-th input;
f n(Zk; βn) denotes the influence of environmental factors, usually taken as
f n(Zk; βn) = Zkβn; Zk stands for the observed environmental variables; βn represents
the parameter vector corresponding to the environmental variables; Vnk + Unk denotes
the mixed error term where Vnk reflects random factors following a normal distribution,
Vnk ∈ N

(
0, σ2

vn
)
; and Unk reflects managerial inefficiency following a truncated normal

distribution, Unk ∈ N
(
µu, σ2

un
)
.
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By performing SFA regression analysis using Frontier 4.1 software, estimated values
for βn, σ2, and parameter γ can be obtained. Subsequently, based on the following formulas,
σvn and σun are derived.

σ2 = σ2
vn + σ2

un, γ =
σ2

vn
σ2

vn + σ2
un

where γ represents the proportion of variance in managerial inefficiency to total variance.
When the value of γ approaches 1, the influence of managerial inefficiency dominates;
when the value of γ approaches 0, the influence of random factors dominates.

Separate out the managerial inefficiency term according to the following formula:

E[Unk|Vnk + Unk] =
σλ

1 + λ2

 φ

(
ελ

σ

)
Φ

(
ελ

σ

) +
ελ

σ


where λ = σun/σvn, the mixed error term ε = Vnk + Unk, φ and Φ represent the probability
density function and distribution function of the standard normal distribution, respectively.

Once the managerial inefficiency term U is separated, the random factor term V can
be obtained using the following formula:

E[Vnk|Vnk + Unk] = Snk − f n(Zk; βn)− E[Unk|Vnk + Unk]

Subsequently, adjust the input variables using the SFA model to obtain new input values:

X∗
nk = Xnk + [max(Zkβn)−Zkβn] + [max(Vnk)−Vnk]

n = 1, 2, ..., N; k = n = 1, 2, ..., K
l

where X∗
nk represents the adjusted input, Xnk stands for the original input, [max(Zkβn)−Zkβn]

signifies the adjustment for environmental factors’ influence, and [max(Vnk)−Vnk] indicates
the adjustment for random factors’ influence, ensuring all decision-making units are under
equivalent conditions.

3.1.3. The Final Stage: The SBM Model after Adjusting the Input Variables

The input variables X∗
nk obtained during the adjustment stage, along with the original

output variables, are reintroduced into the SBM model for efficiency evaluation. The
efficiency value at this point eliminates the influence of environmental factors and random
factors, thus reflecting a more realistic green innovation efficiency scenario.

3.2. Entropy Method

The entropy method uses information entropy to measure the degree of correlation
between indicators, enabling the consideration of the interrelationships and correlations
among different indicators. By calculating the information entropy of indicators, weight
allocation is determined. This method helps avoid subjective influence on weight, thereby
enhancing the objectivity and fairness of the assessment results. The setup of the entropy
method is as follows:

(1) Utilize the extreme value method to standardize each indicator, with the formula as
follows:

Positive index standardization formula: yij =
xij − min(xij

)
max(xij

)
−min(xij

) .

Negative index standardization formula: yij =
max(xij

)
− xij

max(xij
)
−min(xij

) .

Assume the data comprise m companies and n indicators, where
xij(i = 1, 2, ..., m; j = 1, 2, ..., n) represents the observed value of the j-th indicator for the
i-th company and yij denotes the standardized values of the respective indicators.
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For meaningful data computation, it is necessary to eliminate zero and negative values.
Hence, the standardized data should undergo an overall shift, that is yij = yij + α. In order
to preserve the intrinsic patterns of the original data to the greatest extent, the value of α
must be as small as possible, therefore taking α = 0.0001.

(2) Calculate the weight of the j-th indicator for the i-th company:

pij =
yij

∑n
i=1 yij

(3) Calculate the entropy value of the j-th indicator, ej = −k∑m
i=1 pijln(pij), where

k =
1

ln(n)
and k > 0, satisfying ej ≥ 0.

(4) Calculate the redundancy of information entropy: dj = 1 − ej.

(5) Calculate the entropy weight of the j-th indicator: wij =
dj

∑n
j=1 dij

.

(6) Calculate the comprehensive score: Qi = ∑n
j=1 Wj pij × 100.

4. Research Results
4.1. Variable Selection and Data Sources

Input variables are selected from three perspectives: labor input, capital input, and
energy input. For labor input, the company’s human capital investment is reflected by the
number of employees. The number of R&D personnel is chosen as the labor input variable.
For capital input, R&D expenditure is selected. For energy input, comprehensive energy
consumption is chosen.

The output variables are divided into desirable and undesirable outputs. The desirable
output variables are selected from both technological and economic aspects. In terms of
technological output, the number of green patent applications is chosen as the variable.
These patents typically involve new technologies, products, or solutions with environmen-
tally friendly characteristics, reflecting a company’s technological innovation capability in
environmental protection and sustainable development. In terms of economic output, the
main business income is selected as the economic output variable, representing the sales
revenue obtained by the company through its main business operations. The selection
of the undesirable output variable is greenhouse gas emissions. New energy companies
promote the transition to a low-carbon economy by providing clean energy solutions. The
choice of greenhouse gas emissions reflects how well a company has achieved this goal.

Five variables, namely environmental regulation intensity, technological market envi-
ronment, educational environment, economic development level, and regional openness,
were selected as environmental factors for the improved SBM model.

The input variables, output variables, environmental factors, and data sources are
described in Table 3.

Data source description: This paper selects A-share listed companies in the new energy
sector as the research sample. The sample selection principles are as follows: first, exclude
ST and *ST companies; secondly, exclude companies that have not disclosed ESG reports or
social responsibility reports, as well as companies with missing indicators. Finally, 40 new
energy listed companies are selected as the sample for this paper, including photovoltaic
companies, wind power companies, new energy vehicle companies, and electric power
equipment manufacturing companies, among others. The year 2021 is chosen as the
research period. Data are sourced from the annual reports of listed companies, ESG reports,
social responsibility reports, and the CNRDS database, as well as statistical yearbooks.
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Table 3. Green innovation efficiency index system.

Primary Index Secondary Index Three-Level Index Data Source

Input variable
Labor input The number of R&D

personnel Annual report

Capital input R&D expenditure Annual report

Energy input Comprehensive energy
consumption

ESG Report/Social
responsibility reports

Desirable output Technological output The number of green patent
applications CNRDS database

Economic output Main business income Annual report

Undesirable output Environmental pollution Greenhouse gas emissions ESG Report/Social
responsibility reports

Environmental factor

Environmental regulation
intensity

Investment in industrial
pollution control Statistical yearbook

Technological market
environment Technology market turnover Statistical yearbook

Educational environment Local education expenditure Statistical yearbook
Economic development level Per capita GDP Statistical yearbook

Regional openness Foreign investment Statistical yearbook

4.2. Analysis of Green Innovation Efficiency Based on Improved SBM Model
4.2.1. The Initial Stage of Green Innovation Efficiency Analysis

Utilizing MaxDEA Ultra 9.1 software and based on the SBM model, the original green
innovation efficiency of 40 new energy companies in 2021 was calculated without excluding
environmental factors and random factors, as shown in Table 4.

Table 4. Green innovation efficiency in the initial stage.

Company TE PTE SE RTS

Weichai Power 0.034 1.000 0.034 drs
Zhuhai Port 0.083 0.172 0.480 irs

Meijin Energy 0.139 0.167 0.834 drs
Beijing New Building Materials 0.046 0.048 0.949 drs

Gotion High-tech 0.064 0.140 0.458 drs
TCL Zhonghuan Renewable Energy Technology 0.029 0.073 0.398 drs

GOLDWIND SCIENCE&TECHNOLOGY 0.087 0.309 0.283 drs
Dahua Technology 0.018 0.112 0.160 drs

BYD 0.014 1.000 0.014 drs
Yunnan Energy New Material 0.009 0.009 0.951 irs

Sunwoda Electronic 0.060 0.188 0.318 drs
Sungrow Power Supply 1.000 1.000 1.000 -
JL MAG RARE-EARTH 0.020 0.023 0.868 irs

Contemporary Amperex Technology 0.031 0.178 0.174 drs
CapitalECO-ProGroup 0.305 0.313 0.975 drs

YUTONG BUS 0.043 0.059 0.726 drs
Dongfeng Electronic Technology 0.079 0.098 0.813 irs

State Grid Information&Communication 1.000 1.000 1.000 -
Tongwei 0.035 0.072 0.484 drs

China Shipbuilding Industry Group Power 0.059 0.193 0.306 drs
State Grid Yingda 1.000 1.000 1.000 -

Shenzhen Expressway 0.272 0.383 0.710 irs
Ningbo Joyson Electronic Corp. 1.000 1.000 1.000 -

ENN Natural Gas 0.027 0.100 0.268 drs
Tianjin Capital Environmental Protection 0.224 1.000 0.224 irs

Dongfang Electric 0.098 0.374 0.263 drs
China Suntien Green Energy 1.000 1.000 1.000 -

Western Mining 0.119 0.158 0.753 drs
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Table 4. Cont.

Company TE PTE SE RTS

Great Wall Motor 0.030 0.185 0.163 drs
Shanghai Electric 0.184 1.000 0.184 drs

China Energy Engineering 0.0004 1.000 0.0004 drs
Zijin Mining 0.115 1.000 0.115 drs

Datang International Power Generation 1.000 1.000 1.000 -
Baolong Automotive 0.027 0.032 0.868 irs

CMOC 1.000 1.000 1.000 -
Daqo New Energy 0.010 0.011 0.977 irs

GoodWe Technologies 0.244 1.000 0.244 irs
Trina Solar 0.070 0.246 0.284 drs

Hainan Jinpan Smart Technology 0.045 1.000 0.045 irs
XTC New Energy Materials 0.012 0.012 0.999 irs

Mean 0.241 0.466 0.558
TE: technical efficiency; PTE: pure technical efficiency; SE: scale efficiency; drs: decreasing; irs: increasing;
-: constant.

According to Table 4, the mean technical efficiency of 40 new energy companies is
0.241, indicating a relatively low level, with 7 companies achieving DEA effectiveness. Pure
technical efficiency primarily reflects the level of technological innovation, management,
and resource utilization in the production process. The mean pure technical efficiency is
0.466, also at a relatively low level, suggesting that the sample companies have lower levels
of technology and management. Scale efficiency represents the rationality of company
size and mainly reflects the influence of scale on efficiency. From the perspective of scale
efficiency, the mean scale efficiency is 0.558. Of these 40 companies, 7 companies operate
at constant returns to scale, 22 companies experience decreasing returns to scale, and
11 companies exhibit increasing returns to scale. Therefore, it is evident that a majority of
the companies among the 40 new energy companies face issues related to excessive scale,
making it difficult for resources to be effectively coordinated from various aspects. An
evaluation of the efficiency for each company reveals significant differences in the green
innovation efficiency among these companies.

By projecting onto the efficient frontier, it is possible to identify which indicators
need adjustment in order to achieve higher efficiency. Based on the SBM model, the slack
variables of inputs and outputs for 40 new energy companies are measured, and the results
are shown in Table 5.

Table 5. Slack variables of inputs and outputs.

Variable Original Value Slack Value Target Value Improvement Ratio

The number of R&D personnel 4313.400 −1491.239 2822.161 −34.57%
R&D expenditure 210,436.810 −69,970.623 140,466.187 −33.25%

Comprehensive energy
consumption 8,119,095.943 −510,267.279 7,608,828.663 −6.28%

The number of green patent
applications 40.150 31.127 71.277 77.53%

Main business income 5,978,046.464 169,758.115 6,147,804.580 2.84%
Greenhouse gas emissions 64,715,928.949 −59,070,727.968 5,645,200.981 −91.28%

From Table 5, it is noticeable that in terms of inputs, the improvement values are
negative across all three input variables. This indicates an excessive input situation, sig-
naling that these companies have used resources beyond the required level to achieve
corresponding outputs. Labor and capital inputs require significant improvement, indicat-
ing redundancy in both manpower and financial inputs for R&D. An improved allocation
of manpower and funds is necessary to reduce redundancy and ensure more effective
resource utilization. The need for improvement in energy input is relatively minor.
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In terms of outputs, economic output is relatively close to the target value, suggesting
that most companies prioritize economic benefits. However, there is a considerable gap
between the target values and the actual levels for both technical output and environmental
pollution emissions. Enhancing a company’s innovation capability is critical to increasing
technical output and achieving the desired results.

Through the analysis of input redundancy and output insufficiency, a company’s re-
source utilization efficiency can be evaluated and improved directions for the redundancies
and deficiencies of inputs and outputs are able to be provided. These analytical results
can offer decision-making suggestions for managers to achieve rational resource allocation,
enhance green innovation efficiency, and promote sustainable development.

4.2.2. The Adjustment Stage of SFA Regression Analysis

The slack variables of the inputs measured by the first-stage SBM model are taken as
the dependent variables, while environmental regulation intensity, technological market
environment, educational environment, economic development level, and regional open-
ness are used as independent variables. SFA regression is conducted using Frontier 4.1,
and the results are presented in Table 6.

Table 6. Regression results of SFA model.

Variable Slack Variable of the
Number of R&D Personnel

Slack Variable of R&D
Expenditure

Slack Variable of
Comprehensive Energy

Consumption

Constant term −2442.49 *** −144,609.55 *** −1,918,681.80 ***
Environmental regulation intensity −0.001 0.073 *** 0.868
Technological market environment −0.000033 −0.003 *** −0.014
Educational environment 1.074 *** 55.996 *** 292.899 ***
Economic development level 0.015 ** 0.771 *** 12.545 *
Regional openness −0.102 *** −2.853 *** −26.783 ***
Sigma-squared 25,352,844 42,118,779,000 6,598,556,400,000
Gamma 1 1 1
LR test of the one-sided error 33.20 *** 27.69 *** 36.04 ***

Note: ***, **, and * represent significance levels of 1%, 5%, and 10%, respectively.

From Table 6, it is evident that the LR test of the one-sided error is significant at the
1% level, indicating the rejection of the hypothesis that managerial inefficiency does not
exist. This suggests that managerial inefficiency has an influence on the slack variable
of three inputs. Moreover, the gamma value is 1, indicating that the dominant effect
is due to managerial inefficiency, while the influence of random factors on the green
innovation efficiency of companies is limited. Therefore, the selection of the SFA model
is deemed reasonable.

The environmental regulation intensity shows a positive correlation with the slack
variable of R&D expenditure at a significant level of 1%, indicating that an increase in
environmental regulation intensity leads to redundant increase in R&D expenditure. With
the strengthening of environmental regulations, companies may need to adopt cleaner,
low-carbon, or environmentally friendly technologies to comply with new environmental
standards, involving costs related to the reconfiguration of production facilities, equipment,
and infrastructure. These adjustment costs may augment a company’s R&D expenditure.

At the 1% significance level, the technological market environment exhibits a negative
correlation with the slack variable of R&D expenditure. The improvement in the techno-
logical market environment enables companies to be more targeted in conducting R&D
projects, better plan and manage R&D activities, and reduce unnecessary redundancy in
R&D expenditure.

At the 1% significance level, the education environment exhibits a positive correlation
with the slack variables of the number of R&D personnel, R&D expenditure, and compre-
hensive energy consumption. An increase in local education expenditure may lead to an
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oversupply of talent, resulting in redundancy among R&D personnel within companies.
As the local education level improves, companies may face technological innovation com-
petition from peers. To maintain market competitiveness, companies may increase R&D
expenditure to drive technological innovation.

The economic development level shows a positive correlation at a 5% significance
level with the slack variable of the number of R&D personnel, a 1% significance level
with the slack variable of R&D expenditure, and a 10% significance level with the slack
variable of comprehensive energy consumption. With regional economic development,
more investment opportunities and innovative projects emerge, leading to an increase in a
company’s R&D personnel, financial input, and energy consumption.

At the 1% significance level, regional openness exhibits a negative correlation with the
slack variables of number of R&D personnel, R&D expenditure, and comprehensive energy
consumption. Regions with high openness often create a favorable innovation ecosystem
where external cooperation can bring advanced technology, innovative management expe-
rience, and R&D resources to companies. This facilitates more effective R&D personnel,
funds, and energy utilization, reducing redundancy.

4.2.3. The Final Stage of Green Innovation Efficiency Analysis

Substituting the adjusted input variables for the original input variables while keeping
the output variables unchanged, the green innovation efficiency of new energy companies
is re-evaluated using the SBM model. This allows for the determination of efficiency after
eliminating the influence of environmental factors and random factors, as illustrated in Table 7.

Table 7. Green innovation efficiency in the final stage.

Company TE PTE SE RTS

Weichai Power 0.159 1.000 0.159 drs
Zhuhai Port 0.116 1.000 0.116 irs

Meijin Energy 0.155 0.252 0.616 irs
Beijing New Building Materials 0.104 0.117 0.889 irs

Gotion High-tech 0.158 0.161 0.983 irs
TCL Zhonghuan Renewable Energy Technology 0.116 0.145 0.797 irs

GOLDWIND SCIENCE&TECHNOLOGY 0.312 0.351 0.889 irs
Dahua Technology 0.138 0.161 0.858 drs

BYD 0.100 0.333 0.301 drs
Yunnan Energy New Material 0.026 0.035 0.764 irs

Sunwoda Electronic 0.238 0.280 0.850 irs
Sungrow Power Supply 1.000 1.000 1.000 -
JL MAG RARE-EARTH 0.028 0.049 0.572 irs

Contemporary Amperex Technology 0.222 0.223 0.994 irs
CapitalECO-ProGroup 0.193 0.210 0.918 irs

YUTONG BUS 0.114 0.117 0.972 irs
Dongfeng Electronic Technology 0.256 1.000 0.256 irs

State Grid Information&Communication 0.535 1.000 0.535 irs
Tongwei 0.143 0.166 0.865 irs

China Shipbuilding Industry Group Power 0.194 0.230 0.841 irs
State Grid Yingda 1.000 1.000 1.000 -

Shenzhen Expressway 1.000 1.000 1.000 -
Ningbo Joyson Electronic Corp. 1.000 1.000 1.000 -

ENN Natural Gas 0.125 0.133 0.939 drs
Tianjin Capital Environmental Protection 0.046 0.066 0.704 irs

Dongfang Electric 0.402 0.426 0.942 irs
China Suntien Green Energy 1.000 1.000 1.000 -

Western Mining 0.177 0.232 0.764 irs
Great Wall Motor 0.137 0.148 0.922 drs
Shanghai Electric 1.000 1.000 1.000 -

China Energy Engineering 0.004 1.000 0.004 drs
Zijin Mining 0.508 1.000 0.508 drs
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Table 7. Cont.

Company TE PTE SE RTS

Datang International Power Generation 0.211 0.214 0.990 irs
Baolong Automotive 0.061 0.063 0.968 irs

CMOC 1.000 1.000 1.000 -
Daqo New Energy 0.027 0.033 0.822 irs

GoodWe Technologies 0.456 1.000 0.456 irs
Trina Solar 0.570 1.000 0.570 irs

Hainan Jinpan Smart Technology 0.007 0.008 0.819 irs
XTC New Energy Materials 1.000 1.000 1.000 -

Mean 0.351 0.504 0.765
TE: technical efficiency; PTE: pure technical efficiency; SE: scale efficiency; drs: decreasing; irs: increasing;
-: constant.

In the final stage, the number of companies achieving DEA effectiveness increased
from seven to eight. Among these, five companies (Sungrow Power Supply, State Grid
Yingda, Ningbo Joyson Electronic, China Suntien Green Energy, and CMOC) maintain
positions on the efficiency frontier both before and after adjustments, indicating that the
green innovation efficiency of these companies is not influenced by environmental factors
or random factors. However, two companies, State Grid Information&Communication
and Datang International Power Generation, that achieve DEA effectiveness in the initial
stage do not reach the efficiency frontier in the final stage, with decreased efficiency values,
suggesting that initially high efficiency is related to favorable environmental conditions,
and the actual level of green innovation efficiency is not as high. Meanwhile, Shenzhen
Expressway, Shanghai Electric, and XTC New Energy Materials reach the efficiency frontier
after eliminating environmental factors and random factors, indicating that the green
innovation efficiency of these companies in the initial stage is influenced by adverse
environmental conditions, and the actual level of green innovation efficiency exceeds that
calculated previously.

By comparing the green innovation efficiency between the initial stage and the final
stage in Figure 2, it can be found that after eliminating environmental factors and random
factors, the mean technical efficiency increased from 0.241 to 0.351, mean pure technical
efficiency rose from 0.466 to 0.504, and mean scale efficiency increased from 0.558 to 0.765.
In the final stage, these three types of efficiency values showed improvement compared to
the initial stage, indicating that the overall green innovation efficiency before adjustment is
underestimated due to environmental influence, suggesting certain limitations of external
environment on green innovation in new energy companies. Although green innovation
efficiency was improved after adjustment, there is still much room for improvement.
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From the perspective of returns to scale in Table 8, after adjusting inputs, the number
of companies operating at constant returns to scale increased from 7 to 8, those exhibiting
increasing returns to scale rose from 11 to 25, and those exhibiting decreasing returns to
scale decreased from 22 to 7. It can be observed that the number of companies operating at
increasing returns to scale significantly rose, while the number of companies at decreasing
returns to scale notably decreased. This suggests that after eliminating the influence
of environmental factors and random factors, the majority of new energy companies
expanding their scale of green innovation can yield higher returns.

Table 8. Comparison of returns to scale between the initial stage and the final stage.

Returns to Scale Number of Companies in the
Initial Stage

Number of Companies in the
Final Stage

Constant 7 (17.50%) 8 (20.00%)
Increasing 11 (27.50%) 25 (62.50%)
Decreasing 22 (55.00%) 7 (17.50%)

4.3. Analysis of Green Innovation Pattern

To better reflect the effectiveness of sample companies in green innovation, based on
the green innovation comprehensive input and green innovation efficiency of companies,
the green innovation patterns of companies are categorized into four types: high input–
high efficiency, high input–low efficiency, low input–high efficiency, and low input–low
efficiency. For each type, a thorough analysis of underlying reasons is conducted, followed
by tailored solutions for each type.

4.3.1. Green Innovation Comprehensive Input Based on Entropy Method

For the determination of green innovation comprehensive input for companies, a
comprehensive objective evaluation method (entropy method) is employed. Based on the
variability of each variable, the weights for labor input, capital input, and energy input are
calculated, thereby deriving the green innovation comprehensive input for each new energy
company. The application of the entropy method yields the weights for green innovation
input for new energy companies, as shown in Table 9.

Table 9. Weights of variables based on entropy method.

Variable Variable Nature Variable Weight

Labor input Positive 0.5478
Capital input Positive 0.4369
Energy input Negative 0.0153

The results of applying the entropy method to obtain the green innovation compre-
hensive input for new energy companies are shown in Table 10.

Table 10. Green innovation comprehensive input.

Company Comprehensive Input Company Comprehensive Input

Weichai Power 7.818 State Grid Yingda 0.339
Zhuhai Port 0.176 Shenzhen Expressway 0.094

Meijin Energy 0.199 Ningbo Joyson Electronic Corp. 3.103
Beijing New Building Materials 0.775 ENN Natural Gas 1.804

Gotion High-tech 1.239 Tianjin Capital Environmental
Protection 0.115

TCL Zhonghuan Renewable Energy
Technology 1.706 Dongfang Electric 2.764

GOLDWIND
SCIENCE&TECHNOLOGY 2.226 China Suntien Green Energy 0.075
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Table 10. Cont.

Company Comprehensive Input Company Comprehensive Input

Dahua Technology 5.482 Western Mining 0.454
BYD 18.575 Great Wall Motor 11.566

Yunnan Energy New Material 0.356 Shanghai Electric 4.001
Sunwoda Electronic 3.473 China Energy Engineering 11.142

Sungrow Power Supply 1.499 Zijin Mining 1.866

JL MAG RARE-EARTH 0.226 Datang International Power
Generation 0.851

Contemporary Amperex Technology 7.287 Baolong Automotive 0.406
CapitalECO-ProGroup 0.138 CMOC 0.434

YUTONG BUS 2.036 Daqo New Energy 0.306
Dongfeng Electronic Technology 0.286 GoodWe Technologies 0.306

State Grid
Information&Communication 0.499 Trina Solar 1.667

Tongwei 2.150 Hainan Jinpan Smart Technology 0.195
China Shipbuilding Industry Group

Power 2.028 XTC New Energy Materials 0.338

4.3.2. Analysis of Green Innovation Patterns

Using green innovation comprehensive input as the horizontal axis and green inno-
vation efficiency as the vertical axis, a scatter plot for 40 new energy companies in 2021 is
constructed. The sample is divided into four quadrants based on the mean of the sample
(2.500, 0.351). The dashed line on the horizontal axis represents the green innovation
comprehensive input = 2.500, and the dashed line on the vertical axis represents the green
innovation efficiency = 0.351, as illustrated in Figure 3.
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Figure 3. Quadrant diagram of green innovation patterns.

The companies located in the first quadrant are characterized by the “high input–
high efficiency” green innovation pattern, including Shanghai Electric, Ningbo Joyson
Electronic, and Dongfang Electric. These three companies demonstrate a high level of
green innovation resource allocation, effectively translating green innovation inputs into
technological advancements and economic returns. For future development, it is essential
to maintain sensitivity to market trends and competitive environments, and to flexibly
adjust strategies to seize new opportunities.
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The companies located in the second quadrant are characterized by the “low input–
high efficiency” green innovation pattern, including 10 companies such as Sungrow Power
Supply, China Suntien Green Energy, and Zijin Mining. Although these companies have
relatively modest green innovation inputs, their management capabilities are at a high
level, allowing for the full utilization of green innovation resources. In the future, a further
exploration of green innovation potential is possible.

The companies located in the third quadrant are characterized by the “low input–low
efficiency” green innovation pattern, including 20 companies such as Hainan Jinpan Smart
Technology, Daqo New Energy, and Baolong Automotive. The largest number of companies
being in this quadrant indicates that the green innovation situation for the majority of new
energy companies is currently less than ideal. These companies exhibit insufficient green
innovation input and require improved resource utilization efficiency.

The companies located in the fourth quadrant are characterized by the “high input–low
efficiency” green innovation pattern, including seven companies such as BYD, Great Wall
Motor, and China Energy Engineering. These companies demonstrate substantial green
innovation resource inputs. However, at the current level of input, these companies have
not achieved the expected output, indicating an inefficient transformation of green innova-
tion achievements and a lower efficiency in resource allocation. Therefore, these companies
need to enhance their technological, managerial, and resource utilization capabilities.

5. Conclusions and Discussion
5.1. Conclusions

The evaluation results of the improved SBM model indicate that, after eliminating
environmental factors and random factors, the technical efficiency, pure technical efficiency,
and scale efficiency of companies have all improved to some extent, but there is still
significant room for further improvement. This suggests that the external environment
exerts a certain constraint on the green innovation efficiency of new energy companies.
After adjustments, scale efficiency remains higher than pure technical efficiency. Therefore,
the focus for enhancing green innovation efficiency should prioritize boosting pure technical
efficiency to improve the technological and managerial levels of companies. The number of
companies operating at increasing returns to scale noticeably increased after adjustment,
indicating that continued increases in green innovation efficiency input can effectively
enhance scale benefits.

Based on green innovation comprehensive input and green innovation efficiency, this
paper categorizes green innovation patterns into four types. Among these, the highest
number of companies fall into the “low input–low efficiency” pattern, indicating that the
current green innovation situation for the majority of new energy companies is less than
ideal, with potential for improvement in both the level of green innovation input and
resource utilization.

5.2. Discussion

Since China pledged to the international community in September 2020 to “strive to
peak carbon dioxide emissions before 2030 and achieve carbon neutrality before 2060”,
green innovation has received unprecedented attention. The “dual-carbon” goals are an
essential and core part of China’s overall ecological civilization construction layout, and
the realization of this major strategic objective is inseparable from green innovation. As
the carriers for strategic implementation, new energy companies should enhance internal
operations and management levels. This includes seeking lower-cost and more feasible
green technologies and innovative solutions to improve the economic and social benefits of
green innovation. Simultaneously, new energy companies should strengthen technological
innovation capabilities to reduce the costs and risks of researching and implementing
green innovation projects. New energy companies should be guided by a green ecolog-
ical approach, integrating green innovation into long-term development strategies and
prioritizing the long-term benefits of sustainable development.
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This paper establishes an improved SBM model analysis framework that effectively
evaluates the efficiency of asymmetric input–output data. It provides researchers with
a more comprehensive and flexible tool for assessing green innovation efficiency. By
evaluating the green innovation efficiency of new energy companies, it assists decision
makers in better understanding the allocation of green innovation resources, thereby pro-
moting companies towards more environmentally friendly and efficient development. This
aligns with the dual objectives of high-quality economic development and environmental
sustainability. Furthermore, this paper categorizes green innovation patterns into four
types and proposes corresponding solutions, contributing to providing a basis for relevant
policy formulation and guiding companies towards more environmentally friendly and
sustainable development.

However, this paper also has some limitations. Firstly, the research only selected
40 new energy companies as research subjects, a relatively small sample size. Secondly, the
paper only analyzed the green innovation efficiency for 2021 and lacked a dynamic assess-
ment. Future research could use a larger sample and integrate other methods and models to
explore resource optimization and efficiency, obtaining more comprehensive results. Differ-
ent industries may have unique characteristics and factors. Subsequent research could focus
on other industries to explore differences in green innovation efficiency and its influencing
factors. By integrating these findings with actual management and policymaking, targeted
recommendations and guidance can be provided to decision makers.
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