

  symmetry-16-00438




symmetry-16-00438







Symmetry 2024, 16(4), 438; doi:10.3390/sym16040438




Article



Numerical Analysis of the Discrete MRLW Equation for a Nonlinear System Using the Cubic B-Spline Collocation Method



Xingxia Liu 1,*, Lijun Zhang 1 and Jianan Sun 2





1



School of Electronic Information and Electrical Engineering, Tianshui Normal University, Tianshui 741000, China






2



College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China









*



Correspondence: lxx@tsnu.edu.cn







Citation: Liu, X.; Zhang, L.; Sun, J. Numerical Analysis of the Discrete MRLW Equation for a Nonlinear System Using the Cubic B-Spline Collocation Method. Symmetry 2024, 16, 438. https://doi.org/10.3390/sym16040438



Academic Editor: Theodore E. Simos



Received: 5 February 2024 / Revised: 27 March 2024 / Accepted: 1 April 2024 / Published: 5 April 2024



Abstract

:

By employing the cubic B-spline functions, a collocation approach was devised in this study to address the Modified Regularized Long Wave (MRLW) equation. Then, we derived the corresponding nonlinear system and easily solved it using Newton’s iterative approach. It was established that the cubic B-spline collocation technique exhibits unconditional stability. The dynamics of solitary waves, including their pairwise and triadic interactions, were meticulously investigated utilizing the proposed numerical method. Additionally, the transformation of the Maxwellian initial condition into solitary wave formations is presented. To validate the current work, three distinct scenarios were compared against the analytical solution and outcomes from alternative methods under both    L 2   - and    L ∞   -error norms. Primarily, the key strength of the suggested scheme lies in its capacity to yield enhanced numerical resolutions when employed to solve the MRLW equation, and these conservation laws show that the solitary waves have time and space translational symmetry in the propagation process. Finally, this paper concludes with a summary of our findings.






Keywords:


numerical simulations; MRLW equation; solitary waves; collocation method; cubic B-splines












1. Introduction


Nonlinear partial differential equations are of great importance in elucidating various phenomena in all sorts of fields. However, exact solutions are not available for all such equations. Thus, it is necessary to employ different numerical methods to explore their possible solutions.



The form of a regularized long wave (RLW) equation is as follows:


   u t  +  u x  + δ u  u x  − μ  u  x x t   = 0 ,  



(1)







The equation, characterized by the positive parameters  δ  and  μ , was initially put forth by Peregrine [1] to illustrate the dynamics of an undular bore, according to the symmetry and conservation law of time translation. He pioneeringly employed the finite difference method to formulate the first numerical approach for solving the RLW equation. This equation specifically encompasses events characterized by slight nonlinearity and dispersion, such as the nonlinear lateral waves occurring in shallow waters, ion-acoustic and magnetohydrodynamic disturbances within plasmas, and phonon propagations in nonlinear crystalline structures. This equation’s existence and singularity were identified by Refs. [2,3] in 1973. Later, Refs. [4,5,6,7,8,9,10] and other scholars contributed to the topic by exploring its numerical resolutions from the perspectives of the finite difference and finite element method.



So far, a multitude of numerical approaches, such as finite element methods and analytical solution strategies, have been proposed for addressing the RLW equations. According to references [11,12,13,14,15], the finite difference approaches and finite element methodologies like collocation methods that utilize quadratic, cubic, and up-to-date septic B-splines have been employed to resolve the RLW equation. Indeed, the RLW equation is a special case of the generalized long wave (GRLW) equation that has the following form:


   u t  +  u x  + δ  u p   u x  − μ  u  x x t   = 0 ,  



(2)







This equation is characterized by a positive integer  p  in this paper. The Generalized Regularized Long Wave (GRLW) equation has attracted little attention from researchers, with Zhang [16] exploring it through a finite difference approach to addressing a Cauchy problem and Kaya [17] employing the Adomian Decomposition Method (ADM). This work, however, delves into a distinct variant of the GRLW equation known as the Modified Regularized Long Wave (MRLW) equation. Numerical resolutions for the MRLW equation have been developed using various techniques. The finite difference method was utilized in [18], while [19,20] applied collocation methods with quintic B-splines. In a separate study, Refs. [21,22,23] employed cubic B-splines for the same purpose. The cubic B-spline Galerkin finite element method was then adopted to derive numerical solutions in [24,25,26]. The authors discuss the mixed finite element method for solving a coupled wave equation in [27] and for solving a damped Boussinesq equation in [28].



In this scheme, we continue to use the cubic B-splines for the same purpose, but we focus on temporal discrete values with a half time layer, and it is found that our scheme has better accuracy and stability than that presented in [20] for three solitary waves and for Maxwellian pulse splitting in the numerical simulation, indicating that our scheme satisfies the conservation laws perfectly.



In this study, a cubic-B-spline-based collocation technique was employed to address the MRLW equation. Section 2 details the collocation approach employed for resolving this equation, while Section 3 presents an examination of the method’s linear stability. To validate its precision, analytical solutions and conservation laws are utilized in the assessment process. The dynamics of solitary waves, including their interactions and the transformation of Maxwellian initial conditions into solitary waves, are investigated through numerical simulations in Section 4. Finally, conclusions are drawn in the closing section.




2. Governing Equation and Cubic B-Spline Collocation Method


The MRLW equation is expressed as follows:


   u t  +  u x  + 6  u 2   u x  − μ  u  x x t   = 0  



(3)







Here, the notations  x  and  t  symbolize differentiation, with the equation subject to boundary conditions characterized by   u → 0   as   x → ± ∞  . For the scope of this research, periodic boundary conditions are adopted within the domain   a ≤ x ≤ b   under examination.


    u ( a , t ) = u ( b , t ) = 0 ,      u x  ( a , t ) =  u x  ( b , t ) = 0 .    



(4)







The analytical solution of this equation can be written as


  u ( x , t ) =  c  sech ( p ( x − ( c + 1 ) t −  x 0  ) ) ,  



(5)




where   p =    c  μ ( c + 1 )      , and    x 0    and  c are arbitrary constants.



Partition the interval [a,b] at points by    x j   , where


  a =  x 0  <  x 1  < ⋯ <  x N  = b  











Here,   h =  x  j + 1   −  x j  =   b − a  N   ,   j = 0 , ⋯ , N − 1  . Let    {  B j  }   j = − 1   N + 1     the knot points denoted by    x j   ; the cubic B-splines collectively constitute a foundation of functions that span across the interval [a, b]. A global approximation solution    u N  ( x , t )   is expressed in terms of the cubic B-splines and unknown time-dependent parameters as follows:


   u N  ( x , t ) =   ∑  j = − 1   N + 1     c j   B j    ( x )  



(6)







Here,    c j    denotes unforeseen time-varying entities that are to be derived through the collocation approach, considering the constraints of boundary and initial conditions.



The cubic-B spline functions are as follows.


   B j  ( x ) =  1   h 3          ( x −  x  j − 2   )  3  ,                                                                                                       x ∈    x  j − 2   ,  x  j − 1       ,      h 3  + 3  h 2  ( x −  x  j − 1   ) + 3 h   ( x −  x  j − 1   )  2  − 3   ( x −  x  j − 1   )  3  ,                                       x ∈    x  j − 1   ,  x j      ,      h 3  + 3  h 2  (  x  j + 1   − x ) + 3 h   (  x  j + 1   − x )  2  − 3   (  x  j + 1   − x )  3  ,                                       x ∈    x j  ,  x  j + 1       ,       (  x  j + 2   − x )  3  ,                                                                                                         x ∈    x  j + 1   ,  x  j + 2       ,     0 ,                                                                                                                         otherwise .      











By employing Equation (6), the estimation of nodal values    c j   , along with the first and second derivatives    c j ′    and    c j ″    at the nodal points, can be readily derived.


     u j  =  c  j − 1   + 4  c j  +  c  j + 1   ,      u j ′  =  3 h  (  c  j − 1   −  c  j + 1   ) ,      u j ″  =  6   h 2    (  c  j − 1   − 2  c j  +  c  j + 1   ) .    



(7)







Let us write the MRLW equation in the following form:


    ∂ ( u − μ  u  x x   )   ∂ t   +  u x  + 6  u 2   u x  = 0 .  



(8)







Following the method used by S.I. Zaki [21] to solve the the KdVB equation, we adapt his technique to derive a recursive formula for numerically resolving Equation (8), with the temporal focus set at   ( n +  1 2  ) Δ t  . Here,   Δ t   represents the time interval, and we employ a Crank–Nicholson methodology:


    (  u t  )   n +  1 2    =    u  n + 1   −  u n    Δ t   ,  



(9)






    ( u )   n +  1 2    =    u  n + 1   +  u n   2  ,  



(10)






    (  u 2   u x  )   n +  1 2    =     (  u 2   u x  )   n + 1   +   (  u 2   u x  )  n   2  ,  



(11)







Here, the notations n and n + 1 denote the chronological sequence of time steps. These computations correspond to second-order precise estimations of the values occurring at the specific time instance. Then, Equation (8) becomes


  (  u  n + 1   − μ  u  x x   n + 1   ) − (  u n  − μ  u  x x  n  ) +   Δ t  2  (  u x  n + 1   +  u x n  ) + 3 Δ t (   (  u 2   u x  )   n + 1   +   (  u 2   u x  )  n  ) = 0 ,  



(12)







Introducing Equation (7) into Equation (12) yields


      {  a j  }   n + 1   −   6 μ    h 2      {  b j  }   n + 1   +   3 Δ t   2 h     {  c j  }   n + 1   +   9 Δ t  h  (   (   {  a j  }   n + 1   )  2    {  c j  }   n + 1   )     =   {  a j  }  n  −   6 μ    h 2      {  b j  }  n  −   3 Δ t   2 h     {  c j  }  n  −   9 Δ t  h  (   (   {  a j  }  n  )  2    {  c j  }  n  ) ,     j = 0 , 1 , ⋯ , N .    



(13)




where


   {  a j  } =  c  j − 1   + 4  c j  +  c  j + 1     ,   {  b j  } =  c  j − 1   − 2  c j  +  c  j + 1    ,  










   {  c j  } =  c  j − 1   −  c  j + 1   ,   j = 0 , 1 , ⋯ , N .   











The system that emerges from Equation (13) is of a nonlinear nature. It can be effectively addressed through Newton’s iterative approach, typically achieving convergence after just two iterations.




3. Linear Stability Analysis


In order to examine the equilibrium stability of Equation (13) when linearized, we employ the Von Neumann methodology. The nonlinear term    u 2   u x    is linearized by using u as a constant  σ . Let    c j n  =  q n   e  i k j h    ; by incorporating this into Equation (13), we obtain


     q  n + 1   [ (  e  i k h   + 4 +  e  − i k h   ) −   6 μ    h 2    (  e  i k h   − 2 +  e  − i k h   ) + (   3 Δ t   2 h   +   9 Δ t  σ 2   h  ) (  e  i k h   −  e  − i k h   ) ]  e  i k j h       =  q n  [ (  e  i k h   + 4 +  e  − i k h   ) −   6 μ    h 2    (  e  i k h   − 2 +  e  − i k h   ) − (   3 Δ t   2 h   +   9 Δ t  σ 2   h  ) (  e  i k h   −  e  − i k h   ) ]  e  i k j h   ,    











After some manipulations, the following can be obtained:


   q  n + 1   =   [ ( 2 cos ( k h ) + 4 ) −   6 μ    h 2    ( 2 cos ( k h ) − 2 ) − i (   3 Δ t  h  +   18 Δ t  σ 2   h  ) sin ( k h ) ]   [ ( 2 cos ( k h ) + 4 ) −   6 μ    h 2    ( 2 cos ( k h ) − 2 ) + i (   3 Δ t  h  +   18 Δ t  σ 2   h  ) sin ( k h ) ]    q n  ,  











The amplification factor is given by


   e  α k   =   a − i b   a + i b   ,  



(14)




where


  a = 2 cos ( k h ) + 4 −   6 μ    h 2    ( 2 cos ( k h ) − 2 ) ,  










  b = (   3 Δ t  h  +   18 Δ t  σ 2   h  ) sin ( k h ) .  











From Equation (13), we can deduce that



     e  α k     = 1   for all values of k.



So, this scheme is unconditionally stable.




4. Numerical Examples and Results


Evaluating numerical methods for evolutionary equations involves validating specific characteristics; these methods must faithfully reproduce the chronological evolution of solitary wave behavior. Throughout their propagation, the solution must maintain compliance with equivalent conservation principles. The accuracy in the movement of solitary waves can be objectively measured through the calculation of both the    L 2   -error norm


   L 2  =      u  e x a c t   −  u N     2  =   h   ∑  j = 0  N        u j  e x a c t   −   (  u N  )  j     2      ,  



(15)




and    L ∞   -error norm


   L ∞  =      u  e x a c t   −  u N     ∞  =   max  j     u j  e x a c t   −   (  u N  )  j    .  



(16)







Equation (3) has the following conserved quantities [19]:


     I 1  =    ∫ a b   u d x ,         I 2  =    ∫ a b   (  u 2  + μ  u x 2  ) d x ,         I 3  =    ∫ a b   (  u 4  − μ  u x 2  ) d x .       



(17)







These characteristics facilitate the assessment of numerical methods, particularly in scenarios where analytical solutions are non-existent and during the dynamics of soliton collisions.



4.1. Single Solitary Waves


In case I, we set c = 0.3,  μ  = 1,    x 0    = 40, h = 0.1, and   Δ t   = 0.01 with the following range: [0, 100]; thus, the amplitude is 0.54772. The simulations were conducted up to t = 20. The errors in    L 2   -norms and    L ∞   -norms are satisfactorily small, as    L 2   -error = 7.10258  ×  10−4 and    L ∞   -error = 3.41575  ×  10−4 at t = 20. Table 1 exhibits the findings pertaining to case II. The visual representation of the solitary wave’s progression at various temporal stages is depicted in Figure 1. A graphical comparison of the discrepancies between the analytical and computational solutions at t = 20 can be found in Figure 2, where the highest absolute error value surfaces approximately at the crest of the solitary wave.



Furthermore, when comparing the results obtained using the proposed method with the results from [19,20] in Table 2, we find that when the solitary wave has an amplitude of 0.54772 (c = 0.3), our method provides the same results as the cubic B-spline collation methods [20].




4.2. Interaction of Two Solitary Waves


The second segment of this numerical investigation explores the interaction dynamics of two solitary waves within the context of the MRLW equation. The initial scenario is established by considering a linear superposition of two distinct, amplitude-varied solitary waves that are spatially well-distinguished.


  u ( x , 0 ) =   ∑  i = 1  2    A i    sech (  p i  ( x −  x i  ) ) ,  



(18)




where    A i  =    c i     ,    p i  =      c i    μ (  c i  + 1 )      ,   i = 1 , 2  .



This experiment observes the interaction of dual solitary waves, differing in amplitude yet propagating co-directionally. Upon collision, they proceed to reemerge without any alteration in their initial states. The solitary wave interaction problem was solved in the interval [0, 250] for t = 0 to t = 20 with    c 1    = 4,    c 2    = 1, μ  = 1,    x 1    = 25,    x 2    = 55, a space step h = 0.2, and time step   Δ t   = 0.025; then, the amplitudes are in a ratio of 2:1, where   A 1    = 2   A 2   . Table 3 depicts the invariants across various temporal stages. A graphical representation of the interaction among these solitary waves at distinct time levels is depicted in Figure 3.




4.3. Interaction of Three Solitary Waves


This section focuses on investigating the dynamic interaction between three distinct-amplitude MRLW solitons moving co-directionally. This examination is carried out using the MRLW equation, which incorporates initial conditions that represent a linear combination of three well-spaced solitary waves, each with a unique amplitude.


  u ( x , 0 ) =   ∑  i = 1  3    A i    sech (  p i  ( x −  x i  ) ) ,  



(19)




where    A i  =    c i     ,    p i  =      c i    μ (  c i  + 1 )      ,   i = 1 , 2 , 3  .



In our computational study, we opt for the following parameters:    c 1    = 4,    c 2    = 1,    c 3    = 0.25,  μ  = 1,    x 1    = 15,    x 2    = 45,    x 3    = 60, h = 0.2, and   Δ t   = 0.025, with the domain spanning from 0 to 250. The amplitude proportions are set at a ratio of 4:2:1; it is noteworthy that    A 1    = 2   A 2    = 4   A 3   .



Our computational study reveals that the invariants    I 1   ,    I 2   , and    I 3    for the solitary wave collisions remain constant, even with significant wave magnitudes. These observations are documented in Table 4. The intricate dynamics of these solitary waves at various temporal stages are depicted in Figure 4, extending up to t = 45.




4.4. The Maxwellian Initial Condition


This section examines the progression of simulations with the adoption of a Maxwellian-based starting state,


  u ( x , 0 ) = exp ( −   ( x − 40 )  2  ) ,  



(20)




As a train of solitary waves, it is applied to the problem for different cases: (I)  μ  = 0.1, (II)  μ  = 0.04, (III)  μ  = 0.015, and (IV)  μ  = 0.01. The simulations are conducted up to t = 15. The values of the quantities   I 1   ,    I 2   , and    I 3    are given in Table 5. However, when  μ  is reduced, more solitary waves formed. For case (I), only a single soliton is generated, as shown in Figure 5a, while for case (II), the Maxwellian pulse develops into a train of at least two solitary waves, as shown in Figure 5b. Similarly, Figure 5c shows that for case (III), three stable solitons are generated, and Figure 5d indicates that for case (IV), the Maxwellian initial condition has decayed into four stable solitary waves. The peaks of the well-developed wave lie on a straight line, so their velocities are linearly dependent on their amplitudes and a small oscillating tail appearing behind the last wave, as shown in Figure 5. The values of the quantities   I 1   ,    I 2   , and    I 3    for cases  μ  = 0.1, 0.04, 0.015, and 0.01 are given in Table 5.



Table 6 presents a comparison between the cubic B-spline collocation approach [20] and our scheme according to the maximum changes   Δ  I 1   ,   Δ  I 2   , and   Δ  I 3    of invariants    I 1   ,    I 2   , and    I 3   in the above computed examples. It shows that, generally, our scheme provides smaller maximum changes of the three invariants than the cubic B-spline collocation method [20], which indicates that our scheme is satisfactorily conservative.



The following is a comparison of the numerical results: In the simulation of Section 4.1 and Section 4.2, the results of the two algorithms are equivalent, but in the simulation of Section 4.3 and Section 4.4, our algorithm’s result is closer to the analytical solution, and the maximum variation of the conserved quantity is smaller, indicating that our algorithm has higher accuracy and better satisfies the conservation law of the equation.





5. Conclusions


A collocation approach employing cubic B-splines was established for generating solitary waves in the context of the MRLW equation. It was found that this approach exhibits marginal stability and surpasses other cubic B-spline collocation methods in terms of precision [19]. It was also shown in the computed examples provided in this paper that the conservation laws are substantially satisfied, where the maximum changes of three invariants in our scheme are all smaller than those in the collocation scheme [20]. We propose that these algorithms can be used to obtain numerical solutions to nonlinear differential equations. Most importantly, the use of the collocation method is especially advisable for deriving the solitary waves of nonlinear differential equations containing high-power nonlinear terms.
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Figure 1. Single solitary wave with c = 0.3. 






Figure 1. Single solitary wave with c = 0.3.
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Figure 2. Errors (c = 0.3) at time t = 20. 
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Figure 3. Interaction of two solitary waves. 
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Figure 4. Interaction of three solitary waves. 






Figure 4. Interaction of three solitary waves.
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Figure 5. The Maxwellian initial condition with (a)  μ  = 0.1, (b)  μ  = 0.04, (c)  μ  = 0.015, and (d)  μ  = 0.01. 






Figure 5. The Maxwellian initial condition with (a)  μ  = 0.1, (b)  μ  = 0.04, (c)  μ  = 0.015, and (d)  μ  = 0.01.
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Table 1. Invariants and errors for a single solitary wave with c = 0.3.






Table 1. Invariants and errors for a single solitary wave with c = 0.3.





	Time
	     I 1     
	     I 2     
	     I 3     
	     L 2  ×   10  4     
	     L ∞  ×   10  4     





	0
	3.58197
	1.34508
	0.153723
	0
	0



	2
	3.58197
	1.34508
	0.153723
	1.67168
	1.13519



	4
	3.58197
	1.34508
	0.153723
	2.77610
	1.63633



	6
	3.58197
	1.34508
	0.153723
	3.52219
	1.90878



	8
	3.58197
	1.34508
	0.153723
	4.12108
	2.13960



	10
	3.58197
	1.34508
	0.153723
	4.65688
	2.35813



	12
	3.58197
	1.34508
	0.153723
	5.16261
	2.57283



	14
	3.58197
	1.34508
	0.153723
	5.65426
	2.78427



	16
	3.58197
	1.34508
	0.153723
	6.13872
	2.99420



	18
	3.58197
	1.34508
	0.153723
	6.62082
	3.20474



	20
	3.58197
	1.34508
	0.153723
	7.10258
	3.41575










 





Table 2. Errors and invariants of single solitary wave.






Table 2. Errors and invariants of single solitary wave.





	
Schemes

	
Analytical

	
Our Scheme

	
Cubic B-Splin

Coll-CN [20]






	
c = 0.3

t = 20

	
    I 1    

	
3.58197

	
3.58197

	
3.58197




	
    I 2    

	
1.34508

	
1.34508

	
1.34508




	
    I 3    

	
0.153723

	
0.153723

	
0.153723




	
    L 2  ×   10  4    

	
0

	
7.10258

	
6.06885




	
    L ∞  ×   10  4    

	
0

	
3.41575

	
2.96650











 





Table 3. Invariants for interaction of two solitary waves.






Table 3. Invariants for interaction of two solitary waves.





	
Time

	
     I 1     

	
     I 2     

	
     I 3     




	
Our Scheme

	
Cubic B-Splin Coll-CN [20]

	
Our Scheme

	
Cubic B-Splin Coll-CN [20]

	
Our Scheme

	
CubicB-Splin Coll-CN [20]






	
0

	
11.4677

	
11.4677

	
14.6291

	
14.6291

	
22.8806

	
22.8806




	
2

	
11.4677

	
11.4677

	
14.6297

	
14.6292

	
22.8805

	
22.8807




	
4

	
11.4677

	
11.4677

	
14.6294

	
14.6292

	
22.8803

	
22.8807




	
6

	
11.4677

	
11.4677

	
14.6296

	
14.6295

	
22.8806

	
22.8806




	
8

	
11.4677

	
11.4677

	
14.6336

	
14.6451

	
22.8850

	
22.8454




	
10

	
11.4677

	
11.4677

	
14.6337

	
14.5963

	
22.8878

	
22.8913




	
12

	
11.4677

	
11.4677

	
14.6293

	
14.6287

	
22.8808

	
22.8814




	
14

	
11.4677

	
11.4677

	
14.6295

	
14.6295

	
22.8805

	
22.8807




	
16

	
11.4677

	
11.4677

	
14.6296

	
14.6294

	
22.8804

	
22.8808




	
18

	
11.4677

	
11.4677

	
14.6296

	
14.6293

	
22.8804

	
22.8809




	
20

	
11.4677

	
11.4677

	
14.6294

	
14.6292

	
22.8803

	
22.8809




	
Analytical

	
11.467698

	
14.629243

	
22.880466











 





Table 4. Invariants for interaction of three solitary waves.






Table 4. Invariants for interaction of three solitary waves.





	
Time

	
     I 1     

	
     I 2     

	
     I 3     




	
Our Scheme

	
Cubic B-Splin Coll-CN [20]

	
Our Scheme

	
Cubic B-Splin Coll-CN [20]

	
Our Scheme

	
Cubic B-Splin Coll-CN [20]






	
0

	
14.9801

	
13.6891

	
15.8374

	
15.4549

	
23.0083

	
22.8816




	
5

	
14.9801

	
13.6891

	
15.8381

	
15.3109

	
23.0081

	
22.6939




	
10

	
14.9801

	
13.6891

	
15.8516

	
15.6514

	
23.0202

	
22.8388




	
15

	
14.9801

	
13.6891

	
15.8392

	
15.6548

	
23.0077

	
22.9347




	
20

	
14.9802

	
13.6891

	
15.8382

	
15.6557

	
23.0083

	
22.9330




	
25

	
14.9802

	
13.6892

	
15.8379

	
15.6559

	
23.0084

	
22.9336




	
30

	
14.9802

	
13.6894

	
15.8379

	
15.6559

	
23.0084

	
22.9348




	
35

	
14.9802

	
13.6913

	
15.8379

	
15.6564

	
23.0084

	
22.9343




	
40

	
14.9802

	
13.7015

	
15.8379

	
15.6566

	
23.0084

	
22.9335




	
45

	
14.9441

	
13.7043

	
15.8379

	
15.6563

	
23.0055

	
22.9303




	
Analytical

	
14.9801

	
15.8218

	
22.9923











 





Table 5. Invariants of MRLW equation using the Maxwellian initial condition.






Table 5. Invariants of MRLW equation using the Maxwellian initial condition.





	
   μ   

	
Time

	
     I 1     

	
     I 2     

	
     I 3     






	
0.1

	
3

	
1.77247

	
1.37737

	
0.76204




	
6

	
1.77247

	
1.37737

	
0.76204




	
9

	
1.77247

	
1.37737

	
0.76204




	
12

	
1.77247

	
1.37737

	
0.76204




	
15

	
1.77247

	
1.37737

	
0.76204




	
0.04

	
3

	
1.77254

	
1.29950

	
0.83975




	
6

	
1.77254

	
1.29951

	
0.83974




	
9

	
1.77254

	
1.29952

	
0.83973




	
12

	
1.77254

	
1.29952

	
0.83973




	
15

	
1.77254

	
1.29952

	
0.83973




	
0.015

	
3

	
1.77302

	
1.26345

	
0.88107




	
6

	
1.77302

	
1.26344

	
0.88109




	
9

	
1.77302

	
1.26343

	
0.88100




	
12

	
1.77302

	
1.26341

	
0.88090




	
15

	
1.77302

	
1.26341

	
0.88087




	
0.01

	
3

	
1.77364

	
1.25554

	
0.89927




	
6

	
1.77363

	
1.25548

	
0.89905




	
9

	
1.77361

	
1.25525

	
0.89763




	
12

	
1.77361

	
1.25528

	
0.89778




	
15

	
1.77363

	
1.25551

	
0.89920











 





Table 6. The maximum changes of invariants    I 1   ,    I 2   , and    I 3   .






Table 6. The maximum changes of invariants    I 1   ,    I 2   , and    I 3   .





	
Computed Examples

	
    Δ  I 1     

	
    Δ  I 2     

	
    Δ  I 3     




	
Our Scheme

	
Cubic B-Splin Coll-CN [20]

	
Our Scheme

	
Cubic B-Splin Coll-CN [20]

	
Our Scheme

	
Cubic B-Splin Coll-CN [20]






	
Single solitary waves

	
c = 1 (t = 10)

	
0

	
0

	
0.00001

	
0.00003

	
0.00001

	
0.00005




	
c = 0.3 (t = 20)

	
0

	
0

	
0

	
0

	
0

	
0




	
Two solitary waves (t = 20)

	
0

	
0

	
0.0046

	
0.032

	
0.0075

	
0.0459




	
Three solitary waves (t = 45)

	
0.0361

	
0.0102

	
0.0142

	
0.3

	
0.0147

	
0.241




	
The Maxwellian initial condition (t = 15)

	
 μ  = 0.1

	
0

	
0

	
0

	
0.00005

	
0

	
0.000063




	
 μ  = 0.04

	
0

	
0.00001

	
0.00002

	
0.00002

	
0.00002

	
0.000028




	
 μ  = 0.015

	
0

	
0.00001

	
0.00004

	
0.00004

	
0.00012

	
0.000248




	
 μ  = 0.01

	
0.00003

	
0.00004

	
0.00026

	
0.0004

	
0.00164

	
0.001722

















