
Citation: Fúster-Sabater, A.;

Pazo-Robles, M.E. Security Analysis

of the Symmetric Cryptosystem

TinyJambu. Symmetry 2024, 16, 440.

https://doi.org/10.3390/

sym16040440

Academic Editors: Lorentz Jäntschi

and Jie Yang

Received: 20 February 2024

Revised: 22 March 2024

Accepted: 2 April 2024

Published: 5 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Security Analysis of the Symmetric Cryptosystem TinyJambu
Amparo Fúster-Sabater * and M. E. Pazo-Robles

Institute of Physical and Information Technologies (ITEFI), Consejo Superior de Investigaciones
Científicas (CSIC), Serrano 144, 28006 Madrid, Spain; eugepazorobles@gmail.com
* Correspondence: amparo.fuster@csic.es

Abstract: Symmetric cryptography provides the best examples of cryptosystems to be applied in
lightweight environments (e.g., IoT). A representative example is the cryptosystem TinyJambu, one of
the ten finalists in the NIST Lightweight Cryptography Standardization Project. It is an authentication
encryption with associated data scheme that is extremely lightweight and fast. In this work, we
analyze the security of TinyJambu from two distinct and non-symmetric points of view: (1) the
improvement of the best cryptanalytical attack found in the literature and (2) a randomness analysis
of the generated sequences. Concerning item (1), we launched a differential forgery attack with
probability 2−65.9487, which was improved considerably compared with previous numerical results.
Concerning item (2), we analyzed the degree of randomness of the TinyJambu keystream sequences
with a complete and powerful battery of statistical tests. This non-symmetric study shows the
weakness of TinyJambu against cryptanalytic attacks as well as the strength of TinyJambu against
statistical analysis.

Keywords: symmetric cryptography; TinyJambu; differential cryptanalysis; randomness; IoT

1. Introduction

Nowadays, the Internet of Things (IoT) is an essential component in both information
technologies and computer science. In our digital society, IoT technology is more and more
deployed to connect diverse devices of daily use. All these connections need security, which
is the use of cryptographic primitives. At the same time, the devices to be interconnected
exhibit very different features: some of them are equipped with powerful processors
that are able to support any cryptographic algorithm (public or private cryptography),
while many others include just low-power microcontrollers; consequently, they are unable
to support most of the current cryptosystems. Symmetric cryptography provides the
only type of algorithm that can be applied in the frame of lightweight cryptography. In
fact, this cryptography tackles the problem of protecting all these interconnected devices,
considering their specific characteristics. Lightweight cryptography does not mean less
secure cryptography. Indeed, it tries to keep the same level of security as that of traditional
algorithms but under much more severe conditions.

In August 2018, “the National Institute of Standards and Technology (NIST) initiated
a process to solicit and standardize lightweight cryptography algorithms to be deployed
in constrained environments where the current NIST standards were not yet suitable”;
see reference [1]. Given this call to action, the TinyJambu algorithm was submitted and
was one of the ten finalists [2]. Moreover, due to its lightweight design and very simple
components, it was the fastest among all of candidates submitted to this selection process.

Within symmetric cryptography, stream ciphers unify, in a single scheme, the char-
acteristics of speed and simplicity. In conventional cryptography, a stream cipher design
generates, from a short and truly random key, a long and pseudorandom binary sequence,
the so-called keystream sequence. In a symmetric cryptosystem, in emission, a bitwise
XOR operation between the original message (plaintext) and the keystream sequence is
performed to generate the ciphertext. In reception, a bitwise XOR operation between the

Symmetry 2024, 16, 440. https://doi.org/10.3390/sym16040440 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16040440
https://doi.org/10.3390/sym16040440
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym16040440
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16040440?type=check_update&version=3

Symmetry 2024, 16, 440 2 of 22

ciphertext and the same keystream sequence is performed to recover the original message.
A stream cipher is just an approximation of a one-time pad encryption [3] (p. 36), the
only unconditionally secure cryptosystem. In fact, quantum cryptography and quantum
key distribution aim to securely implement the one-time pad procedure, making use of
quantum mechanics laws [4,5]. Currently, there are experimental applications of quantum
key distribution, although they are not yet technically suitable for deployment as a standard
component in lightweight environments. In cryptographic terms, stream cipher security
lies in the quality of the keystream sequences or, equivalently, in the randomness degree
of such sequences. In fact, keystream sequences should meet the following requirements:
(a) the generated sequence must not be distinguishable from a truly random sequence;
(b) the sequence must be unpredictable; (c) the period of the keystream sequence must
be extremely large; (d) the key space of the sequence generator must be large enough
to prevent a brute force attack; and (e) the design of the keystream generator should be
resistant to any cryptanalytic attack reported in the literature. In brief, we studied the
security of this cryptosystem from two different points of view: the improvement of the
best cryptanalytical attack and a randomness analysis of the keystream sequence.

In this work, we analyzed the symmetric cryptosystem TinyJambu as a stream cipher
algorithm, paying particular attention to above requirements (a), (b) and (e). In fact, we
studied conditions (a) and (b), that is, the randomness and unpredictability of a TinyJambu
bit sequence, by applying a number of empirical tests to determine its cryptographic
suitability. In addition, we improved a forgery attack, for condition (e), which is the
best cryptanalytical attack currently reported against the cryptosystem TinyJambu. The
remaining conditions are included in the parameters and specifications of the algorithm
itself, given by the designers.

In the original TinyJambu proposal [6], the authors analyzed the success probability
of a forgery attack against a nonce introduction and quantified such a probability as 2−80,
where 80 was the number of active AND gates in a particular differential trail. Since the
probability of 2−80 is extremely low, the designers claimed immunity for TinyJambu against
this kind of cryptanalysis. Later, in reference [7], the authors developed a more refined
model of differential trail search and evidenced the correlation among active AND gates.
According to these additional features, they could compute more precisely the probability
of forgery attack and provided a new probability of value 2−70.64.

In this work, we used the same search model developed in [7] and sought a maximum
number of different trails with a minimum number of uncorrelated AND gates. The final
result is the computation of a success probability of value 2−65.948, which is improved
from previous numerical results. To compute such a probability, we adapted the programs
provided in [8] and carried out a more exhaustive search of differential trails of type 3 on a
keyed permutation of 384 rounds.

To obtain these numerical results, we used a desktop PC with a 13th Gen Intel (R) Core
(TM) i9-13900K with 3.00 GHz, RAM of 128 GB with 24 cores and a Microsoft Windows
11 Pro operating system. Note that our computational resources were quite general. We
also used Python version 3.11 64-bit and Gurobi Optimizer version 10.0.1 build v10.0.1rc0
(win64) [9].

In the TinyJambu updated design [10], the number of rounds in the nonce introduction
was increased to 640. The new design wins in security but loses in performance. At any rate,
our results show a reduced security margin compared to that given by the designers (first
version of TinyJambu with 384 rounds), although their impact was less for the 640-round
updated version. In addition, we introduced a new strategy to simplify the trail search
computation when the 640-round problem was tackled.

Concerning the randomness study, we analyzed in detail what would be the Tiny-
Jambu keystream sequence by concatenating the stream of bits that the algorithm uses
in the phases of encryption/decryption. The generation of these sequences is symmetric
in both emission and reception. Later, a wide and powerful battery of statistical tests
(graphical tests, Diehard battery of tests or FIPS Test 140-2 from the NIST) were applied

Symmetry 2024, 16, 440 3 of 22

to these keystream sequences. To our knowledge, this is the first time that such a deep
statistical analysis has been performed over TinyJambu sequences as most attacks against
this cryptosystem have been conducted in the cryptanalyses of block ciphers [11,12].

The rest of this paper is organized as follows. In Section 2, we describe the Tiny-
Jambu candidate of the NIST Lightweight Cryptography Standardization Project. Next, in
Section 3, we consider the security analysis found in the literature about this lightweight
cryptosystem. In Section 4, we reduce the security margin of TinyJambu by improving
the search for optimal differential trails and, consequently, the final differential probability
in the nonce introduction phase. The 640-round problem is also considered. Next, we
analyze the keystream sequence of this cryptosystem in terms of randomness. Finally, the
conclusions and future work in Section 6 conclude the paper.

2. The TinyJambu Cryptosystem: An AEAD Scheme

The NIST Lightweight Cryptography Standardization Project solicited cryptographic
proposals with double functionality: authentication and encryption both unified in the same
algorithm (AE scheme). Moreover, such algorithms should incorporate the management
of associated data that are additional non-confidential information such as headers, IP
directions, routing protocol, etc., used in the communication process. In brief, an AEAD
scheme (authentication and encryption with associated data scheme) was required for all
candidates in the NIST call [13]. At the same time, one part of the information should
be ciphered (plain text or confidential message), and another, part non-ciphered (nonce
and associated data), but all data must be authenticated by means of a tag constructed for
verification purposes. The required minimum sizes of the algorithm parameters were as
follows: a key (k) of 128 bits, a nonce (N) of 96 bits and a tag (T) of 64 bits, while the length
of the plain text (M) and associated data (AD) was variable. Notice that only (k) and (M)
must be kept secret; the other parameters are public.

Figure 1 shows an exchange of information between a sender and receiver in the NIST
operation mode.

Symmetry 2024, 16, 440 3 of 22

(graphical tests, Diehard battery of tests or FIPS Test 140-2 from the NIST) were applied to

these keystream sequences. To our knowledge, this is the first time that such a deep statis-

tical analysis has been performed over TinyJambu sequences as most attacks against this

cryptosystem have been conducted in the cryptanalyses of block ciphers [11,12].

The rest of this paper is organized as follows. In Section 2, we describe the TinyJambu

candidate of the NIST Lightweight Cryptography Standardization Project. Next, in Section

3, we consider the security analysis found in the literature about this lightweight cryp-

tosystem. In Section 4, we reduce the security margin of TinyJambu by improving the

search for optimal differential trails and, consequently, the final differential probability in

the nonce introduction phase. The 640-round problem is also considered. Next, we analyze

the keystream sequence of this cryptosystem in terms of randomness. Finally, the conclu-

sions and future work in Section 6 conclude the paper.

2. The TinyJambu Cryptosystem: An AEAD Scheme

The NIST Lightweight Cryptography Standardization Project solicited cryptographic

proposals with double functionality: authentication and encryption both unified in the

same algorithm (AE scheme). Moreover, such algorithms should incorporate the manage-

ment of associated data that are additional non-confidential information such as headers,

IP directions, routing protocol, etc., used in the communication process. In brief, an AEAD

scheme (authentication and encryption with associated data scheme) was required for all

candidates in the NIST call [13]. At the same time, one part of the information should be

ciphered (plain text or confidential message), and another, part non-ciphered (nonce and

associated data), but all data must be authenticated by means of a tag constructed for ver-

ification purposes. The required minimum sizes of the algorithm parameters were as fol-

lows: a key (k) of 128 bits, a nonce (N) of 96 bits and a tag (T) of 64 bits, while the length

of the plain text (M) and associated data (AD) was variable. Notice that only (k) and (M)

must be kept secret; the other parameters are public.

Figure 1 shows an exchange of information between a sender and receiver in the NIST

operation mode.

(a) (b)

Figure 1. Operation mode required by the NIST: (a) steps performed in emission; (b) steps per-

formed in reception.

EMISSION

Introduce:

• Key (128 bits)

• Nonce (96 bits)

• Associated Data

• Plain Text (PT)

Compute:

• Ciphered Text

• Tag (64 bits)

Send:

• Ciphered Text

• Tag

RECEPTION

Introduce:

• Key (128 bits)

• Nonce (96 bits)

• Associated Data

• Ciphered Text

Compute:

• Plain Text

• Tag’ (64 bits)

Compare:

• Tag : Tag’

• Accept or not PT

Figure 1. Operation mode required by the NIST: (a) steps performed in emission; (b) steps performed
in reception.

Symmetry 2024, 16, 440 4 of 22

In emission, the sender makes use of the key, nonce, associated data and plain text to
compute the ciphered text and tag. Later, they send to the receiver both computed items. In
reception, the receiver makes use of the same key, nonce, associated data and the received
ciphered text to compute the plain text and their own tag (denoted by Tag’). Then, they
compare the tag received with the computed Tag’. If both coincide, then the plain text is
accepted; otherwise, it is rejected.

2.1. A Detailed Description of the TinyJambu Family

TinyJambu is one of the 10 finalists in the search for a standard algorithm in the
Lightweight Cryptography Project. At the same time, TinyJambu is part of a family of
lightweight authenticated encryption algorithms that supports three variants related to
three different key sizes: 128 bits, 192 bits and 256 bits. The remaining parameters such as
the nonce (public number of the message), a tag computed for verification purposes and a
state (a 128-bit register that is the core of the cryptosystem) have exactly the same number
of bits in all the members of the family.

In Table 1, the parameters of the three members of the TinyJambu family are listed.

Table 1. Parameters of the three members of the TinyJambu family.

Name Key Nonce Tag State

TinyJambu-128 128 bits 96 bits 64 bits 128 bits
TinyJambu-196 196 bits 96 bits 64 bits 128 bits
TinyJambu-256 256 bits 96 bits 64 bits 128 bits

TinyJambu mode is mainly based on a keyed permutation that provides authenticated
encryption/decryption. Indeed, it uses a secret key permutation in the form of a Nonlinear
Feedback Shift Register (NLFSR); see Figure 2. Such an NLFSR is made up of a 128-bit
register and a feedback function; no key schedule algorithm is implemented. In turn, the
register is made up of 128 interconnected memory cells simultaneously controlled by a
unique clock. At each clock pulse, the content of each cell is shifted to the next cell on the
right. For cell 127, new content is generated by means of the feedback function.

Symmetry 2024, 16, 440 5 of 22

Figure 2. The 128-bit nonlinear feedback shift register in TinyJambu.

In Figure 2, it can be noticed that feedback is the bit-wise XOR operation among three

state bits (S0, S47, S91), ki is the i-th bit of the key, and the output of the NAND gate is

represented by 𝑆70 ∙ 𝑆85
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . The unique nonlinear component in the feedback function is the

logical NAND gate.

The permutation Pn is always the same but with a different number of rounds n de-

pending on the phase in which it is applied. In the i-th round of the permutation, the 128-

bit NLFSR is used to update the state as follows:

StateUpdate (S, k, i):
𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 = 𝑆0 ⊕ 𝑆47 ⊕ 𝑆70 ∙ 𝑆85

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⊕ 𝑆91 ⊕ 𝑘𝑖

for j from 0 to 126: Sj = Sj+1

S127 = feedback

end

For instance, P1024 means that the state of the permutation is updated using the func-

tion StateUpdate () 1024 times. The subscripts of the key k are always computed modulo

|k|; that is, ki = ki mod |k|. Remark that for permutation P1024, the key is repeated eight times

while for P384, the key is repeated three times.

Due to the fact that this structure is a classical sponge for the 128-bit state and keyed

permutation [6], TinyJambu is an extremely fast cryptosystem. Indeed, it was the fastest

among all the candidates submitted to the NIST call [2]. According to the designers, the

tapping bit positions were chosen in such a way that during the algorithm execution, 32

rounds of the permutation can be computed in parallel on 32-bit CPUs.

2.2. Operational Mode for TinyJambu

In the way it operates, we might consider TinyJambu a sequential mode of encryp-

tion/decryption similar to a stream cipher mode because the sponge structure allows it.

The whole operational mode is as follows:

1. Key Setup: introduction of the key k by means of the permutation P1024.

Set the 128-bit state S as 0.

Update the state using P1024.

2. Nonce setup: introduction of the nonce N in three blocks of 32 bits with FrameBits = 1.

for i from 0 to 2:

S{36 … 38} = S{36 … 38} ⊕ FrameBits{0 … 2}

Update the state using P384

S{96 … 127} = S{96 … 127} ⊕ N{32i … 32i+31}

end for

3. Processing the blocks of associated data: introduction of the different 32-bit blocks of as-

sociated data (𝑎𝑑𝑙𝑒𝑛 is the length in bits of AD). Here, FrameBits = 3.
for I from 0 to ⌊𝑎𝑑𝑙𝑒𝑛/32⌋ − 1:

S{36 … 38} = S{36 … 38} ⊕ FrameBits{0 … 2}

Update the state using P384

S{96 … 127} = S{96 … 127} ⊕ AD{32i … 32i+31}

end for

Figure 2. The 128-bit nonlinear feedback shift register in TinyJambu.

In the following, the following notation will be employed:

• S is the 128-bit state of the permutation, and Si is the i-th bit of the state (i = 0, . . ., 127),
numbered from right to left.

• Pn is the 128-bit permutation with n rounds (that is, n shifts of the NLFSR).
• ki (i = 0, . . ., 127) is the i-th bit of the key (k), Ni (i = 0, . . ., 95) is the i-th bit of the nonce

(N), and Ti (i = 0, . . ., 63) is the i-th bit of the tag (T).
• ADi is the i-th bit of the associated data (AD), and Mi and Ci are the i-th bits of the

plain text (M) and ciphered text (C), respectively.
• FrameBits is a three-bit function that takes different values depending on the applica-

tion phase. More precisely, FrameBits = 1 for nonce introduction, FrameBits = 3 for asso-
ciated data introduction, FrameBits = 5 for encryption/decryption, and FrameBits = 7
for the finalization process.

Symmetry 2024, 16, 440 5 of 22

• For the a, b ∈ F2 = {0, 1} elements of the binary finite field, a, a ⊕ b, and a·b
denote the bit-wise NOT, bit-wise exclusive OR and bit-wise AND logic operations,
respectively.

In Figure 2, it can be noticed that feedback is the bit-wise XOR operation among three
state bits (S0, S47, S91), ki is the i-th bit of the key, and the output of the NAND gate is
represented by S70·S85. The unique nonlinear component in the feedback function is the
logical NAND gate.

The permutation Pn is always the same but with a different number of rounds n
depending on the phase in which it is applied. In the i-th round of the permutation, the
128-bit NLFSR is used to update the state as follows:

StateUpdate (S, k, i):
f eedback = S0 ⊕ S47 ⊕ S70·S85 ⊕ S91 ⊕ ki
for j from 0 to 126: Sj = Sj+1
S127 = feedback

end
For instance, P1024 means that the state of the permutation is updated using the

function StateUpdate () 1024 times. The subscripts of the key k are always computed
modulo |k|; that is, ki = ki mod |k|. Remark that for permutation P1024, the key is repeated
eight times while for P384, the key is repeated three times.

Due to the fact that this structure is a classical sponge for the 128-bit state and keyed
permutation [6], TinyJambu is an extremely fast cryptosystem. Indeed, it was the fastest
among all the candidates submitted to the NIST call [2]. According to the designers, the
tapping bit positions were chosen in such a way that during the algorithm execution,
32 rounds of the permutation can be computed in parallel on 32-bit CPUs.

2.2. Operational Mode for TinyJambu

In the way it operates, we might consider TinyJambu a sequential mode of encryp-
tion/decryption similar to a stream cipher mode because the sponge structure allows it.
The whole operational mode is as follows:

1. Key Setup: introduction of the key k by means of the permutation P1024.
Set the 128-bit state S as 0.
Update the state using P1024.

2. Nonce setup: introduction of the nonce N in three blocks of 32 bits with FrameBits = 1.
for i from 0 to 2:

S{36 . . . 38} = S{36 . . . 38} ⊕ FrameBits{0 . . . 2}
Update the state using P384
S{96 . . . 127} = S{96 . . . 127} ⊕ N{32i . . . 32i+31}

end for
3. Processing the blocks of associated data: introduction of the different 32-bit blocks of

associated data (adlen is the length in bits of AD). Here, FrameBits = 3.
for I from 0 to ⌊adlen/32⌋ − 1:

S{36 . . . 38} = S{36 . . . 38} ⊕ FrameBits{0 . . . 2}
Update the state using P384
S{96 . . . 127} = S{96 . . . 127} ⊕ AD{32i . . . 32i+31}

end for
4. Encryption: use FrameBits = 5, and the state is updated by means of the permutation

P1024. Next, sequentially introduce 32-bit blocks Mi of plain text to obtain 32-bit blocks
Ci of ciphered text (mlen is the length in bits of M)
for i from 0 to ⌊mlen/32⌋ − 1:

S{36 . . . 38} = S{36 . . . 38} ⊕ FrameBits{0 . . . 2}
Update the state using P1024
S{96 . . . 127} = S{96 . . . 127} ⊕ M{32i . . . 32i+31}
C{32i . . . 32i+31} = S{64 . . . 95} ⊕ M{32i . . . 32i+31}

Symmetry 2024, 16, 440 6 of 22

end for
5. Finalization: this phase carries out the generation of the tag and uses FrameBits = 7.

Notice that two different permutations P1024 and P384 are employed depending on
which bits of the tag are being computed.
S{36 . . . 38} = S{36 . . . 38} ⊕ FrameBits{0 . . . 2}
Update the state using P1024
T{0 . . . 31} = S{64 . . . 95}
S{36 . . . 38} = S{36 . . . 38} ⊕ FrameBits{0 . . . 2}
Update the state using P384
T{32 . . . 63} = S{64 . . . 95}

6. Operations in reception: the receiver performs the following operations:
Decryption: this is analogous to Encryption but substitutes M{32i . . . 32i+31} with C{32i . . . 32i+31}
in order to recover the original 32-bit blocks Mi of plain text (M).
Generation of T’: the receptor tag (T’) is generated in the same way as the sender tag
(T). Then, both tags are used for verification purposes.
Verification: If T’ = T, then accept the plain text (M); otherwise, reject it.

After the description of the TinyJambu operational mode, we proceed with the security
analysis of this cryptosystem.

3. Security of TinyJambu against Cryptanalytic Attacks

The first security evaluation of TinyJambu was performed by the own designers in [6],
the document submitted at the NIST Lightweight Cryptography Standardization Project.
Later, a new security evaluation of TinyJambu with additional features was reported in [7].
The authors introduced a method for finding differential trails by means of Mixed Integer
Linear Programming (MILP). Examples of the MILP application in cryptanalysis can be
easily found in the literature [14–16]. Now, we analyze such an evaluation in detail.

3.1. The Concept of Active AND Gates

Differential cryptanalysis has been applied to the nonlinear part of the cryptosystem.
Since the NAND logic operation is the only nonlinear component of the feedback function, it
is the natural target for launching a differential attack [14]. The key idea of this cryptanalysis
is to introduce two slightly different initial states in two parallel versions of TinyJambu and
analyze the evolution of these differences along the encryption process. Indeed, we denote
with S and S* two different 128-bit states of TinyJambu. As before, Si and S∗

i correspond to
the i-th bits of both states (i = 0, . . ., 127), respectively. Thus, the initial differential between
states S and S* is defined as

∆Si = Si ⊕ S∗
i for (i = 0, 1, . . . , 127). (1)

After l rounds of the keyed permutation Pl , the state bits Si and S∗
i have been simulta-

neously shifted as described in Section 2. That is, for state S, the successive feedback results
satisfy the following recurrence relationship:

S128+j = S0+j ⊕ S47+j ⊕ S70+j·S85+j ⊕ S91+j ⊕ k j (j = 0, 1, . . . , l), (2)

and similarly for state S∗,

S∗
128+j = S∗

0+j ⊕ S∗
47+j ⊕ S∗

70+j·S
∗
85+j ⊕ S∗

91+j ⊕ k j (j = 0, 1, . . . , l). (3)

Summing up Equations (2) and (3), we obtain a differential that also satisfies its own
recurrence relationship and gives rise to a differential trail of the form

∆S128+j = ∆S0+j ⊕ ∆S47+j ⊕ ∆
(
S70+j·S85+j

)
⊕ ∆S91+j (j = 0, 1, . . . , l). (4)

Symmetry 2024, 16, 440 7 of 22

Notice that in Equation (4), the only nonlinear term is the differential of the NAND
logic operation notated:

∆
(
S70+j·S85+j

)
=

(
S70+j·S85+j

)
⊕

(
S∗

70+j·S
∗
85+j

)
(j = 0, 1, . . . , l). (5)

This differential propagates along the keyed permutation Pl and tells us when a
difference between the nonlinear term of both versions takes place.

Then, two different items can be pointed out:

1. According to Equation (4), it can be noticed that in the differential trail, the terms k j of
the key have been cancelled as they are just additive elements.

2. Since the complementation of a logic product is defined as a·b = a·b ⊕ 1, we can omit
the constant 1 that appears in both summands of Equation (5) and replace the NAND
gate for an AND gate. In this way, we obtain a new and more simplified equation in
terms of an AND gate:

∆
(
S70+j·S85+j

)
=

(
S70+j·S85+j

)
⊕

(
S∗

70+j·S∗
85+j

)
(j = 0, 1, . . . , l). (6)

In the following and for the sake of simplicity, we will just use the AND logic operation.
Now, we define a new concept related to such an operation.

An active AND gate is defined as a differential of value 1. That is,

∆(a·b) = 1 (7)

where a, b ∈ F2 = {0, 1}. In TinyJambu, an active AND gate, notated as ∆
(
S70+j·S85+j

)
= 1,

determines the difference of the nonlinear component between the two parallel versions of
the generator, which allows us to perform this differential cryptanalysis.

In addition, we denote with X the number of active AND gates through the permu-
tation Pl . Since a trail with score X can be satisfied with probability p = 2−X (see [7],
Section 3), the challenge is to look for differential trails, as those defined in Equation (4),
that minimize the number X of active AND gates after l rounds. In TinyJambu, this kind of
attack is launched in the initialization phase (either in the nonce or associated data setup)
as both initializations make use of the keyed permutation Pl with l = 384, which is the
minimum number of rounds in the cryptosystem design. As long as the probability p
satisfies the inequality p ≥ 2−64 (see [7], Section 4.2), a differential attack breaks the 64-bit
security claimed by the designers in [6].

3.2. The Concept of Correlated AND Gates

As stated in the original document of TinyJambu [6], the designers looked for differen-
tial trails with a minimum number of active AND gates. Nevertheless, they considered that
all the AND gates are independent. By contrast, in [7], the authors analyzed the possible
correlations of the AND gates that modify the number of active AND gates along the keyed
permutation Pl .

Indeed, according to Figure 2, the separation between cells entering the NAND gate is
15. This means that if a bit a in cell 85 enters the gate at a particular round, then 15 rounds
later, the same bit will enter the same gate in cell 70. More precisely, according to the
TinyJambu recurrence relationship, bit S85 will be an input of the NAND gate with bit S70,
but after 15 rounds, S85 will also be an input of the gate with bit S100. In reference [7], the
authors studied the possible correlations between the logic products (S 85+j·S70+j

)
and

(S 100+j·S85+j

)
when the bits of the register shift along the successive rounds.

Let ∆
(
S85+j·S70+j

)
and ∆

(
S100+j·S85+j

)
denote the output difference of the AND gate

for inputs
(
S85+j, S70+j

)
and

(
S100+j, S85+j), respectively. In [7] (pp. 161–162), it was

Symmetry 2024, 16, 440 8 of 22

proved that if
(
∆S100+j, ∆S85+j, ∆S70+j

)
= (1, 0, 1) and S85+j = 1 for any j through the

permutation Pl , then

∆
(
S85+j·S70+j

)
= ∆

(
S100+j·S85+j

)
= 1. (8)

That is, ∆
(
S85+j·S70+j

)
= 1 is an active AND gate, but 15 rounds later, ∆

(
S100+j·S85+j

)
=

1 is an active AND gate too. Both differentials will be active AND gates or not depending on
the value of S85+j. In fact, if S85+j = 1, then Equation (8) holds, and there are two AND gates.
On the other hand, if S85+j = 0, then ∆

(
S85+j·S70+j

)
= ∆

(
S100+j·S85+j

)
= 0, and there are

no active AND gates. Both cases happen with probability 2−1, as it depends on a single bit.
Under these conditions, both active AND gates exist or not jointly, and both gates can be
counted as a single active AND gate. This is a different and more favorable way of counting
the number of active ANDs. Thus, in this more refined model proposed in [7], the number
X of active gates is reduced through l rounds, and consequently, the success probability
p = 2−X of a differential attack is incremented.

3.3. Differential Probabilities

In reference [6], the designers searched for differential trails under four different con-
straints related to the bit positions Si and S∗

i of the states before and after the permutation
Pl . The four types of differences are enumerated as follows:

Type 1 differences: Input differences only exist at the 32 most significant bits (MSBs) of the
input differential, that is, ∆S{127...96}, with no constraints on the output differential.
Type 2 differences: No constraints on the input differential while output differences only
exist at the 32 MSBs of the output differential, that is, ∆S{511...480}.
Type 3 differences: Both input and output differences jointly exist at the 32 MSBs in input
and output differentials, that is, in ∆S{127...96} and ∆S{511...480}, respectively.
Type 4 differences: No constraints at all.

Concerning TinyJambu, type 3 is the most interesting scenario since, as described in
item 2 of Section 2.2, the cryptosystem introduces a 96-bit nonce to three blocks of 32 bits
each. Thus, in type 3, the input and output differences of an optimal trail can be injected as
if they were the first and second 32-bit nonce blocks, respectively. Later, taking the previous
output difference as the new input difference, we can compute a new optimal trail and its
output difference can be injected as the third 32-bit nonce block. The type 3 differential
trails allow this manipulation in the nonce introduction. Thus, the differential cryptanalysis
exploits the introduction of the three nonce blocks in the frame of a nonce forgery attack.
In brief, in this nonce setup phase, we have a keyed permutation with 384 rounds and an
introduction of just three 32-bit blocks. The associated data introduction also allows the
exploitation of this kind of forgery attack, but in such a case, the number of 32-bit blocks to
be introduced may be larger.

According to [6], the maximum probability found by the designers for a differential
trail of type 3 was p = 2−80, which is enough to guarantee 64-bit security. Nevertheless,
in [7] (p. 166), the authors, making use of their refined model with correlated AND gates,
found a better differential trail, and its evolution is presented in Table 2 in hexadecimal
format. It is a differential trail type 3 with l = 384 rounds. Moreover, along this trail,
they counted X = 88 active AND gates with 14 correlated gates. Therefore, their success
probability is p = 2−88+14 = 2−74. Later, they computed the differential probability by
identifying a cluster of trails with the same input and output differentials but with different
values of X. The number of trails associated with each probability (#Trails) is depicted in
Table 3.

By summing up the probability of each trail multiplied by the number of trails found,
they computed the following differential probability:

p = 1·2−74 + 5·2−75 + 9·2−76 + 14·2−77 + 20·2−78 + 24·2−79 + 30·2−80.

Symmetry 2024, 16, 440 9 of 22

Therefore, the final differential probability given in [7] is

p = 2−70.68, (9)

which is higher than the first probability p = 2−80 obtained by the designers and referenced
in [6].

Table 2. A differential trail type 3 with probability 2−74 for 384 rounds.

Input: ∆S127. . .0 01004800 00000000 00000000 00000000

∆S255. . .128 81044c80 24080304 d9200000 22090000

∆S383. . .256 81004082 00010200 83000010 26090240

Output: ∆S511. . .384 81004082 00000000 00000000 00000000

Table 3. Differential trails with the same input/output differential masks defined in Table 2.

Probability 2−74 2−75 2−76 2−77 2−78 2−79 2−80

#Trails 1 5 9 14 20 24 30

4. Reducing the Security Margin of TinyJambu against Differential Cryptanalysis

In view of the previous results, in this section, we introduce new numerical values that
we obtained after a more detailed and complete search of differential trails for 384 rounds.
Next, a strategy sketch used to improve the search of trails for a number of rounds greater
than 384 is also described.

4.1. Security Margin with 384 Rounds

Our goal was to look for differential type 3 trails with a number of uncorrelated AND
gates X < 74, as 74 is the lowest value reported by the authors in [7]. To fulfill this task, we
used the Gurobi Optimizer [9] and the refined model developed in [7].

First of all, we looked for the optimal number of active AND gates X through a type
3 trail with l = 384 rounds in the TinyJambu feedback function. According to the Gurobi
Optimizer, the optimal value of uncorrelated AND gates in this scenario is X = 71. More
precisely, the optimizer provided us with a differential trail of type 3 with 84 active AND
gates and 13 correlated gates. Thus, this differential trail propagates with probability
p = 2−84+13 = 2−71, as described in Table 4.

Table 4. A differential trail type 3 with probability 2−71 for 384 rounds.

Input: ∆S127. . .0 048a2000 00000000 00000000 00000000

∆S255. . .128 44800001 12000986 48800020 91440000

∆S383. . .256 40800441 00008100 0880000c 12009120

Output: ∆S511. . .384 40800441 00000000 00000000 00000000

The first row of Table 4, including ∆S{127...0}, corresponds to the initial differential,
while the following rows, including ∆S{255...128}, ∆S{383...256} and ∆S{511...384}, correspond
to the differentials after 128, 256 and 384 rounds, respectively. Notice that in type 3 dif-
ferences, the input/output differentials are just the values in ∆S{127...96} / ∆S{511...480},
respectively, as the remaining differences in both ∆S{95...0} and ∆S{479...384} equal 0. Ta-
ble 4 as a whole shows the differential propagation through the permutation P384 with
information about the intermediate differences.

Once the minimum value of uncorrelated active AND gates was obtained, we honed
in on a long interval of possible solutions provided by the Gurobi. Proceeding in this way,
we could identify a cluster of multiple trails with the same input ∆S{127...0} and output

Symmetry 2024, 16, 440 10 of 22

∆S{511...384} differential masks, which appear in Table 4. All these trails start and end at the
same differentials, but the intermediate differences and the number X of AND gates may be
different. The distribution of such trails (#Trails) is depicted in Table 5, where the number X
of active AND gates ranges in the interval X ϵ [71, . . . , 77]. As before, by summing up all
of these probabilities, we obtained a final differential probability of value

p = 9·2−71 + 24·2−72 + 27·2−73 + 28·2−74 + 18·2−75 + 14·2−76 + 22·2−77.

p = (33.15625) 2−71.

Thus, our final differential probability is

p = 2−65.9487. (10)

According to Equation (10), it can be noticed that the new differential probability is a
good approach to the inequality p ≥ 2−64 that breaks the 64-bit security.

Table 5. Differential trails with the same input/output differential masks defined in Table 4.

Probability 2−71 2−72 2−73 2−74 2−75 2−76 2−77

#Trails 9 24 27 28 18 14 22

Table 5 is a much improved version of the first numerical values obtained by the
authors of this work in [17], as the number of differential trails has significantly increased.
In addition, the interval of the values of X is also greater than that in [17].

Table 6 shows a comparison between the results of Tables 3 and 5. It can be noticed
that our best probability is 2−71, while that of Saha et al. is just 2−74. Moreover, in this work,
the number of trails associated with each probability is greater than the number of trails
found in [7] for the same probabilities.

Table 6. Comparison between results given in reference [7] and those provided in this work.

Saha et al. [7]

Probability 2−74 2−75 2−76 2−77 2−78 2−79 2−80

#Trails 1 5 9 14 20 24 30

This work

Probability 2−71 2−72 2−73 2−74 2−75 2−76 2−77

#Trails 9 24 27 28 18 14 22

Considering the scores of the previous differential trails X = 80 for the TinyJambu
designers, X = 74 for the authors of reference [7] and X = 71 for our optimal trail, we can
compare the success probabilities Psucc. for a differential attack in all these cases,

Psucc. =
1

271 >
1

274 >
1

280 , (11)

as well as the differential probabilities Pdi f . in all these cases,

Pdi f . =
1

265.9487 >
1

270.68 >
1

280 . (12)

Our final differential probability is much greater than the probability of value p = 2−80

obtained by the designers and rather greater than the probability p = 2−70.68 obtained by
the authors of [7]. The new differential probability dramatically increments the success
probability for a cryptanalytical attack.

Symmetry 2024, 16, 440 11 of 22

In this subsection, we provided Tables 4 and 5 with their corresponding numerical
results. We can say that we found much more differential trials with higher success probabil-
ities for a differential cryptanalysis of type 3 than those ones obtained by previous authors.
These numerical results are the best we can obtain at this point with our computational
resources, that is, with the PC for which its specifications are described in Section 1. Better
computational facilities would allow us to find more differential trails with the optimal
value X = 71 and, consequently, to increase our final differential probability.

4.2. Differential Trail Search with 640 Rounds

Since the updated version of TinyJambu [10] increases the number of rounds in the
nonce introduction to 640, we can analyze the effect of this increment on the differential
trail search. First of all, it must be noticed that with a single PC, it is unfeasible to address
the search of differentials when the keyed permutation is P640 .

At any rate, we can sketch a strategy that allows us to partially tackle this computation.
Indeed, we observed in Tables 2 and 4 (as well as in many other differentials obtained in
this work) that the 32 most significant bits in the two last rows of the tables coincide. That
is, ∆S383. . .352 = ∆S511. . .480 in all the examples. The justification for such a coincidence is
as follows.

For instance, in Table 4, the row before the last is

∆S383. . .256 40800441 00008100 0880000c 12009120

Then, after 96 rounds the differences would be

∆S479. . .352 00000000 00000000 00000000 40800441

Remark that ∆S{479...384} = 0 means that

∆Si = Si ⊕ S∗
i = 0 for(i = 384, . . . , 479), (13)

so that the state bits Si and S*
i are equal in the range (i = 384, . . . , 479).

Next, according to the TinyJambu recurrence relationship, the new state bits Si and S*
i

computed in the following 32 rounds would be as follows:

S480+j = S352+j ⊕ S399+j ⊕
(
S422+j·S437+j

)
⊕ S443+j (j = 0, 1, . . . , 31)

S∗
480+j = S∗

352+j ⊕ S∗
399+j ⊕

(
S∗

422+j·S
∗
437+j

)
⊕ S∗

443+j (j = 0, 1, . . . , 31).

Therefore, the differential can be written as

∆S480+j = ∆S352+j ⊕ ∆S399+j ⊕ ∆
(
S422+j·S437+j

)
⊕ ∆S443+j (j = 0, 1, . . . , 31).

Thus, according to Equation (13), the following equalities hold:

∆S399+j = S399+j ⊕ S∗
399+j = 0 (j = 0, 1, . . . , 31).

∆S443+j = S443+j ⊕ S∗
443+j = 0 (j = 0, 1, . . . , 31).

∆
(

S422+j·S∗
437+j

)
=

(
S422+j·S437+j

)
⊕

(
S∗

422+j·S
∗
437+j

)
= 0 (j = 0, 1, . . . , 31).

Since,
S422+j = S∗

422+j (j = 0, 1, . . . , 31).

S437+j = S∗
437+j (j = 0, 1, . . . , 31).

Consequently,
∆S480+j = ∆S352+j ⊕ 0 ⊕ 0 ⊕ 0,

Symmetry 2024, 16, 440 12 of 22

and the 32 most significant bits in the two last rows of the tables coincide; that is,

∆S{383...352} = ∆S{511...480}

The reasoning is general for any differential trail with a number of rounds l = 384, 512,
640, etc., or for any multiple of 128, provided that the output differential is type 3; that is,
not all of the 32 most significant bits are 0, but the remaining bits equal 0.

This coincidence can be successfully exploited to tackle the trail search along 640 rounds.
In fact, the computational problem can be split into two different search processes:

1. Take an input differential of type 3.
2. Search for a differential trail along 512 rounds with a number X of AND gates as low

as possible. Upon obtaining ∆S{639...512}, take the 32 most significant bits ∆S{639...608}.
3. Search for a differential trail along 128 rounds with ∆S{639...512} as the input differential

and ∆S{767...640} = ∆S{639...608} 00000000 00000000 00000000 as the output differential.
4. Obtain a differential trail of type 3 with 640 rounds.

The obtained trail is probably not the optimal trail, but it exhibits a suitable number of
AND gates, and it was obtained with low computational resources.

5. Statistical Analysis of Randomness

Traditionally, all the cryptanalytical attacks launched against TinyJambu have been
conducted in block cipher cryptanalysis, (e.g., differential and linear cryptanalyses). Never-
theless, the cryptosystem TinyJambu can be considered a stream cipher cryptosystem in
that both encryption and decryption are concerned. This is the reason why an analysis of
the sequence generated using TinyJambu (the so-called keystream sequence) deserves a
section in this work. To our knowledge, a deep study of such a sequence cannot be found
in the literature. The analysis of this sequence is a way of evaluating TinyJambu’s strength.

The encryption/decryption procedure in TinyJambu is a typical stream cipher proce-
dure that is carried out as follows:

• The encryption is just the bit-wise XOR operation between each 32-bit block Mi of
plain text and the contents of stages S{64 . . . 95} in the NLFSR.

• The decryption is just the bit-wise XOR operation between each 32-bit block Ci of
ciphered text and the same contents S{64 . . . 95} in the NLFSR stages.

Notice that TinyJambu is not a keystream generator in a classical sense [3] (pp. 29–30);
that is, it does not generate a long binary sequence for cryptographic purposes. Nev-
ertheless, we can concatenate the contents of stages S{64 . . . 95} used in the successive Mi
encryptions and generate the corresponding keystream sequence. It is over such a concate-
nated sequence that we applied the different statistical tests.

As the initialization of TinyJambu depends on several parameters (key, nonce, asso-
ciated data, plain text), for our randomness analysis, we generated multiple keystream
sequences originating from different choices of random keys, nonces and AD, as well as dis-
tinct types of plain texts (e.g., text files, images, videos, etc.). The lengths of our sequences
were 223 bits. Moreover, we made use of three kinds of tests: graphical tests [18,19], the
Diehard battery of tests [20,21] and the family of statistical tests FIPS 140-2 developed by
the NIST [22]. For more details concerning the meaning and assessment of such tests, see
references [18,19]. In the following subsections, we show the obtained results.

5.1. Graphical Tests

In this subsection, we discuss the application of the main graphical tests developed
in reference [18]. These tests were implemented in Matlab 9.1 and executed on the PC
described in Section 1. Most of the graphical tests group the bits in octets (groups of eight
bits), except for the linear complexity test, which analyzes the sequence bit after bit, and
the chaos game, which considers the bits in groups of two elements. Now, we detail the
applied tests.

Symmetry 2024, 16, 440 13 of 22

1. Return map

This test is a measure of the sequence entropy, which would detect any useful infor-
mation about the parameters used in the design of the sequence generator. The result of
this test should be a distribution of points with no trends, no lines, no figures, etc., that is,
without any specific pattern. Basically, the return map is a graph of the sequence terms xt
as a function of the previous terms xt−1. Figure 3 shows the return map of a keystream
sequence generated using TinyJambu. In fact, it exhibits a cloud of disordered points spread
out all over the rectangle without any particular distribution. In brief, it does not provide
any information for a possible cryptanalysis, and consequently, from the point of view of
this graphical test, the sequence is suitable for cryptographic application.

Symmetry 2024, 16, 440 13 of 22

spread out all over the rectangle without any particular distribution. In brief, it does not

provide any information for a possible cryptanalysis, and consequently, from the point of

view of this graphical test, the sequence is suitable for cryptographic application.

In [18] (Section 5, Figure 3a,b), several examples of return maps obtained from quad-

ratic generators reveal clearly geometric structures and a lack of randomness.

Figure 3. Example of return map for a TinyJambu keystream sequence: a set of disordered points

that do not provide any information about the parameters of the generator.

2. Linear Complexity

Traditionally, linear complexity (LC) is a measure of the unpredictability of a se-

quence, which is a powerful metric for cryptographic sequences. LC is defined as the

length of the shortest Linear Feedback Shift Register (LFSR) able to generate such a se-

quence [23] (pp. 27–29). The algorithm of Berlekamp–Massey [24] computes the value of

this parameter. A typical linear complexity profile is a staircase graph that closely follows,

but irregularly, the 1/2 line (that is, the straight line with a slope of 1/2), exhibiting average

step lengths and step heights of values 2 and 4, respectively. More details concerning LC

can be found in [25,26].

For cryptographic purposes, the complexity must be as large as possible. In practice,

for a sequence of period T, its LC must satisfy 𝐿𝐶 ≅ 𝑇/2. In Figure 4, we can see (a) the

complexity profile for the first 20,000 bits of a TinyJambu sequence and (b) a zoom-in of

the linear complexity profile. After the analysis of 20,000 bits, the value of LC should be

approximately LC = 10,000, as can be observed in Figure 4a.

Figure 3. Example of return map for a TinyJambu keystream sequence: a set of disordered points that
do not provide any information about the parameters of the generator.

In [18] (Section 5, Figure 3a,b), several examples of return maps obtained from
quadratic generators reveal clearly geometric structures and a lack of randomness.

2. Linear Complexity

Traditionally, linear complexity (LC) is a measure of the unpredictability of a se-
quence, which is a powerful metric for cryptographic sequences. LC is defined as the
length of the shortest Linear Feedback Shift Register (LFSR) able to generate such a
sequence [23] (pp. 27–29). The algorithm of Berlekamp–Massey [24] computes the value of
this parameter. A typical linear complexity profile is a staircase graph that closely follows,
but irregularly, the 1/2 line (that is, the straight line with a slope of 1/2), exhibiting average
step lengths and step heights of values 2 and 4, respectively. More details concerning LC
can be found in [25,26].

For cryptographic purposes, the complexity must be as large as possible. In practice,
for a sequence of period T, its LC must satisfy LC ∼= T/2. In Figure 4, we can see (a) the
complexity profile for the first 20,000 bits of a TinyJambu sequence and (b) a zoom-in of
the linear complexity profile. After the analysis of 20,000 bits, the value of LC should be
approximately LC = 10,000, as can be observed in Figure 4a.

Symmetry 2024, 16, 440 14 of 22Symmetry 2024, 16, 440 14 of 22

(a) (b)

Figure 4. Linear complexity profile of a TinyJambu keystream sequence. (a) Linear complexity pro-

file of the first 20,000 bits as a staircase graph over the 1/2 line; (b) A zoom-in of the staircase profile.

3. Shannon Entropy and Min-Entropy

The entropy of a sequence is a measure of the amount of information provided by a

process with a result that is the sequence, or equivalently, it is a measure of the uncertainty

of a random variable X. Such a measure is expressed in bits; see [20]. Shannon entropy is

defined as the average probability of all the values that the random variable can take. More

precisely, let X be a random variable that takes the values x1, x2, x3, …, xn. Thus, Shannon

entropy is defined as

𝐻(𝑋) = − ∑ 𝑃𝑟 (𝑥𝑖

𝑛

𝑖=1

) ∙ 𝑙𝑜𝑔2(𝑃𝑟 (𝑥𝑖)).

If the process is the generation of a sequence of integers modulo m, perfectly random

with m = 2n, then its entropy is equal to n. In our case, the entropy of a random sequence

must be close to n = 8 bits per octet (byte). The min-entropy is the measure of the proba-

bility of the more frequent occurrence value of the random variable. It is a measure rec-

ommended by the NIST SP 800–90B standard for True Random Number Generators.

In order to determine whether the TinyJambu generator of keystream sequences is

suitable for these values of entropy, we can say that for a sequence of 220 bytes, the Shan-

non entropy must be ≥7.976 bits per byte, while the min-entropy must be approximately

7.91 bits per byte. In the analysis of the TinyJambu sequences, we obtained, on average,

the following values:

Shannon entropy (ideal) = 8 bits per octet.

Shannon entropy (minimum accepted) = 7.976 bits per octet.

Shannon entropy measured = 7.9986 bits per octet.

Min-entropy (ideal) = 7.91 bits per octet.

Min-entropy (minimum accepted) = 7.608 bits per octet.

Min-entropy measured = 7.8132 bits per octet.

In view of the numerical values obtained, we can say that the Shannon entropy and

min-entropy tests were passed.

4. Samples in increasing order

The TinyJambu sequence is codified in groups of 8 bits. Such octets, considered nu-

merical values in the interval [0, …, 255], are sorted in increasing order and represented

by means of a graph. If all the 8-bit numbers were generated, then the representation

would be a continuous line. At the same time, if the density were uniform (all the

Figure 4. Linear complexity profile of a TinyJambu keystream sequence. (a) Linear complexity profile
of the first 20,000 bits as a staircase graph over the 1/2 line; (b) A zoom-in of the staircase profile.

3. Shannon Entropy and Min-Entropy

The entropy of a sequence is a measure of the amount of information provided by a
process with a result that is the sequence, or equivalently, it is a measure of the uncertainty
of a random variable X. Such a measure is expressed in bits; see [20]. Shannon entropy is
defined as the average probability of all the values that the random variable can take. More
precisely, let X be a random variable that takes the values x1, x2, x3, . . ., xn. Thus, Shannon
entropy is defined as

H(X) = −
n

∑
i=1

Pr(xi)·log2(Pr(xi)).

If the process is the generation of a sequence of integers modulo m, perfectly random
with m = 2n, then its entropy is equal to n. In our case, the entropy of a random sequence
must be close to n = 8 bits per octet (byte). The min-entropy is the measure of the probability
of the more frequent occurrence value of the random variable. It is a measure recommended
by the NIST SP 800–90B standard for True Random Number Generators.

In order to determine whether the TinyJambu generator of keystream sequences is
suitable for these values of entropy, we can say that for a sequence of 220 bytes, the Shannon
entropy must be ≥7.976 bits per byte, while the min-entropy must be approximately
7.91 bits per byte. In the analysis of the TinyJambu sequences, we obtained, on average, the
following values:

Shannon entropy (ideal) = 8 bits per octet.
Shannon entropy (minimum accepted) = 7.976 bits per octet.
Shannon entropy measured = 7.9986 bits per octet.
Min-entropy (ideal) = 7.91 bits per octet.
Min-entropy (minimum accepted) = 7.608 bits per octet.
Min-entropy measured = 7.8132 bits per octet.

In view of the numerical values obtained, we can say that the Shannon entropy and
min-entropy tests were passed.

4. Samples in increasing order

The TinyJambu sequence is codified in groups of 8 bits. Such octets, considered
numerical values in the interval [0, . . ., 255], are sorted in increasing order and represented
by means of a graph. If all the 8-bit numbers were generated, then the representation would
be a continuous line. At the same time, if the density were uniform (all the numerical
values appear with the same frequency), then the slope line (over which the samples are
represented) would be 45 degrees. Figure 5 depicts the results of this test. The samples give

Symmetry 2024, 16, 440 15 of 22

rise to a continuous straight line (in red) with a 45-degree slope line, which totally covers
the blue line with the same slope used as reference. In view of the results of Figure 5, the
samples under the increasing order test satisfactorily passed.

Symmetry 2024, 16, 440 15 of 22

numerical values appear with the same frequency), then the slope line (over which the

samples are represented) would be 45 degrees. Figure 5 depicts the results of this test. The

samples give rise to a continuous straight line (in red) with a 45-degree slope line, which

totally covers the blue line with the same slope used as reference. In view of the results of

Figure 5, the samples under the increasing order test satisfactorily passed.

Figure 5. Samples sorted in increasing order: a representation of the 8-bit numerical samples that

totally covers the 45-degree line (red line) over the reference line (blue line).

5. Chaos game

The chaos game is a mathematical technique that allows us to convert a one-dimen-

sional sequence such as that generated using TinyJambu into a two-dimensional se-

quence, giving rise to a more detailed visual representation. From such a representation,

we can characterize possible patters in the sequence under consideration. The outcome of

a chaos game representation is called an attractor (fractal or compact set); for more details,

the interested reader is referred to [18,19]. In fact, this technique can determine non-ran-

domness in the kind of pseudorandom sequences that we are analyzing. In Figure 6, we

can just see a cloud of disordered points spread out all over the square. No patterns or

fractals are observed. Consequently, the chaos game test was passed.

Figure 5. Samples sorted in increasing order: a representation of the 8-bit numerical samples that
totally covers the 45-degree line (red line) over the reference line (blue line).

5. Chaos game

The chaos game is a mathematical technique that allows us to convert a one-dimensional
sequence such as that generated using TinyJambu into a two-dimensional sequence, giving rise
to a more detailed visual representation. From such a representation, we can characterize
possible patters in the sequence under consideration. The outcome of a chaos game
representation is called an attractor (fractal or compact set); for more details, the interested
reader is referred to [18,19]. In fact, this technique can determine non-randomness in the
kind of pseudorandom sequences that we are analyzing. In Figure 6, we can just see a cloud
of disordered points spread out all over the square. No patterns or fractals are observed.
Consequently, the chaos game test was passed.

Symmetry 2024, 16, 440 16 of 22

Figure 6. Example of chaos game for a TinyJambu keystream sequence. A cloud of points spread

out all over the square without a particular distribution indicates good randomness.

In [18] (Section 5, Figure 7a,b), examples of chaos game representations obtained

from quadratic generators show fractal structures that reveal a lack of randomness.

6. Autocorrelation

Autocorrelation (or cross-correlation) is a mathematical technique that looks for re-

peated samples among the different portions of a sequence when they are compared. This

property is very useful for finding periodic or repetitive patterns within a signal or, in this

case, within a binary sequence. The sequence is compared with a shifted version of the same

sequence. The number of agreements and disagreements among bits for the pair of the orig-

inal sequence and shifted version are computed. The comparison is carried out for all the

possible shifts of the sequence over itself. Figure 7 represents the autocorrelation of a Ti-

nyJambu sequence after analyzing 120,000 bits. The first autocorrelation coefficient is always

equal to 1, as the sequence coincides with itself (autocorrelation in phase); the remaining

coefficients corresponding to the successive shifts must be as small as possible (autocorrela-

tion out of phase). In Figure 7, it is clear that the obtained values in red are close to 0. This

means that, as far as this metric is concerned, the analyzed sequence exhibits good random-

ness characteristics, and consequently, the autocorrelation test was passed.

Figure 6. Example of chaos game for a TinyJambu keystream sequence. A cloud of points spread out
all over the square without a particular distribution indicates good randomness.

Symmetry 2024, 16, 440 16 of 22

In [18] (Section 5, Figure 7a,b), examples of chaos game representations obtained from
quadratic generators show fractal structures that reveal a lack of randomness.

6. Autocorrelation

Autocorrelation (or cross-correlation) is a mathematical technique that looks for re-
peated samples among the different portions of a sequence when they are compared. This
property is very useful for finding periodic or repetitive patterns within a signal or, in this
case, within a binary sequence. The sequence is compared with a shifted version of the
same sequence. The number of agreements and disagreements among bits for the pair of
the original sequence and shifted version are computed. The comparison is carried out for
all the possible shifts of the sequence over itself. Figure 7 represents the autocorrelation
of a TinyJambu sequence after analyzing 120,000 bits. The first autocorrelation coefficient
is always equal to 1, as the sequence coincides with itself (autocorrelation in phase); the
remaining coefficients corresponding to the successive shifts must be as small as possible
(autocorrelation out of phase). In Figure 7, it is clear that the obtained values in red are close
to 0. This means that, as far as this metric is concerned, the analyzed sequence exhibits
good randomness characteristics, and consequently, the autocorrelation test was passed.

Symmetry 2024, 16, 440 16 of 22

Figure 6. Example of chaos game for a TinyJambu keystream sequence. A cloud of points spread

out all over the square without a particular distribution indicates good randomness.

In [18] (Section 5, Figure 7a,b), examples of chaos game representations obtained

from quadratic generators show fractal structures that reveal a lack of randomness.

6. Autocorrelation

Autocorrelation (or cross-correlation) is a mathematical technique that looks for re-

peated samples among the different portions of a sequence when they are compared. This

property is very useful for finding periodic or repetitive patterns within a signal or, in this

case, within a binary sequence. The sequence is compared with a shifted version of the same

sequence. The number of agreements and disagreements among bits for the pair of the orig-

inal sequence and shifted version are computed. The comparison is carried out for all the

possible shifts of the sequence over itself. Figure 7 represents the autocorrelation of a Ti-

nyJambu sequence after analyzing 120,000 bits. The first autocorrelation coefficient is always

equal to 1, as the sequence coincides with itself (autocorrelation in phase); the remaining

coefficients corresponding to the successive shifts must be as small as possible (autocorrela-

tion out of phase). In Figure 7, it is clear that the obtained values in red are close to 0. This

means that, as far as this metric is concerned, the analyzed sequence exhibits good random-

ness characteristics, and consequently, the autocorrelation test was passed.

Figure 7. Example of autocorrelation for a TinyJambu keystream sequence with values of autocorrela-
tion in red out of phase and close to 0. The blue line depicts the decrement of autocorrelation values
related to mutual sequence shift.

7. Fast Fourier Transform

A Fast Fourier Transform (FFT) efficiently computes a Discrete Fourier Transform or
transformation of a signal into the frequency domain. In the analysis of binary sequences,
a FFT may detect repetitive patterns in the sequence under study. In fact, a random
sequence must exhibit all the FFT harmonics with approximately the same amplitude,
and no up/down trends should appear. Figure 8 shows the result of this test applied to a
TinyJambu sequence of 120,000 bits. It can be seen that all the amplitudes are in the same
range; consequently, the test was passed.

Symmetry 2024, 16, 440 17 of 22

Symmetry 2024, 16, 440 17 of 22

Figure 7. Example of autocorrelation for a TinyJambu keystream sequence with values of autocor-

relation in red out of phase and close to 0. The blue line depicts the decrement of autocorrelation

values related to mutual sequence shift.

7. Fast Fourier Transform

A Fast Fourier Transform (FFT) efficiently computes a Discrete Fourier Transform or

transformation of a signal into the frequency domain. In the analysis of binary sequences,

a FFT may detect repetitive patterns in the sequence under study. In fact, a random se-

quence must exhibit all the FFT harmonics with approximately the same amplitude, and

no up/down trends should appear. Figure 8 shows the result of this test applied to a Ti-

nyJambu sequence of 120,000 bits. It can be seen that all the amplitudes are in the same

range; consequently, the test was passed.

Figure 8. Fast Fourier Transform (FFT) representation for a TinyJambu sequence of 120,000 bits,

where all the harmonics exhibit approximately the same amplitude.

5.2. The Diehard Battery of Pseudorandomness Tests

Random number generators only exist in nature. In practice, we have to settle with

pseudorandom number generators, which are tested, and their results should not exhibit

neither evidence of regularity nor evidence of a statistical distribution. At this point, we

applied the Diehard battery of tests, which consists of 15 independent tests, although

some of them are repeated but with distinct parameter values. Diehard tests use the chi-

square goodness-to-fit technique for computing uniform p-values in the interval [0, 1); see

[20,21].

In order to apply the previous tests to the TinyJambu sequences, we created a series

of sequences, all of them generated using the same generator but with different choices of

key, nonces, AD or plain text.

From the Diehard battery, we applied the following tests:

1. Binary Rank Test for 6 × 8 matrices;

2. 3DSPHERES Test;

3. Overlapping 5-permutation Test;

4. SQEEZE Test;

5. Parking lot Test;

6. Binary Rank Test for 31 × 31 matrices;

7. Binary Rank Test for 32 × 32 matrices;

Figure 8. Fast Fourier Transform (FFT) representation for a TinyJambu sequence of 120,000 bits,
where all the harmonics exhibit approximately the same amplitude.

5.2. The Diehard Battery of Pseudorandomness Tests

Random number generators only exist in nature. In practice, we have to settle with
pseudorandom number generators, which are tested, and their results should not exhibit
neither evidence of regularity nor evidence of a statistical distribution. At this point, we
applied the Diehard battery of tests, which consists of 15 independent tests, although some
of them are repeated but with distinct parameter values. Diehard tests use the chi-square
goodness-to-fit technique for computing uniform p-values in the interval [0, 1); see [20,21].

In order to apply the previous tests to the TinyJambu sequences, we created a series of
sequences, all of them generated using the same generator but with different choices of key,
nonces, AD or plain text.

From the Diehard battery, we applied the following tests:

1. Binary Rank Test for 6 × 8 matrices;
2. 3DSPHERES Test;
3. Overlapping 5-permutation Test;
4. SQEEZE Test;
5. Parking lot Test;
6. Binary Rank Test for 31 × 31 matrices;
7. Binary Rank Test for 32 × 32 matrices;
8. Birthday spacing Test;
9. Overlapping sums Test;
10. Runs Test;
11. Craps Test;
12. Minimum distance Test.

For the sake of simplicity, we considered the previous tests among the 15 proposed in
the Diehard battery. Since all of these are statistical tests, it is more accurate to determine
whether their results (the p-values) fall inside a determined upper and lower bound. In
fact, the p-values may fluctuate but not trespass these bounds, indicating good statistical
properties or good pseudorandomness characteristics. In this work, we established our
boundaries in the following margins:

0.03 < p-values < 0.97

Symmetry 2024, 16, 440 18 of 22

Sequences with p-values greater or lower than these bounds were said to exhibit poor
pseudorandomness [27,28]. At this point, we applied the Diehard battery of tests to a series
of sequences generated using TinyJambu.

The following results are for tests 1–4, and they are depicted in Figure 9:

1. Binary Rank Test for 6 × 8 matrices: sequence_5 and sequence_10 showed a slightly
higher p-value than the established upper bound.

2. 3DSPHERES Test: only sequence_11 exhibited a p-value lower than the bound, which
means a slightly deficient pseudorandomness.

3. Overlapping 5-permutation Test: here, the p-values were too low for sequences 1 and
2, showing poor pseudorandomness characteristics.

4. SQEEZE TEST: all sequences passed this test satisfactorily.

Symmetry 2024, 16, 440 18 of 22

8. Birthday spacing Test;

9. Overlapping sums Test;

10. Runs Test;

11. Craps Test;

12. Minimum distance Test.

For the sake of simplicity, we considered the previous tests among the 15 proposed

in the Diehard battery. Since all of these are statistical tests, it is more accurate to deter-

mine whether their results (the p-values) fall inside a determined upper and lower bound.

In fact, the p-values may fluctuate but not trespass these bounds, indicating good statisti-

cal properties or good pseudorandomness characteristics. In this work, we established our

boundaries in the following margins:

0.03 < p-values < 0.97

Sequences with p-values greater or lower than these bounds were said to exhibit poor

pseudorandomness [27,28]. At this point, we applied the Diehard battery of tests to a series

of sequences generated using TinyJambu.

The following results are for tests 1–4, and they are depicted in Figure 9:

1. Binary Rank Test for 6 × 8 matrices: sequence_5 and sequence_10 showed a slightly

higher p-value than the established upper bound.

2. 3DSPHERES Test: only sequence_11 exhibited a p-value lower than the bound, which

means a slightly deficient pseudorandomness.

3. Overlapping 5-permutation Test: here, the p-values were too low for sequences 1 and

2, showing poor pseudorandomness characteristics.

4. SQEEZE TEST: all sequences passed this test satisfactorily.

Figure 9. This figure shows the results of the first four DIEHARD tests applied to sequences_1 up

to sequence_15.

Next, the following results are for tests 5–8, and they are depicted in Figure 10:

5. Parking lot Test: sequence_6 slightly surpassed the upper bound, which indicates a

slight deficiency in pseudorandomness.

6. Binary Rank Test for 31 × 31 matrices: all sequences showed good pseudorandomness

characteristics.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sec_1 Sec_2 Sec_3 Sec_4 Sec_5 Sec_6 Sec_7 Sec_8 Sec_9 Sec_10 Sec_11 Sec_12 Sec_13 Sec_14 Sec_15

p-value

 BINARY RANK TEST for 6x8 matrices 3DSPHERES test Overlapping 5 permutation

SQEEZE TEST Linear (upper bound) Linear (lower bound)

Figure 9. This figure shows the results of the first four DIEHARD tests applied to sequences_1 up to
sequence_15.

Next, the following results are for tests 5–8, and they are depicted in Figure 10:

5. Parking lot Test: sequence_6 slightly surpassed the upper bound, which indicates a
slight deficiency in pseudorandomness.

6. Binary Rank Test for 31 × 31 matrices: all sequences showed good pseudorandomness
characteristics.

7. Binary Rank Test for 32 × 32 matrices: all sequences showed good pseudorandomness
characteristics.

8. Birthday spacing Test: all sequences exhibited good pseudorandom characteristics,
although sequence_6 was near the bound.

For tests 9–12, Figure 11 shows the results, and the results are as follows:

9. Overlapping sums Test: all sequences exhibited p-values within the boundaries.
10 Runs Test: all sequences showed good pseudorandomness characteristics.
11. Craps Test: all sequences showed good pseudorandomness characteristics.
12. Minimum distance Test: all sequences showed good pseudorandomness characteris-

tics, except for sequence_7, which showed a poorer pseudorandomness.

Symmetry 2024, 16, 440 19 of 22

Symmetry 2024, 16, 440 19 of 22

7. Binary Rank Test for 32 × 32 matrices: all sequences showed good pseudorandomness

characteristics.

8. Birthday spacing Test: all sequences exhibited good pseudorandom characteristics,

although sequence_6 was near the bound.

Figure 10. This figure shows the results of another four DIEHARD tests applied to sequence_1 to

sequence_15.

For tests 9–12, Figure 11 shows the results, and the results are as follows:

9. Overlapping sums Test: all sequences exhibited p-values within the boundaries.

10. Runs Test: all sequences showed good pseudorandomness characteristics.

11. Craps Test: all sequences showed good pseudorandomness characteristics.

12. Minimum distance Test: all sequences showed good pseudorandomness characteris-

tics, except for sequence_7, which showed a poorer pseudorandomness.

Figure 11. This figure shows the results of the last four DIEHARD tests applied to sequence_1 to

sequence_15.

As we have seen from the above results, in general, the TinyJambu sequences pass

the tests. Some sequences exhibit p-values beyond the boundaries for any test.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sec_1 Sec_2 Sec_3 Sec_4 Sec_5 Sec_6 Sec_7 Sec_8 Sec_9 Sec_10 Sec_11 Sec_12 Sec_13 Sec_14 Sec_15

p-value

Parking lot Test BINARY RANK TEST for 31x31 matrices
BINARY RANK TEST for 32x32 matrices Birthday spacing test
Linear (upper bound) Linear (lower bound)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Sec_1 Sec_2 Sec_3 Sec_4 Sec_5 Sec_6 Sec_7 Sec_8 Sec_9 Sec_10 Sec_11 Sec_12 Sec_13 Sec_14 Sec_15

p-value

Overlaping sums test RUNS TEST Craps test

Minimun distance test Linear (upper bound) Linear (lower bound)

Figure 10. This figure shows the results of another four DIEHARD tests applied to sequence_1 to
sequence_15.

Symmetry 2024, 16, 440 19 of 22

7. Binary Rank Test for 32 × 32 matrices: all sequences showed good pseudorandomness

characteristics.

8. Birthday spacing Test: all sequences exhibited good pseudorandom characteristics,

although sequence_6 was near the bound.

Figure 10. This figure shows the results of another four DIEHARD tests applied to sequence_1 to

sequence_15.

For tests 9–12, Figure 11 shows the results, and the results are as follows:

9. Overlapping sums Test: all sequences exhibited p-values within the boundaries.

10. Runs Test: all sequences showed good pseudorandomness characteristics.

11. Craps Test: all sequences showed good pseudorandomness characteristics.

12. Minimum distance Test: all sequences showed good pseudorandomness characteris-

tics, except for sequence_7, which showed a poorer pseudorandomness.

Figure 11. This figure shows the results of the last four DIEHARD tests applied to sequence_1 to

sequence_15.

As we have seen from the above results, in general, the TinyJambu sequences pass

the tests. Some sequences exhibit p-values beyond the boundaries for any test.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sec_1 Sec_2 Sec_3 Sec_4 Sec_5 Sec_6 Sec_7 Sec_8 Sec_9 Sec_10 Sec_11 Sec_12 Sec_13 Sec_14 Sec_15

p-value

Parking lot Test BINARY RANK TEST for 31x31 matrices
BINARY RANK TEST for 32x32 matrices Birthday spacing test
Linear (upper bound) Linear (lower bound)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Sec_1 Sec_2 Sec_3 Sec_4 Sec_5 Sec_6 Sec_7 Sec_8 Sec_9 Sec_10 Sec_11 Sec_12 Sec_13 Sec_14 Sec_15

p-value

Overlaping sums test RUNS TEST Craps test

Minimun distance test Linear (upper bound) Linear (lower bound)

Figure 11. This figure shows the results of the last four DIEHARD tests applied to sequence_1 to
sequence_15.

As we have seen from the above results, in general, the TinyJambu sequences pass the
tests. Some sequences exhibit p-values beyond the boundaries for any test. Nevertheless,
we must remember that we are applying statistical tests to detect regularities, and we could
not find any at this point. Based on the results, we can say that the sequences generated
using the cryptosystem TinyJambu show good pseudorandomness.

5.3. FIPS Test 140-2. Requirements of Security for Cryptographic Modules

FIPS (Federal Information Processing Standard) Publication 140-2 is a U.S. government
security standard [22] used to evaluate cryptographic modules. FIPS 140-2 is made up of
four statistical tests (e.g., the Monobit Test, the Poker Test, the Runs Test and the Long Runs
Test). The proposed TinyJambu keystream sequences passed all the FIPS tests. The average
results we obtained are as follows:

Symmetry 2024, 16, 440 20 of 22

1. LONG RUNS TEST: passed. No runs of more than 25 equal and consecutive bits
appeared.

2. MONOBIT TEST: passed. The test is passed if 9752 < number of ones < 10,275. The
obtained result was 9941.

3. POKER TEST: passed. The test is passed if 2.16 < X < 46.17. The obtained result was
12.8192.

4. RUNS TEST: passed. The test is passed if the runs (runs of zeros in red and runs
of ones in blue) of length 1–6 are within the specified interval in green in Figure 12.
Notice that runs of a short length are more frequent than runs of a long length. For
short runs, the number of runs of zeros (gaps) and runs of ones (blocks) must be equal
(the second postulate of pseudorandomness of Golomb [23]).

Symmetry 2024, 16, 440 20 of 22

Nevertheless, we must remember that we are applying statistical tests to detect regulari-

ties, and we could not find any at this point. Based on the results, we can say that the

sequences generated using the cryptosystem TinyJambu show good pseudorandomness.

5.3. FIPS Test 140-2. Requirements of Security for Cryptographic Modules

FIPS (Federal Information Processing Standard) Publication 140-2 is a U.S. govern-

ment security standard [22] used to evaluate cryptographic modules. FIPS 140-2 is made

up of four statistical tests (e.g., the Monobit Test, the Poker Test, the Runs Test and the Long

Runs Test). The proposed TinyJambu keystream sequences passed all the FIPS tests. The

average results we obtained are as follows:

1. LONG RUNS TEST: passed. No runs of more than 25 equal and consecutive bits ap-

peared.

2. MONOBIT TEST: passed. The test is passed if 9752 < number of ones < 10,275. The

obtained result was 9941.

3. POKER TEST: passed. The test is passed if 2.16 < X < 46.17. The obtained result was

12.8192.

4. RUNS TEST: passed. The test is passed if the runs (runs of zeros in red and runs of

ones in blue) of length 1–6 are within the specified interval in green in Figure 12.

Notice that runs of a short length are more frequent than runs of a long length. For

short runs, the number of runs of zeros (gaps) and runs of ones (blocks) must be equal

(the second postulate of pseudorandomness of Golomb [23]).

Figure 12. Example of Runs Test results for a TinyJambu keystream sequence. Notice that the test is

passed by runs of zeros (red line) as well as by runs of ones (blue line) as both fall into the zone

delimited by the green lines that bound the permission zone.

6. Conclusions

In this work, the security of the symmetric cryptosystem TinyJambu was analyzed

from two distinct and non-symmetric points of view.

(1) We improved the best cryptanalytical attack against this cryptosystem found in

the literature. It deals with a differential forgery attack against the nonce introduction. In

fact, by making use of a refined model developed by Saha et al. in [8], we obtained a max-

imum number of different trails with a minimum number of uncorrelated AND gates. This

search, which is much more exhaustive than previous ones, allows us to compute a dif-

ferential probability of value p = 2−65.9487, which is improved considerably compared to pre-

vious numerical results, e.g., the p = 2−70.68 given by Saha et al. and p = 2−80 given by the

Figure 12. Example of Runs Test results for a TinyJambu keystream sequence. Notice that the test
is passed by runs of zeros (red line) as well as by runs of ones (blue line) as both fall into the zone
delimited by the green lines that bound the permission zone.

6. Conclusions

In this work, the security of the symmetric cryptosystem TinyJambu was analyzed
from two distinct and non-symmetric points of view.

(1) We improved the best cryptanalytical attack against this cryptosystem found in
the literature. It deals with a differential forgery attack against the nonce introduction.
In fact, by making use of a refined model developed by Saha et al. in [8], we obtained a
maximum number of different trails with a minimum number of uncorrelated AND gates.
This search, which is much more exhaustive than previous ones, allows us to compute a
differential probability of value p = 2−65.9487, which is improved considerably compared to
previous numerical results, e.g., the p = 2−70.68 given by Saha et al. and p = 2−80 given by
the TinyJambu designers. The new probability increments, in several orders of magnitude,
the success probability of a forgery attack and approximates the ideal success probability
of value p = 2−64. As a future work, we intend to execute the Python programs used in this
study in a more powerful computational environment to obtain a differential probability
nearer to the bound specified for a successful attack. Moreover, the strategy sketch used to
obtain the differential trails when the number of rounds increases was also presented.

(2) In addition, we analyzed the degree of pseudorandomness of the sequences gener-
ated using TinyJambu. Traditionally, the cryptanalytic techniques employed against this
cryptosystem were conducted under block cipher cryptanalysis. Nevertheless, in this work,
TinyJambu was considered a stream cipher with keystream sequences obtained through the

Symmetry 2024, 16, 440 21 of 22

concatenation of the bits used in the encryption/decryption process. Once the sequences
were constructed symmetrically in emission and reception, we could study their degree
of pseudorandomness. This is an original vision realized to evaluate the strength of the
TinyJambu algorithm, which enlarges the possibilities of a security assessment. In this
way, a complete and powerful battery of statistical tests was applied to these keystream
sequences, which satisfactorily passed the empirical tests.

This double study enhances the weaknesses of TinyJambu against differential attacks
as well as the strength of TinyJambu against statistical analyses. Two different aspects
were analyzed, and two non-symmetric conclusions may be drawn from the outcomes of
this work.

The results obtained here can be extrapolated to the updated version proposed by the
designers that, in the nonce introduction, increases the keyed permutation to 640 rounds.
In fact, the relationship between the number of rounds and the minimum number of
uncorrelated AND gates and the optimization of the updated version are our priorities for
future works.

Author Contributions: All the authors have equally contributed to the reported research in terms
of conceptualization, methodology, software and manuscript revision. All authors have read and
agreed to the published version of the manuscript.

Funding: This work is part of the R+D+i grant P2QProMeTe (PID2020-112586RB-I00), funded by
MCIU/AEI/10.13039/501100011033. The authors are also supported by the University of Málaga
(Spain) through “Red temática BIOMED-SEC”, reference D5-2022-04.

Data Availability Statement: Our results are already depicted in the article. The links are given in
the references.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. National Institute of Standards and Technology. Lightweight Cryptography (LWC) Standardization Project. 2019. Available

online: https://csrc.nist.gov/projects/lightweight-cryptography (accessed on 13 February 2024).
2. NIST Lightweight Cryptography Finalists. Available online: https://csrc.nist.gov/Projects/lightweight-cryptography/finalists

(accessed on 13 February 2024).
3. Paar, C.; Pelzl, J. Understanding Cryptography; Springer: Berlin/Heidelberg, Germany, 2010.
4. Renner, R. Security in quantum cryptography. Rev. Mod. Phys. 2022, 94, 025008. [CrossRef]
5. Yin, H.L.; Fu, Y.; Li, C.L.; Weng, C.X.; Li, B.H.; Gu, J.; Chen, Z.B. Experimental quantum secure network with digital signatures

and encryption. Natl. Sci. Rev. 2023, 10, nwac228. [CrossRef] [PubMed]
6. Wu, H.; Huang, T. TinyJAMBU: A Family of Lightweight Authenticated Encryption Algorithms. The NIST Lightweight

Cryptography (LWC) Standardization Project. 2020. Available online: https://csrc.nist.gov/CSRC/media/Projects/lightweight-
cryptography/documents/round-2/spec-doc-rnd2/TinyJAMBU-spec-round2.pdf (accessed on 13 February 2024).

7. Saha, D.; Sasaki, Y.; Danping, S.; Sibleyras, F.; Sun, S.; Zhang, Y. On the Security Margin of TinyJAMBU with Refined Differential
and Linear Cryptanalysis. IACR Trans. Symmetric Cryptol. 2020, 3, 152–174. [CrossRef]

8. Saha, D.; Sasaki, Y.; Danping, S.; Sibleyras, F.; Sun, S.; Zhang, Y. The MILP code corresponding to the paper: On the Security
Margin of TinyJAMBU with Refined Differential and Linear Cryptanalysis. IACR Trans. Symmetric Cryptol. 2020, 3, 152–174.
Available online: https://github.com/c-i-p-h-e-r/refinedTrailsTinyJambu (accessed on 13 February 2024). [CrossRef]

9. Gurobi Optimizer. Available online: https://www.gurobi.com/academia/academic-program-and-licenses/ (accessed on 13
February 2024).

10. Wu, H.; Huang, T. TinyJAMBU Update, Update to the NIST Lightweight Cryptography Standardization Process. 2020. Avail-
able online: https://csrc.nist.gov/csrc/media/Projects/lightweight-cryptography/documents/finalist-round/status-updates/
tinyjambu-update.pdf (accessed on 13 February 2024).

11. Teng, W.; Salam, I.; Yau, W.C.; Pieprzyk, J.; Phan, R.C. Cube attacks on round-reduced TiniJAMBU. Sci. Rep. 2022, 12, 5317.
[CrossRef]

12. Naito, Y.; Matsui, M.; Sugawara, T.; Suzuki, D. SAEB: A Lightweight Block Cipher-Based AEAD Mode of Operation. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2018, 2018, 192–217. [CrossRef]

13. NIST: Submission Requirements and Evaluation Criteria for the Lightweight. Cryptography Standardization Process 2018.
Available online: https://csrc.nist.gov/Projects/ (accessed on 13 February 2024).

https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/Projects/lightweight-cryptography/finalists
https://doi.org/10.1103/RevModPhys.94.025008
https://doi.org/10.1093/nsr/nwac228
https://www.ncbi.nlm.nih.gov/pubmed/37168101
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/TinyJAMBU-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/TinyJAMBU-spec-round2.pdf
https://doi.org/10.46586/tosc.v2020.i3.152-174
https://github.com/c-i-p-h-e-r/refinedTrailsTinyJambu
https://doi.org/10.46586/tosc.v2020.i3.152-174
https://www.gurobi.com/academia/academic-program-and-licenses/
https://csrc.nist.gov/csrc/media/Projects/lightweight-cryptography/documents/finalist-round/status-updates/tinyjambu-update.pdf
https://csrc.nist.gov/csrc/media/Projects/lightweight-cryptography/documents/finalist-round/status-updates/tinyjambu-update.pdf
https://doi.org/10.1038/s41598-022-09004-3
https://doi.org/10.46586/tches.v2018.i2.192-217
https://csrc.nist.gov/Projects/

Symmetry 2024, 16, 440 22 of 22

14. Mouha, N.; Wang, Q.; Gu, D.; Preneel, B. Differential and Linear Cryptanalysis Using Mixed-Integer Linear Programming. In
Information Security and Cryptology, Proceedings of the Inscrypt 2011, Beijing, China, 3 December 2011; Wu, C.K., Yung, M., Lin, D.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7537, pp. 57–76.

15. Sun, S.; Hu, L.; Wang, M.; Wang, P.; Qiao, K.; Ma, X.; Shi, D.; Song, L.; Fu, K. Constructing mixed-integer programming models
whose feasible region is exactly the set of all valid differential characteristics of SIMON. Cryptol. ePrint Arch. 2015. Available
online: https://eprint.iacr.org/2015/122 (accessed on 13 February 2024).

16. Jana, A.; Rahman, M.; Saha, D. DEEPAND: In-Depth Modeling of Correlated AND Gates for NLFSR-based Lightweight Block
Ciphers. Cryptol. ePrint Arch. 2022. Paper 2022/1123. Available online: https://eprint.iacr.org/2022/1123 (accessed on 13
February 2024).

17. Fuster-Sabater, A.; Pazo-Robles, M.E. Reducing the Security Margin Against a Differential Attack in the TinyJambu Cryptosystem.
In Proceedings of the 16th International Conference on Computational Intelligence in Security for Information Systems (CISIS
2023), Salamanca, Spain, 5 September 2023. [CrossRef]

18. Cardell, S.D.; Requena, V.; Fuster-Sabater, A.; Orúe, A.B. Randomness Analysis for the Generalized Self-Shrinking Sequences.
Symmetry 2019, 11, 1460. [CrossRef]

19. Orue Lopez, A.B. Contribution to Study of Cryptanalysis and Design of Chaotic Cryptosystems. Ph.D. Thesis, Polytechnical
University of Madrid (UPM), Madrid, Spain, 2013.

20. Marsaglia, G. The Marsaglia Random Number CDROM including the Diehard Battery of Tests of Randomness; Florida State University:
Tallahassee, FL, USA, 1995; Available online: http://www.stat.fsu.edu/pub/diehard (accessed on 13 February 2024).

21. Almaraz Luengo, E.; Roman Villaizan, J. Cryptographically Secured Pseudo-Random Number Generators: Analysis and Testing
with NIST Statistical Test Suite. Mathematics 2023, 11, 4812. [CrossRef]

22. Evans, D.L.; Bond, P.; Bement, A. FIPS PUB 140-2. Security Requirements for Cryptographic Modules. In Federal Information
Processing Standards Publication 140-2; U.S. Department of Commerce, NIST National Technical Information Service: Springfield,
VA, USA, 2001.

23. Golomb, S.W. Shift Register-Sequences; Aegean Park Press: Laguna Hill, CA, USA, 1982.
24. Massey, J.L. Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory 1969, 15, 122–127. Available online: https:

//ieeexplore.ieee.org/document/1054260 (accessed on 13 February 2024). [CrossRef]
25. Rueppel, R.A. Analysis and Design of Stream Ciphers; Springer: Berlin/Heidelberg, Germany, 1986.
26. Fuster-Sabater, A.; Requena, V.; Cardell, S.D. An efficient algorithm to compute the linear complexity of binary sequences.

Mathematics 2022, 10, 794. [CrossRef]
27. Almaraz Luengo, E. A brief and understandable guide to pseudo-random number generators and specific models for security.

Stat. Surv. 2022, 16, 137–181. [CrossRef]
28. Fen, Y.; Hao, L. Testing Randomness Using Artificial Neural Network. IEEE Access 2020, 8, 163685–163693.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://eprint.iacr.org/2015/122
https://eprint.iacr.org/2022/1123
https://doi.org/10.1007/978-3-031-42519-6_2
https://doi.org/10.3390/sym11121460
http://www.stat.fsu.edu/pub/diehard
https://doi.org/10.3390/math11234812
https://ieeexplore.ieee.org/document/1054260
https://ieeexplore.ieee.org/document/1054260
https://doi.org/10.1109/TIT.1969.1054260
https://doi.org/10.3390/math10050794
https://doi.org/10.1214/22-SS136

	Introduction
	The TinyJambu Cryptosystem: An AEAD Scheme
	A Detailed Description of the TinyJambu Family
	Operational Mode for TinyJambu

	Security of TinyJambu against Cryptanalytic Attacks
	The Concept of Active AND Gates
	The Concept of Correlated AND Gates
	Differential Probabilities

	Reducing the Security Margin of TinyJambu against Differential Cryptanalysis
	Security Margin with 384 Rounds
	Differential Trail Search with 640 Rounds

	Statistical Analysis of Randomness
	Graphical Tests
	The Diehard Battery of Pseudorandomness Tests
	FIPS Test 140-2. Requirements of Security for Cryptographic Modules

	Conclusions
	References

