
Citation: Ren, D.; Yang, W.; Lu, Z.;

Chen, D.; Shi, H. Improved Weed

Detection in Cotton Fields Using

Enhanced YOLOv8s with Modified

Feature Extraction Modules.

Symmetry 2024, 16, 450. https://

doi.org/10.3390/sym16040450

Academic Editor: Gianluca Vinti

Received: 19 March 2024

Revised: 2 April 2024

Accepted: 3 April 2024

Published: 7 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Improved Weed Detection in Cotton Fields Using Enhanced
YOLOv8s with Modified Feature Extraction Modules
Doudou Ren 1, Wenzhong Yang 1,2,*, Zhifeng Lu 3,*, Danny Chen 1 and Houwang Shi 1

1 School of Information Science and Engineering, Xinjiang University, Urumqi 830017, China;
107552201396@stu.xju.edu.cn (D.R.); kabuoxygen@stu.xju.edu.cn (D.C.); shihouwang@stu.xju.edu.cn (H.S.)

2 Xinjiang Key Laboratory of Multilingual Information Technology, Xinjiang University, Urumqi 830017, China
3 School of Information Science and Technology, Xinjiang Teacher’s College, Urumqi 830043, China
* Correspondence: yangwenzhong@xju.edu.cn (W.Y.); xjdxsylb@xju.edu.cn (Z.L.)

Abstract: Weed detection plays a crucial role in enhancing cotton agricultural productivity. However,
the detection process is subject to challenges such as target scale diversity and loss of leaf symmetry
due to leaf shading. Hence, this research presents an enhanced model, EY8-MFEM, for detecting
weeds in cotton fields. Firstly, the ALGA module is proposed, which combines the local and global
information of feature maps through weighting operations to better focus on the spatial information of
feature maps. Following this, the C2F-ALGA module was developed to augment the feature extraction
capability of the underlying backbone network. Secondly, the MDPM module is proposed to generate
attention matrices by capturing the horizontal and vertical information of feature maps, reducing
duplicate information in the feature maps. Finally, we will replace the upsampling module of YOLOv8
with the CARAFE module to provide better upsampling performance. Extensive experiments on two
publicly available datasets showed that the F1, mAP50 and mAP75 metrics improved by 1.2%, 5.1%,
2.9% and 3.8%, 1.3%, 2.2%, respectively, compared to the baseline model. This study showcases the
algorithm’s potential for practical applications in weed detection within cotton fields, promoting the
significant development of artificial intelligence in the field of agriculture.

Keywords: weed detection; target detection; YOLOv8; attention mechanism

1. Introduction

Cotton, as a crucial economic crop, significantly contributes to the advancement of the
global economy and is recognized as one of the foremost textile raw materials worldwide.
With the ongoing expansion of the global population and the progress of urbanization, the
available land area for cultivation is decreasing day by day, and the importance of smart
agriculture is gradually becoming prominent [1]. Precision agriculture [2] refers to the
specific application and implementation of information technology in the field of agricul-
ture, to achieve refined management and decision support in agricultural production [3].
Among them, the task of weed detection in cotton fields is a specific application in the field
of precision agriculture, which has important significance and impact on the agricultural
production of cotton.

Weeds, as one of the important factors leading to a decrease in cotton crop yield,
occupy the growth space and survival resources of cotton, resulting in insufficient nutrient
absorption by cotton crops and a decrease in crop yield [4]. At present, chemical weed
control and mechanical weed control are mainly used in farmland for prevention and
control. Pesticide residues in the air, soil and crop surfaces not only cause respiratory
irritation, skin allergies and poisoning to those who come into contact with them, but
also affect the safety of the surrounding water sources, thus affecting people’s health.
In contrast, mechanical weeding has the characteristics of environmental friendliness
and strong controllability. But when the spacing between crops is small, problems such
as seedling damage may occur, and after mechanical weeding, weeds may grow again,
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requiring multiple weeding operations [5]. One way to solve the above problems is to
use deep learning algorithms to accurately locate weeds within agricultural fields and use
agricultural intelligent robots for precise weed control [6], thereby reducing the use of
chemical pesticides and indirectly having a positive impact on human health.

The weed detection process poses numerous challenges. Firstly, the existence of crops
and weeds in the growth cycle has diverse target scales, and the same crop has different
morphological and appearance characteristics in different growth cycles. In addition, plants
within the same growth cycle may exhibit appearance characteristics of varying sizes due
to uneven distribution of nutrients. These changes require considering the changes in
target scale under different growth cycles in object detection. Secondly, there is a problem
of leaf obstruction between crops and weeds. Throughout the growth cycle of plants,
leaf occlusion emerges as a prevalent challenge in object detection. As plants grow, their
leaves may cross or obstruct each other, resulting in partial or complete obstruction of the
target. A complete blade has a high degree of symmetry that can be easily recognized
by the machine, but this blade symmetry is lost when the blade is occluded, and this
occlusion adds a degree of difficulty to the detection process. Secondly, there is a problem
of morphological similarity between weeds and crops. Distinguishing weeds and crops has
become a challenge in object detection due to their similar appearance and morphological
characteristics.

In response to the above issues, researchers have adopted methods such as data
augmentation, vegetation index features, multi-scale feature fusion, and attention mech-
anisms to achieve weed detection for different crops. Eide et al. [7] used thermal remote
sensing and multispectral remote sensing images obtained by drones, combined with
the normalized vegetation index and synthesized wavelength maps to distinguish weed
populations. Chen et al. [8] employed a support vector machine classifier along with
fused feature combinations to achieve precise detection of diverse weed types and corn
seedlings. Li et al. [9] utilized color index features and the Otsu threshold algorithm to
accomplish the segmentation of vegetation and weeds, and input the processed dataset
into the PSPNet model for training to achieve accurate segmentation of areas under high
weed pressure. Moazzam et al. [10] introduced an innovative convolutional neural network
named VGG Beet for the classification of multispectral datasets.This method simplifies the
three-pixel classification problems into two categories to improve the classification accuracy.
Wang et al. [11] introduced an enhanced YOLO model tailored for the precise detection of
sunflower plants. This approach segments high-resolution images into pertinent subgraphs
through overlap rate calculations, employing multi-scale training techniques to attain accu-
racy and recall rates of 0.9465 and 0.9017, respectively. In addressing the issue of inadequate
focus on crucial target features and noise feature suppression within the YOLOv5 model’s
feature extraction network, Wang et al. [12] introduced the C3 Host bottleneck module
and integrated an attention mechanism to improve the network’s emphasis on relevant
features. However, this model may mistakenly identify some wheat seedlings as weeds
when processing them, so there remains potential for further enhancement in the feature
extraction network.

Given the significant advantages of YOLO series models in real-time, accuracy, and
ease of deployment, they are widely used in weed detection tasks. Firstly, this study
drew on the idea of attention mechanism [13] and the idea of symmetry [14] to design an
ALGA module to enhance the concentration on spatial information within feature maps.
Meanwhile, to bolster the feature extraction capacity of the backbone network and address
the challenge of distinguishing between crops and weeds in weed detection, we propose
the C2F-ALGA module. Secondly, we observed that the SPPF structure may contain similar
or repetitive information in the feature maps after feature fusion. To mitigate feature
redundancy and computational complexity within the model, we propose the MDPM.
This module enables the capture of a broader spectrum of contextual information across
both horizontal and vertical directions within the feature map, and adjust the relationships
between channels in the feature map through operations in different directions, thereby
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generating an attention matrix to improve the expressive capacity of features. Finally,
this study improved the upsampling module of YOLOv8 by introducing CARAFE [15].
By reusing fine-grained features and adjusting content awareness, the CARAFE module
can automatically adjust the upsampling method to provide better upsampling results.
This enhancement notably enhances the model’s performance in tasks related to feature
reconstruction and recovery. The main contributions of this study include:

• We propose an improved cotton field weed detection model EY8-MFEM to address
real-time and efficient issues such as diverse target scales and occlusion of crops and
weeds during the growth cycle during the detection process.

• To emphasize crucial feature information, we introduce the ALGA module, which
evaluates both local and global information within the feature map to generate an
attention matrix. This approach enhances the focus on and utilization of spatial
information within the feature map.

• We’ve introduced the C2F-ALGA module with the aim of enhancing the feature
extraction capacity of the backbone network. This module facilitates the adaptive
fusion of local and global features, enabling the model to capture local details and
global contextual information in images more effectively.

• We introduce the MDPM module, designed to selectively extract and leverage hori-
zontal and vertical information from feature maps. It generates attention matrices to
enhance the model’s awareness of spatial structure and diverse directional features.

2. Related Work
2.1. Weed Detection

Amidst the swift advancements in artificial intelligence, a plethora of methods rooted
in traditional machine learning and deep learning have surfaced within the domain of
weed detection. The methods based on traditional machine vision mainly cover image-
based filtering, color features, spectral features and other technologies, including the use of
threshold processing and the use of classifiers to predict weed positions. The methods based
on deep learning mainly focus on segmenting, classifying, and detecting weed positions.
Sheffield et al. [16] used aerial images for training and used two random forest algorithms
to classify aquatic weeds, but the detection performance was poor when the patch area was
less than 3 square meters. Naveed et al. [17] utilized the calculation of NDVI indices for near-
infrared and infrared spectral images of crops and weeds, and applied the Ostu algorithm
to predict the fusion saliency images of weeds and crops. However, it relies on predefined
fixed filter weights, which limits its flexibility and adaptability. Xu et al. [18] proposed an
instance segmentation method that combines visible color indexing and encoder-decoder
architecture. To tackle the challenge of weed targets with notable variations in size and
specifications often being disregarded, Chen et al. [19] introduced YOLO-Sesame. This
method incorporates local importance pooling within the SPP (Spatial Pyramid Pooling)
layer of the YOLOv4 model, aiming to enhance the attention directed towards individual
targets. Furthermore, the model incorporates an adaptive spatial feature fusion architecture
to proficiently detect targets of diverse specifications. To tackle the challenges associated
with weed detection arising from the overlap between crops and weeds, Peng et al. [20]
proposed a RetinaNet-based model called WeedDet. By improving the backbone network,
the model has achieved substantial results. Arsa et al. [21] proposed a dual decoder branch
network to detect weed growth points. The decoder component of the model amalgamates
spatial attention and channel attention while introducing a activation gate mechanism to
regulate attention allocation. Punithavathi et al. [22] introduced the CVDL-WDC model,
which initially employs a multi-scale Faster RCNN for object detection, followed by an
optimal limit learning machine for weed classification. This approach effectively discerns
weeds amidst crops.
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2.2. YOLO Algorithm

The YOLO series models are widely favored due to their advantages such as lightweight
and high accuracy. With the continuous evolution of the YOLO model, its main idea is to
divide the image into grid-like regions during the image input stage and extract features
through the backbone network. Subsequently, multi-scale feature fusion is performed
through networks such as feature pyramids to form feature maps at multiple scales. Ul-
timately, the model conducts object detection on feature maps at varying scales. The
output of this model encompasses category labels of the detected targets, coordinates of
the center point, width and height coordinates of the bounding box, along with confidence
information. The single-stage detection method represented by YOLOv1 [23] does not
require generating candidate regions, but directly performs target classification and bound-
ing box regression on the image. This method greatly improves detection speed while
slightly sacrificing some accuracy. YOLOv2 [24] proposed a new training method that
significantly expands the number of detectable object categories. YOLOv3 [25] introduced
a multi-scale prediction module, allowing the model to simultaneously perform regression
prediction on multiple feature maps of different scales. In the same year, YOLOv4 [26]
and YOLOv5 [27] successively proposed and introduced technologies such as the CSP
module and adaptive anchor box calculation, significantly improving detection perfor-
mance. Li et al. [28] proposed YOLOv6, which introduces an efficient decoupling head
and designs a reparameterized backbone network to further improve object detection
performance. Alexey et al. [29] proposed YOLOv7, which adopts a new data augmentation
method and proposes a strategy of merging the Neck layer and Head layer into a Head
layer to significantly improve the accuracy of object detection. YOLOv8 [30] proposed a
new C2F structure and operations such as separating classification and detection heads,
which significantly improved the target detection accuracy of the model. Due to achieving
a good balance between accuracy, real-time performance, and deployment difficulty, the
YOLO model has been widely used in the industry and in various real-time scenarios. With
the application of the YOLO model in various tasks, we have noticed that in certain specific
tasks, the YOLO model faces problems such as insufficient feature extraction, redundancy
in feature fusion, and loss of image details caused by upsampling. In response to these
challenges, numerous researchers have proposed enhanced YOLO models tailored to meet
the demands of specific tasks.

2.3. Attention

Attention mechanisms enhance focus on relevant feature area information.
Lau et al. [31] proposed LSKA, which divides conventional convolutional kernels within
convolutional layers into kernels oriented in different directions. This decomposition
allows for the direct utilization of deep convolutional layers with large kernels within at-
tention modules, obviating the necessity for additional blocks. Hassani et al. [32] proposed
Neighborhood Attention. This attention mechanism focuses self-attention on the nearest
neighboring pixels through pixel-by-pixel operations, thereby achieving local attention to
the feature map. This approach efficiently extracts correlation information among neighbor-
ing pixels. Tan et al. [33] introduced a temporal attention unit that decomposes temporal
attention into static attention and dynamic attention. Through this approach, the time
module not only achieves parallelization processing but also captures the characteristics of
long-term time evolution. Compared with single-modal information, the attention fusion
mechanism using multiple-modal information will significantly increase the computational
cost. To address this issue, Cao et al. [34] proposed a lightweight multimodal information
fusion module. This module effectively integrates inputs from different modalities by
applying channel switching and spatial attention methods. The design of this module
not only achieves efficient fusion of multimodal information but also reduces the com-
putational burden. Due to the high complexity of the multi-head attention mechanism
in high-resolution computing, Ning et al. [35] proposed a new trap attention mechanism.
This mechanism establishes traps within the expanded space of each pixel and constructs
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an attention mechanism based on the feature retention rate of the convolutional window.
This conversion effectively reduces quadratic computational complexity to a linear form.
This method effectively solves the complexity problem of multi-head attention calcula-
tion in high-resolution scenes. The spatiotemporal cross-attention module proposed by
Tang et al. [36] first evenly divides the input features into two sub-regions in the channel
dimension, and then calculates spatial and temporal attention for each sub-region sepa-
rately. Then, connecting the outputs of the attention layers can lead to significant memory
consumption and computational burden when calculating attention at all positions on the
feature map. To tackle this challenge, Zhu et al. [37] proposed a dynamic sparse attention
method. Initially, it filters out irrelevant key-value pairs and then focuses attention on other
candidate regions. This approach enhances computational efficiency while preserving
performance quality.

3. Proposed Method

In this chapter, we will first introduce the model structure in Section 3.1. Next, in
Section 3.2, we provided a detailed introduction to our proposed ALGA module and C2F-
ALGA module. Subsequently, in Section 3.3, we introduced our proposed MDPM module.
Finally, an introduction to the CARAFE module is provided in Section 3.4.

3.1. Model

As a highly anticipated object detection model, YOLOv8 has been widely applied in
various tasks that require real-time performance, such as weed detection tasks. In addition,
the model weight of YOLOv8 is relatively small, making it very suitable for applications
on resource-limited platforms such as agricultural inspection robots and micro drones.
Although YOLOv8 performs well on the MS COCO dataset, it may not necessarily achieve
optimal performance in weed detection tasks. Based on the above considerations, this study
adopts YOLOv8 as the baseline model and proposes a network model called EY8-MFEM
for specific weed detection scenarios to fulfill the criteria of being lightweight, real-time,
and efficient.

As depicted in Figure 1, EY8-MFEM comprises three primary components. Within the
network, the backbone is used to extract multi-scale features from input images, while the
neck is responsible for integrating these extracted features. The Head module generates the
final detection results by performing bounding box regression and target classification on
feature maps of three different scales. Firstly, in EY8-MFEM, to address issues such as crop
weed similarity during weed detection, we introduce the C2f-ALGA module to augment
the feature extraction capacity of the Backbone module, replacing the C2F module in
YOLOv8. Secondly, we observed that the SPPF structure first extracts and encodes features
of different scales, and then fuses the feature maps of different pooling layers through
simple channel concatenation operations. However, this approach has a problem, which
is that the fused feature maps may contain similar or repetitive information. To mitigate
feature redundancy and computational complexity within the model, we replaced the
SPPF module of YOLOv8 with our proposed MDPM module. This module is capable of
capturing a broader spectrum of contextual information in both horizontal and vertical
directions within the feature map, and adjusting the relationships between channels in the
feature map through operations in different directions, thereby enhancing the expression
ability of features. Ultimately, the absence of a discriminative weighting mechanism for
distinct positional features within the upsampling module of YOLOv8 impedes its ability
to adjust to the significance of various positional features. Consequently, this constraint
restricts the expressive capability of upsampled features and the richness of semantic
information. This study improved the up-sampling module of YOLOv8 by introducing
the CARAFE module. By reusing fine-grained features and adjusting content awareness,
the CARAFE module can automatically adjust the upsampling method to provide better
upsampling results.
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Figure 1. Overall structure diagram of EY8-MFEM.

3.2. Adaptive Local–Global Attention & C2F-ALGA

We note that commonly used attention mechanisms (such as ECA [38], SE [39], etc.)
mainly adjust the importance of channels based on information from the channel dimension.
When modeling the relationships between channels, these mechanisms compress the entire
channel feature map into one value, which inevitably reduces the attention to spatial
information. Therefore, when processing feature maps, the attention to spatial information
on each channel dimension will decrease. When the attention of a channel is low, but
certain spatial positions of that channel have important features, the channel attention
mechanism may not be able to accurately capture this local spatial information. In this
case, the channel attention mechanism cannot fully utilize local features, thus restricting
the model’s capability to grasp crucial spatial information.

3.2.1. Adaptive Local–Global Attention

Inspired by the concept of symmetry, we use a two-branch path to generate the
attention matrix. We propose ALGA (Adaptive Local Global Attention) to address the
above issues, as shown in Figure 2. To improve the utilization of spatial information, this
module incorporates local adaptive average pooling and global adaptive average pooling
operations to capture the spatial characteristics of feature maps. Subsequently, it combines
the local and global information weights of the input feature map to generate an attention
weight matrix. Finally, this attention weight matrix is applied to the original feature map to
emphasize crucial feature information. Through this approach, we can better focus on and
utilize spatial information in feature maps.
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Figure 2. ALGA structure diagram.

In particular, for the input features, we initially employ two consecutive convolution
operations to extract refined semantic features from the input data. For the extracted high-
level semantic features, this study adopts two paths to extract local spatial information and
global spatial information features. This design enables the model to simultaneously focus
on local details and global context. Firstly, this study employs a local adaptive average
pooling layer to perform pooling operations on input features, to extract the average value
of local regions and obtain local features. Considering that global features can provide
comprehensive information about the entire input, which helps the model understand and
judge the overall feature pattern, we adopt a global adaptive average pooling operation
to process local features. By compressing the entire local feature to 1 in both height and
width directions, we obtain a global feature tensor. For the convenience of subsequent
processing, we reshaped the local features. Meanwhile, we also reshaped the global feature
tensor. To capture the spatial relationships and patterns between features and extract the
spatial contextual information of features, this study uses one-dimensional convolution to
model the spatial relationships of feature tensors. Through one-dimensional convolution
operations, the model can perceive and extract features across the entire spatial dimension,
thereby capturing richer feature patterns. Following the dimensionality reduction of the
spatial feature tensor, we utilize the sigmoid function to model the attention of local features
and global features separately. Next, we will adapt the global attention feature weights
to the shape of local adaptive feature weights through adaptive pooling operations, so
that they have the same shape. Then, we weighted and summed the attention weights
of these two parts to obtain the attention weights. Next, we use the adaptive average
pooling operation to adjust the attention weights to the same size as the features extracted
by the second convolution. Then, we adjust the weighted feature map from local size
to the same size as the input. To achieve feature weighting, element-wise multiplication
is conducted on the adjusted feature map with the features extracted from the second
convolution. This approach enables us to weight the features based on attention weights,
thereby highlighting important feature components and further enhancing the expressive
capability and discriminability of features. By following the aforementioned steps, the
model can prioritize crucial global and local information, thereby enhancing its performance
in specific tasks. Finally, to enhance the transmission of important features and reduce
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the risk of overfitting, we use skip connections to connect shallower features with deeper
features. The equation representing the ALGA module is given by the following:

X1 = Conv(X) (1)

X2 = Conv(X1) (2)

F1 = AAP( f (Conv1×1(permutation(GAP(LAP(X2))))) (3)

F2 = σ

(
f

(
Conv1×1

(
permutation

(
LAP(X2)

))))
(4)

Y = Concat(AAP(Concat(F1, F2))⊗ X2, X1) (5)

where X represents the original input feature, X1 and X2 represents the intermediate charac-
teristics, Y represents the final output characteristics, Conv(·) represents 1 × 1 convolution,
batch normalization, SiLu activation function operation, LAP(·) represents the local tie
pooling operation, GAP(·) represents the global average pooling operation, permutation(·)
is the dimension displacement operation, f (·) operation restores the dimension of the
displacement, AAP(·) represents the adaptive average pooling operation, ⊗ represents the
multiplication operation by element, and o represents the sigmoid function.

3.2.2. C2F-ALGA

In this study, we devised a C2F-ALGA module by integrating the proposed Adaptive
Local Global Attention (ALGA) module to substitute the C2F module within the original
network, as depicted in Figure 3. This improvement module combines the characteristics
of the C2F module and the ALGA mechanism. By introducing the ALGA mechanism,
the module can adaptively fuse local and global features, allowing the model to more
effectively capture both local details and global contextual information within the image.
Within the C2F-ALGA module, the input features undergo convolution through the first
convolutional layer, followed by partitioning into two tensors, laying the groundwork for
subsequent processing. Finally, the tensors from multiple processing steps are concatenated
using the Concat operation. Then, the desired output features are obtained through the
final convolution operation with the help of the second convolutional layer. By replacing
the Bottleneck module in the C2F module, C2F-ALGA introduces more complex feature
transformation and fusion mechanisms, thereby improving the model’s understanding of
input data and further enhancing the backbone network’s ability in feature extraction and
representation.

...

Conv

Split

ALGA

ALGA

Concat

Conv

N

Figure 3. Overall structure diagram of C2F-ALGA.
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3.3. Multi-Scale Directional Perception Module

The spatial pyramid pooling structure of YOLOv8 generates feature maps of different
scales through multiple pooling operations, which often contain similar information. More-
over, simply concatenating these feature maps together can cause duplicate representations
of features, making the model overly dependent on similar feature representations, thereby
increasing the risk of overfitting. We observed that weeds and crops have symmetrical
morphology and are very similar both horizontally and vertically. Inspired by this, we
consider further capturing the spatial detail features between weeds and crops from multi-
ple perspectives, thereby generating an attention matrix and paying special attention to
the original fused feature map. Therefore, we propose MDPM (Multi-Scale Directional
Perception Module) to replace the traditional SPPF structure, as shown in Figure 4.

Conv

Concat

Conv

1x3

DW-Conv

3x1

DW-Conv

1x5

DW-D-Conv

DSConv

Maxpool

Maxpool

Maxpool

Figure 4. Overall structure diagram of MDPM.

To enhance the model’s understanding of spatial structure and directional features
within the fused feature map, we specifically targeted horizontal and vertical features
separately. Taking into account the number of model parameters, we incorporated the
concept of group convolution into our design. Through deep convolution, we segment the
input channels into multiple groups and independently conduct convolution operations on
the channels within each group. This strategy of group convolution effectively diminishes
the number of model parameters while retaining ample representation of input features.
Initially, for targeted extraction of horizontal features from the input feature map, we
applied a 1 × 3 convolution kernel to execute horizontal convolution operations on the
fused feature map. Through this step, we can effectively capture the horizontal spatial rela-
tionships between different positions in the input feature map. Subsequently, we employed
a 3 × 1 convolution kernel to conduct vertical convolution operations on the feature map.
By performing vertical convolution operations, We can efficiently capture crucial features
in the vertical direction of the image, enhancing our understanding and representation of
the image structure. Furthermore, vertical convolution operations can bolster the model’s
nonlinear capability, enhancing its capacity to adapt to the nonlinear features present in
the input data. To increase the perceptual range and contextual information, we introduce
a dilated convolution operation, using 1 × 5 convolution kernels to further expand the
model’s perceptual range of information in the horizontal direction. At the same time, we
set the dilated sampling rate of the convolutional kernel to 2, so that it can span a wider
area for feature extraction, better capturing long-distance dependencies and contextual
information in the input feature map. To maintain effective feature extraction capability
while minimizing computational and parameter complexity, we adopted a strategy of
depthwise separable convolution. Among them, point-by-point convolution operation can
not only adjust the number of channels but also help the model learn the weight relation-
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ship between channels, further extract features, or change the representation of features.
The multi-scale directional perception attention weights generated through this step are
multiplied element by element with the fused original feature map, to promote the model
to enhance or suppress features at different positions, improve the understanding and
representation ability of the data, and effectively mitigate the issue of feature redundancy.
The MDPM formula is as follows:

F1 =
(
X × K1×3(i, j, k)

)
× K3×1(i, j, k) (6)

F2 = F1 × K(2)
1×5(i, j, k) (7)

Y = Conv(F2 × Kdepthwise(i, j, k)× Kpointwise(i, j, k)× X) (8)

where X represents the input image, Y represents the final output image, F1, F2 as the
intermediate feature, m and n in Km×n(i, j, k) represent the convolution kernel size depth
convolution of m × n, where m × n represents the spatial coordinates and channel index
in the output image, respectively, Kdepthwise(i, j, k) and Kpointwise(i, j, k) represents the oper-
ation in depth separable convolution. Conv(·) indicates that the representatives operate
successively through 1 × 1 convolution, batch normalization, and SiLu activation functions.

3.4. CARAFE

In YOLOv8, we noticed the use of nearest neighbor interpolation for upsampling.
While the nearest neighbor interpolation method is straightforward and computationally
efficient, it fails to fully exploit the semantic information within the feature map in cotton
weed detection tasks. Additionally, its limited perception range may result in the loss
of detailed information. Considering the aforementioned observations, we introduce an
enhancement approach, which substitutes the upsampling module of the YOLOv8 model
with the CARAFE module, as depicted in Figure 5. Through this change, we can achieve a
more detailed upsampling effect, thereby improving the detail representation ability of the
upsampling feature map.

Kup

H

W
Cm

Content 

Encoder

H

W
σ2×kup

2

σH

σW

Kernel Normalizer

KupChannel 

Compressor

=

Content-aware 

Reassembly Module

=

Content-aware 

Reassembly Module
Example location

Dot product

Example location

Dot product

H

W

C H

W

C

Kernel Prediction Module

Figure 5. Overall structure diagram of CARAFE.
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The CARAFE operator includes a kernel prediction module (KPM) and a content
aware reassembly module (CARM). The low-resolution features are first processed by
the kernel prediction module (KPM) to generate upsampled recombination kernels, fol-
lowed by the content-aware recombination module to implement the upsampling process.
Specifically, KPM includes three parts: channel compression, content encoding, and kernel
normalization. To alleviate the parameter count and computational burden, we initially
employ a 1 × 1 convolution operation to reduce the number of channels in the original fea-
ture map to 64. Next, to encode the compressed feature map into a representation suitable
for generating recombination kernels, we use an encoding function to map the number
of channels to 36. Next, we use pixel shuffling to rearrange the input feature map tensor.
Through this operation, we reduce the number of feature channels obtained in the previous
step from 36 to 9, while simultaneously increasing the spatial size of feature mapping
from H × W to 2H × 2W. The normalized feature map will be used for the upsampling
process of content awareness in subsequent operations. After generating the recombination
kernel, we map the original features twice in height and width directions and adjust the
spatial size through dimension transformation operations. Then, we perform a dot product
operation on the adjusted feature map and the generated recombination kernel to achieve
content-aware recombination and upsampling. By generating the upsampling kernel in
the above way, we have achieved expansion of the actual receiving domain. This approach
can enable sampling points to extract information within a wider contextual range, thereby
obtaining richer contextual information and improving the effectiveness of recombination
and upsampling.

4. Experiment

In this section, we present the dataset and implementation specifics utilized in this
study. Additionally, we perform ablation studies on the proposed EY8-MFEM, showcasing
its effectiveness. In addition, we compared and evaluated EY8-MFEM with other methods,
and conducted an in-depth analysis of the experimental results. Finally, we presented
and explained the detection results using visual analysis, indicating that EY8-MFEM has
excellent performance in weed detection tasks.

4.1. Implementation

We use NVIDIA A40 for single card training, in which the relevant parameters of
the experimental platform are shown in Table 1. Meanwhile, we show some training
parameters of the model during the training process in Table 2, which include the initial
learning rate lr0, the cosine annealing hyperparameter lrf, the learning rate momentum,
the weight decay coefficient, the optimizer class, the number of training rounds of the
model and the amount of data used in each training iteration. During the experiments, we
input an image size of 640 × 640 pixels and used half-precision hybrid training to speed up
the training process. We implemented an early stopping mechanism to reduce the risk of
model overfitting.

Table 1. Experimental platform settings.

Attribute Value

OS Ubuntu 18.04.6 LTS
GPU NVIDIA A40

Driver Version for A40 460.106.00
CUDA Version 11.2

Deep Learning Framework Pytorch 2.0.1
Torchvision Version 0.15.2



Symmetry 2024, 16, 450 12 of 21

Table 2. Experimental training settings.

Attribute Value

lr0 0.01
lrf 0.01

momentum 0.937
weight_decay 0.0005

optimizer SGD
epoch 110

batchsize 16

4.2. Datasets

We first conducted extensive experiments using the CottonWeedDet3 dataset [40].
This dataset contains RGB images of weed growth in cotton fields captured by smartphone
cameras or handheld digital cameras, saved in .jpg format. The images were captured by
photographers at different locations in the U.S. Cotton Belt states (mainly North Carolina
and Mississippi) during the planting period from 2020 to 2021. The collection process
was conducted under natural field light conditions, and images of various stages of weed
growth were captured from different viewpoints. Our study focused on three main weed
classes, Mollugo verticillata, the genus Ipomoea, and Amaranthus palmeri. These captured
images averaged 4442 × 4335 pixels in size and consisted of a total of 848 images with more
than 1500 bounding-box annotations labeling the three different types of weeds commonly
found in cotton fields in the southern United States.

Second, we further validate the generalization ability of the model using the cotton
weed dataset [41]. This dataset contains 570 images covering two labelled categories, weeds
and cotton. The weed categories include dozens of weed categories such as Artemisia
incarnata, groundsel, endive, Tribulus terrestris, Ginkgo biloba, castor beans, Matang, false
hippocampus tooth, and iron amaranth, which ensures the diversity of the data. Most of
these images were taken by smartphones or digital cameras under natural light conditions
in Indian cotton fields and saved in .jpg format. Images within the same weed category
are highly variable in terms of leaf color, morphology, soil background and ambient light
conditions, which helps in constructing models that are robust to image conditions or shifts
in the dataset. To accommodate the model inputs, the images in this dataset were uniformly
compressed to 416 × 416 pixels. During model training, we divided the dataset in the ratio
of 60%:20%:20% for training, validation and testing to better evaluate the performance and
generalization ability of the model.

4.3. Ablation Experiment

To verify the effectiveness of the method, we performed ablation experiments to
scrutinize the contribution of each component, contrasting it with the baseline model
YOLOv8s across two datasets. We integrated C2F-ALGA, MDPM, and CARAFE into the
baseline model YOLOv8s to assess their influence on performance. Ablation study are
depicted in Tables 3 and 4, with an IoU nonmaximum inhibition threshold set to 0.7, with
an IoU nonmaximum inhibition threshold set to 0.7. We observe a notable enhancement
in object detection performance, particularly evident for smaller targets, through our
method. In our experiments, we assessed the model’s detection performance using metrics
such as average precision (mAP), accuracy (P), recall (R), and parameter count (Params).
CARAFE uses a fixed set of hyperparameters in its experiments, where the Cm of the
channel compressor is 64, the kernel size of the content encoder Kencoder = 3, and the
reassembly kernel size Kup = 3.
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Table 3. Ablation experiments on the CottonWeedDet3 dataset.

YOLOv8s C2F-ALGA MDPM CARAFE P R F1 mAP50 mAP75 Params (M) FLOPs (G)

✓ 81.1 75.5 78.1 77.2 66.8 11.12 28.4
✓ ✓ 81.1 77.3 79.1 80.1 69.5 11.12 28.4
✓ ✓ 79.0 77.6 78.2 79.1 67.2 12.19 29.3
✓ ✓ 80.6 77.9 79.2 79.3 69.7 12.19 28.6
✓ ✓ ✓ 77.7 77 77.3 80.2 66.6 12.19 29.3
✓ ✓ ✓ 83.3 77.6 80.3 81.7 69.6 12.28 29.5
✓ ✓ ✓ 86.2 70.4 77.5 80.5 70.0 12.28 29.5
✓ ✓ ✓ ✓ 81.6 77.2 79.2 82.3 69.7 12.28 29.5

Table 4. Ablation experiments on the cotton-weed dataset.

YOLOv8s C2F-ALGA MDPM CARAFE P R F1 mAP50 mAP75 Params (M) FLOPs (G)

✓ 84.1 67.2 74.7 76.3 53.4 11.12 28.4
✓ ✓ 83.5 74.9 78.9 76.8 56.3 11.12 28.4
✓ ✓ 84.2 72.5 77.9 77.5 55.0 12.19 29.3
✓ ✓ 82.9 73.3 77.8 76.8 55.1 12.19 28.6
✓ ✓ ✓ 84.0 72.0 77.5 77.2 55.2 12.19 29.3
✓ ✓ ✓ 88.3 67.9 76.7 76.9 53.6 12.28 29.5
✓ ✓ ✓ 83.1 73.6 78.0 76.6 57.1 12.28 29.5
✓ ✓ ✓ ✓ 87.8 71.1 78.5 77.6 55.6 12.28 29.5

Upon integrating the C2f-ALGA module, the experimental findings outlined in Table 3
indicate a 1% enhancement in F1, a 2.9% increase in mAP50, and a 2.7% improvement
in mAP75. Table 4 indicate that F1 increased by 4.2%, mAP50 increased by 0.5%, and
mAP75 increased by 2.9%. In the process of weed detection, there are often problems
such as diversified target scales and occlusion of crops and weeds during the growth
cycle. Hence, enhancing the feature extraction capability of the backbone network is
paramount. The C2F-ALGA module introduces local adaptive average pooling and global
adaptive average pooling operations, which dynamically fuse local and global features. By
doing so, the model is able to effectively capture both local details and global contextual
information in images of weeds and cotton. This enhancement significantly improves
the network’s capability to extract essential backbone features. Upon incorporating the
MDPM module, the experimental outcomes in Table 3 indicate a 0.1% enhancement in
F1, a 1.9% increase in mAP50, and a 0.4% improvement in mAP75. The findings from the
experiments detailed in Table 4 demonstrate a 3.2% rise in F1, a 1.2% increase in mAP50
and a 1.6% improvement in mAP75. We believe that the SPPF module of YOLOv8 simply
concatenates some feature maps generated through multiple pooling operations, which can
cause duplicate representation of features and make the model overly dependent on similar
feature representations, thereby increasing the risk of overfitting. The MDPM module
extracts and leverages information in both the horizontal and vertical directions of the
feature map to produce multi-scale directional perceptual attention weights, which promote
the model to enhance or suppress features at different positions, improve the ability to
understand and represent data, and effectively alleviate feature redundancy and reduce
overfitting. Substituting the upsampling module in YOLOv8 with the CARAFE module
resulted in experimental findings showcased in Table 3, indicating a 1.1% enhancement
in F1, a 2.1% increase in mAP50, and a 2.9% improvement in mAP75. The experimental
findings detailed in Table 4 demonstrate a 3.8% elevation in F1, a 1.3% rise in mAP50, and
a 2.2% enhancement in mAP75. We posit that conventional upsampling modules may
readily result in the loss of intricate information for targets such as cotton and weeds, which
exhibit similar shapes. CARAFE can enable sampling points to extract information in a
wider contextual range, thereby obtaining richer contextual information. Although the
application of the CARAFE module has brought significant performance improvements,
with the increase of parameter count and FLOPs, it has increased by 1.07 M and 0.2 G,
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respectively. This is mainly because the performance of CARAFE is affected by multiple
factors, including the number of output channels of the channel compressor Cm, the kernel
size of the content encoder Kencoder, and the size of the reassembled kernel Kup. As these
parameter values increase, the number of parameters and computational complexity of the
model will also increase accordingly. Specifically, increasing the Kencoder can expand the
encoder’s receptive domain and utilize contextual information within a larger area, but its
computational complexity increases with the square of the kernel size.

The C2F-ALGA and MDPM modules demonstrated some positive effects when acting
together on the benchmark model, and the experiments in Table 3 show that its mAP50
metrics are 0.1% and 1.1% higher than the effects of the C2F-ALGA and MDPM modules
alone, respectively, and the experiments in Table 4 show that the mAP50 is 0.6% higher
than that when the C2F-ALGA is acting alone, and its mAP75 was 0.2% higher than when
MDPM acted alone. When the C2F-ALGA and CARAFE modules act together on the
benchmark model, the mAP50 metrics on both datasets are somewhat higher than when
the two modules act alone. When the MDPM and CARAFE modules act together on
the benchmark model, the experiments in Table 3 show an improvement of 1.4%, 2.8%
and 1.2% on the mAP50 and mAP75 metrics, respectively, compared to when the two act
alone, and the experiments in Table 4 show an improvement in their metrics on the mAP75
of 2.1% and 2%, respectively, compared to when the two act alone. These inter-module
comparison experiments show that most of these modules have a mutually reinforcing
effect on each other.

Finally, our proposed EY8-MFEM model achieved an overall improvement in perfor-
mance compared to the benchmark model YOLOv8s. The F1, mAP50, and mAP75 metrics
improved by 1.2%, 5.1%, 2.9% and 3.8%, 1.3%, 2.2%, respectively, on two publicly available
datasets. Under significant performance improvements, the parameter count only increased
by 1.16 M and the computational load increased by only 1.1 G, meeting the requirements
for detection deployed on embedded devices with various real-time requirements.

4.4. Compared with Other Methods

To holistically assess the performance of the enhanced model, we conducted com-
parisons between my EY8-MFEM and several other advanced models. These included
representative models based on two-stage anchors, single-stage anchors, and anchor-free
models. F1, mAP50, mAP75, parameter count, and computational complexity were our
evaluation indicators. The comparison of experimental results can be referred to Tables 5–8.
The experimental results comparison allows for referencing Tables 5 and 6. Also, we added
a computational gain/consumption comparison to better understand the time complexity
of the proposed technique, as shown in Figure 6.

Table 5. Comparison of Accuracy on CottonWeedDet3.

Method P R F1 mAP50 mAP75

Faster_Rcnn [42] 67.7 79.2 72.9 78.1 63.3
Tridentnet [43] 56.1 78.6 65.4 74.6 63.5

Fcos [44] 75.2 56.4 64.4 65.6 42.2
YOLOv3 [25] 78.7 68.6 73.3 75.3 63.4
YOLOv5s [27] 82.5 70.6 76.1 77.2 61.3
YOLOv6s [28] 76.2 72.6 74.3 77.6 61.2
YOLOv7 [29] 82.9 80.6 81.7 81.3 69.8
YOLOv8s [30] 81.1 75.5 78.1 77.2 66.8

RTDETR-L [45] 86.9 75.3 80.6 78.8 68.2
RTDETR-R50 [45] 79.6 71.5 75.3 73.6 59.9

RTDETR-R101 [45] 82.4 70.4 75.9 74.1 59.2
EY8-MFEM (ours) 81.6 77.2 79.3 82.3 69.7
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Table 6. Performance comparison on CottonWeedDet3.

Method Size Params (M) FLOPs (G)

Faster_Rcnn [42] 640 × 640 41.36 69.32
Tridentnet [43] 640 × 640 33.07 76.3

Fcos [44] 640 × 640 32.11 56.58
YOLOv3 [25] 640 × 640 103.66 282.2
YOLOv5s [27] 640 × 640 9.11 23.8
YOLOv6s [28] 640 × 640 16.29 44.0
YOLOv7 [29] 640 × 640 36.49 103.2
YOLOv8s [30] 640 × 640 11.12 28.4

RTDETR-L [45] 640 × 640 31.99 103.4
RTDETR-R50 [45] 640 × 640 41.96 129.6
RTDETR-R101 [45] 640 × 640 74.66 247.1
EY8-MFEM (ours) 640 × 640 12.28 29.5

Table 7. Comparison of accuracy on cotton-weed.

Method P R F1 mAP50 mAP75

Faster_Rcnn [42] 54.0 77.2 63.5 72.9 52.2
Tridentnet [43] 54.2 81.1 64.9 74.5 53.7

Fcos [44] 87.0 71.8 78.6 75.3 50.9
YOLOv3 [25] 83.2 71.5 76.9 78.0 54.5
YOLOv5s [27] 80.3 71.0 75.3 79.2 51.4
YOLOv6s [28] 85.3 69.2 76.4 77.8 55.1
YOLOv7 [29] 77.6 72.1 74.7 74.9 45.2
YOLOv8s [30] 84.1 67.2 74.7 76.3 53.4

RTDETR-L [45] 86.2 74.0 79.6 77.8 57.0
RTDETR-R50 [45] 91.7 62.6 74.4 75.5 53.7
RTDETR-R101 [45] 85.2 65.1 73.8 73.0 53.1
EY8-MFEM (ours) 87.8 71.1 78.5 77.6 55.6

Table 8. Performance comparison on cotton-weed.

Method Size Params (M) FLOPs (G)

Faster_Rcnn [42] 640 × 640 41.36 90.91
Tridentnet [43] 640 × 640 33.07 77.4

Fcos [44] 640 × 640 32.11 78.59
YOLOv3 [25] 640 × 640 103.66 282.2
YOLOv5s [27] 640 × 640 9.11 23.8
YOLOv6s [28] 640 × 640 16.29 44.0
YOLOv7 [29] 640 × 640 36.49 103.2
YOLOv8s [30] 640 × 640 11.12 28.4

RTDETR-L [45] 640 × 640 31.98 103.4
RTDETR-R50 [45] 640 × 640 41.95 129.5
RTDETR-R101 [45] 640 × 640 74.65 247.1
EY8-MFEM (ours) 640 × 640 12.28 29.5
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Figure 6. Comparison of gains/losses (%) of computational costs for different models.

As demonstrated in Tables 5 and 7, our proposed EY8-MFEM has shown some im-
provement in all aspects compared to two-stage detection models such as Faster-Rcnn and
Tridentnet. However, Tables 6 and 8 show that these two-stage detection models have a
very large computational and parameter load, making them unsuitable for deployment on
lightweight devices for real-time detection. In Table 5, the metrics of EY8-MFEM are supe-
rior to those of the anchor-free box detection model Fcos. However, in Table 7, the recall
and F1 of Fcos are superior to EY8-MFEM. We analyze that this is because different datasets
have different characteristics such as target distribution and object scale, and the design of
Fcos may make it more suitable for the characteristics of the dataset, resulting in higher
recall rates on that dataset. In the comparison process of YOLO series models, we mainly
selected model architectures with smaller versions of each model. Referring to Table 5,
it is evident that the F1, mAP50, and mAP75 of EY8-MFEM perform better than previous
versions of YOLO models with similar parameters and computational sizes. At the same
time, we noticed that the various indicators of YOLOv7 are close to EY8-MFEM because
we did not use the tiny version of YOLOv7. Table 6 illustrates that YOLOv7 encompasses
approximately three times the number of parameters and computations when compared
to EY8-MFEM. From Table 7, it can be seen that the mAP50 of YOLOv3 is 0.4% higher
than that of EY8-MFEM, but the parameter count of YOLOv3 is approximately 8.5 times
that of EY8-MFEM, indicating low computational efficiency. At the same time, it can
be seen that the mAP50 of YOLOv5s and YOLOv6s are 1.6% and 0.2% higher than that
of EY8-MFEM, respectively. However, their mAP75 is 4.2% and 0.5% lower than that of
EY8-MFEM, indicating that EY8-MFEM has higher accuracy and robustness. Tables 5 and 6
show that the RTDETR series models have 2–8 times more parameters and computational
complexity than EY8-MFEM, and have not shown significant advantages in F1, mAP50,
and mAP75. This is because the Transformer series models require a larger data size to
better learn useful features. In terms of comparing model parameter quantity and compu-
tational complexity, while YOLOv5s and YOLOv8s surpass our model in Tables 5 and 8,
achieving our desired accuracy level remains challenging in the comparison between the
two. In summary, our proposed EY8-MFEM model performs well in terms of parameter
and computational complexity, achieving ideal levels. On two different datasets, the model
demonstrated excellent performance, meeting the requirements of real-time and efficient
weed detection on edge devices.

In order to better reflect the advantages of EY8-MFEM in terms of time complexity, we
use EY8-MFEM as a baseline to calculate the computational gain/loss of other different
models under the FLOPs metric relative to EY8-MFEM. In Figure 6, the lower the value of
the curve, the more realistic it is. Although the computational performance of the YOLOv8s
and YOLOv5s models is better than that of EY8-MFEM, with gain/loss values of −0.037%
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and −0.193%, respectively, EY8-MFEM is still more advantageous from the perspective of
accuracy.

4.5. Visualization

To effectively showcase the performance of EY8-MFEM in weed detection, we use a
confusion matrix to demonstrate its accuracy in classifying different categories. Given the
variance in samples across different categories, normalizing the confusion matrix allows for
a more precise assessment of the classification model’s effectiveness on each category. In the
normalized confusion matrix, the rows correspond to predicted labels, while the columns
represent true labels. Observing Figures 7 and 8, it is apparent that the normalized results
of the comprehensive confusion matrix show a significant improvement in EY8-MFEM
compared to the YOLOv8 model on the CottonWeedDet3 dataset, especially in categories
such as carpetweed, Morning Glory, and palmer amaranth, where the accuracy increases
by 8%, 4%, and 4%, respectively. On the Cotton Weed dataset, improvements for the Cotton
and Weed categories were 2% and 4%, respectively. These results strongly demonstrate the
excellent performance of EY8-MFEM in weed detection tasks.

YOLOv8 EY8-MFEM

Figure 7. Normalized Confusion Matrix for YOLOv8 and EY8-MFEM (CottonWeedDet3).

YOLOv8 EY8-MFEM

Figure 8. Normalized Confusion Matrix for YOLOv8 and EY8-MFEM (cotton-weed).

In real agricultural scenes, there are some small weed targets. YOLOv8 can easily de-
tect some larger targets, but it is difficult to distinguish these small weed targets. However,
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EY8-MFEM, which has enhanced the ability to extract backbone features, can easily detect
these small weed targets, as shown in the comparison images of groups (a), (c), and (d)
in Figure 9 and (c) in Figure 10. Simultaneously, we observed that the YOLOv8 model
encounters challenges in detecting weed targets obscured by page shadows, as shown
in the comparison figure of Group (b) in Figure 9. When there are weed targets in leaf
shadows, EY8-MFEM can also detect them well. This is attributed to our proposed C2F-
ALGA module, which dynamically integrates local and global features, thereby enhancing
the model’s ability to capture intricate local details and comprehensive global contextual
information within the image. In Figure 10, Group (a) shows that when the weeds grow
densely, YOLOv8 will recognize this as a whole as multiple individual weed plants; When
the shape and texture of cotton and weeds are similar, traditional networks often find it
difficult to distinguish these feature categories, resulting in false positives; The figure in
(d) shows that when the picture of the cotton plant is incomplete, the YOLOv8 network
cannot recognize the entire cotton plant because the morphology of weeds and crops is very
similar in both horizontal and vertical directions. Our proposed MDPM can selectively
extract and utilize the horizontal and vertical information in feature maps to enhance the
model’s perception of spatial structure and directional features. The visualization results of
the model illustrate the outstanding performance achieved by EY8-MFEM.

(a) Missed detection (b) Occlusion (c) Missed detection (d) Missed detection

Figure 9. Visualization of YOLOv8 (top) and EY8-MFEM (bottom) on CottonWeedDet3.

(a) Misdetection (b) Misdetection (c) Missed detection (d) Incomplete detection

Figure 10. Visualization of YOLOv8 (top) and EY8-MFEM (bottom) on cotton-weed.
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5. Conclusions and Future Work
5.1. Conclusions

This study presents an enhanced EY8-MFEM model, derived from the YOLOv8 model,
to tackle the challenges of scale variation and occlusion encountered during the growth
stages of crops and weeds in weed detection within cotton fields. Initially, we devised
the ALGA module, which assigns weights to both local and global information within the
feature map, generating an attention matrix that accentuates crucial information within the
feature map. Through this approach, we can better focus on and utilize spatial information
in feature maps. Next, we introduced the C2F-ALGA module to bolster the feature extrac-
tion prowess of the backbone network. This module dynamically merges local and global
features, empowering the model to more effectively capture intricate local details and over-
arching contextual information within the image. Subsequently, to tackle the redundancy
issue within the SPPF module’s fused feature map, we developed the MDPM module.
This module selectively captures and leverages both horizontal and vertical information
within the feature map, generating an attention matrix to heighten the model’s sensitivity
to spatial arrangement and directional characteristics. Furthermore, the algorithm employs
a lightweight CARAFE upsampling operator, which significantly mitigates the omission
of crucial information and enhances the foundational feature representation capability.
The experiments demonstrated that the enhanced model led to improvements in the mAP50
and mAP75 metrics by 5.1%, 2.9% and 1.3%, 2.2% on two public datasets, respectively,
achieving scores of 82.3%, 69.7% and 77.7%, 55.6%, respectively. Compared with other
mainstream algorithms, EY8-MFEM exhibits outstanding performance in both real-time
processing demands and accuracy. In future research, for the complex and diverse cotton
field environment, these datasets are still far from sufficient. We will collect more cotton
field weed images, explore the design of lighter and more efficient models under low
resource conditions, and develop a cotton field weed recognition and detection system for
better deployment and application on edge devices with limited computing power.

5.2. Future Work

Although we have made some progress, there are some limitations in this study that
require further improvement. Firstly, our model may not be able to accurately adapt to
all situations when dealing with complex and diverse cotton field environments, leading
to performance degradation due to the complexity of cotton field environments, which
includes factors such as the growth characteristics of different plants, variations in light
conditions, and the diversity of soil types. In the future, we will explore the use of cross-
domain knowledge transfer techniques to introduce advanced methods and technologies
from other domains into cotton field weed detection to improve the generalization and
robustness of the model to adapt to a wider range of cotton field environments. Secondly,
when using the CARAFE module, we observed that although increasing the kernel size of
the content encoder can expand its perceptual range to utilize a wider range of contextual
information, as the kernel size increases, the computational complexity also shows a square
increase. In the future, we plan to explore the use of adaptive kernel size adjustment
strategies to dynamically select the appropriate kernel size based on the characteristics
of the input image. In addition, we will also study and apply model compression and
optimization techniques such as pruning, distillation, sparsification, quantization, and
low rank approximation to reduce the parameter and computational complexity of the
CARAFE module, achieving the best balance between performance and efficiency. Finally,
we will continue to develop a cotton field weed identification and detection system to better
deploy and apply it on edge devices with limited computing power.
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