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Abstract: It is crucial to evaluate and anticipate stability under various conditions, as the ability
to stabilize a smart grid (SG) is one of its key features for assessing the effectiveness of its design.
Intelligent approaches to stability forecasting are necessary to mitigate inadvertent instability in SG
design. This is particularly crucial with the expansion of residential and commercial infrastructures,
along with the growing integration of renewable energies into these grids. Predicting the stability of
SGs is currently a major challenge. The concept of an SG encompasses a broad range of emerging
technologies in which artificial intelligence (AI) plays a crucial role and is increasingly being utilized
in light of the limitations of conventional methods. It empowers informed decision-making and
adaptable responses to fluctuations in customer energy needs, unexpected power outages, rapid
changes in renewable energy generation, or any unforeseen crises within an SG system. In this paper,
we propose a symmetric approach to enhance SG stability by integrating various machine learning
(ML) and deep learning (DL) algorithms, where symmetry is observed in the balanced application of
these diverse computational techniques to predict and ensure the grid’s stability. These algorithms
utilized a dataset containing the simulation results of the SG stability. The learning phase of these
algorithms is based on imprecise and unreliable data. To overcome this limitation, the fusion of
classifiers can be a powerful approach to modeling inaccurate and uncertain data, providing more
robust and reliable predictions than individual classifiers. Voting and Dempster–Shafer (DS) methods,
two commonly used techniques in ensemble learning, were employed and compared. The results
show that the use of the fusion of distinct classifiers with voting theory achieves an accuracy of 99.8%
and outperforms several other methods including the DS method.

Keywords: artificial intelligence; belief functions; voting theory; smart grid; stability prediction;
machine learning; deep learning

1. Introduction

Smart grid (SG) technology is a modern electrical network that provides increased
reliability, efficiency, and sustainability, along with bidirectional communication to enhance
security and stability, and reduce operating costs [1,2]. Traditional grids achieve stability
and balance between electricity supply and demand through demand-focused electricity
production. The significant growth of the global population and economy, along with
rapid urbanization, is likely to increase energy consumption demand in the coming years.
Electricity, being a significant energy source, can be generated from various sources, such
as water, wind, solar cells, fossil fuels, and thermal and nuclear power plants. Additionally,
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with progress and extensive population growth, the electricity demand continues to rise,
automatically impacting the need for increased electricity production. Production, transmis-
sion, and distribution of electricity are the most critical aspects of electricity management.
The electrical grid is known as an interconnected network that links consumers to electricity
producers and transfers energy from producers to consumers [3]. Users play a crucial role
in maintaining network stability by constantly regulating their energy needs based on the
information provided by the stations. The concept of SGs is based on new information
and communication technologies (ICTs). They facilitate communication in both directions
between network operators, producers, and consumers. The SGs combine a variety of
techniques from IT, automation, the Internet, telecommunications, and control in order to
respond digitally and instantaneously to any change on the electrical network. Numerous
benefits are expected to arise from the deployment of SGs. SGs must be able to perform
the following:

— Optimize the integration of decentralized production from renewable sources;
— Manage diverse sources of production, storage, and consumption;
— Increase the energy efficiency of the network;
— Reduce problems caused by production variability;
— Avoid the construction and reinforcement of costly power lines;
— Minimize line losses;
— Enhance the management of supply and demand;
— Reduce consumption peaks by adjusting a portion of consumption to production.

The increase in the load on an electrical grid creates opportunities for generating
additional overhead costs, leading to issues with electricity quality. These grids lack an
adequate prediction system to forecast intermittent power outages, their causes, response
times, storage needs, and resource utilization. Therefore, the abundance of unnecessary
and irrelevant data generated during this process poses a significant problem [4]. To
address this issue, the performance of SGs can be enhanced using artificial intelligence
(AI) techniques by integrating various machine learning (ML) and deep learning (DL)
classifiers [5–9]. These algorithms leverage the knowledge derived from collected data to
refine the understanding of the system, optimize demand forecasts, and anticipate potential
fluctuations. By dynamically adjusting network parameters in real time, SGs can proactively
respond to changes, ensuring efficient energy management and improved resilience to
disruptions in the electrical grid. The AI techniques not only optimize the overall network
performance but also minimize operational costs while ensuring a reliable and stable
energy distribution. Thus, SGs assert themselves as intelligent, adaptive, and responsive
systems, making a significant contribution to the transition towards a more sustainable and
efficient electrical grid. Recently, AI has served as a significant technological driver in SGs.
The application of AI techniques to SGs is becoming increasingly important for modeling,
optimization, and controlling. ML and DL enable intelligent decision-making and response
to sudden changes in customer energy demand, unexpected disruptions in electricity
supply, sudden variations in renewable energy production, or any other catastrophic events
in an SG. This research paper aims to predict SG stability. For this purpose, we propose to
study several ML classifiers, such as K-nearest neighbor (KNN), support vector machine
(SVM), logistic regression (LR), random forest (RF), gradient boosting machine (GBM),
extreme gradient boosting (XGB), and decision tree (DT). We also considered DL classifiers
like recurrent neural network models (RNNs), convolutional neural networks (CNNs),
long short-term memory (LSTM), and gated recurrent unit (GRU). All these models will be
trained using a selected dataset containing the SG stability simulation results. In this work,
we carry out a comparative analysis between the different ML and DL models based on the
following evaluation metrics: accuracy, sensitivity, precision, the F1 score, the confusion
matrix, and the area under the curve (AUC-ROC). This comparative study leads us to
identify the classification algorithm that achieves the highest accuracy, enabling us to make
better decisions regarding the prediction of SG stability. Given the inherent uncertainty in
the data used for stability prediction, we employ fusion methods as introduced in [10,11]
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to mitigate its impact. In this case, the symmetry is further exemplified in the utilization of
ensemble learning methods, such as Dempster–Shafer (DS) and voting techniques, which
harmonize predictions from multiple classifiers to address the data uncertainty, showcasing
a balanced and cohesive strategy toward improving SG reliability. The use of fusion
methods in this research area presents an opportunity, since the studied data are uncertain,
which lends more credibility to the stability prediction results.

In summary, it is crucial to emphasize that the core objective of this study is to utilize
ML and DL classifiers to predict the stability of SGs. Based on the dataset, the process
unfolded in three consecutive phases.

— Initially, we compute the error rate for each classifier (ML and DL) to determine the
optimal accuracy. It should be noted that, for this initial phase, the use of fusion
methods is not included.

— Subsequently, based on the last results, we combine the outputs from the most suc-
cessful classifiers and calculate the fusion error rate using DS and voting methods.

— Finally, we conduct a comparative analysis of the obtained results to identify the best
fusion method having the highest precision.

The remainder of this paper is organized as follows: In Section 2, we present the
related works. In Section 3, we expose our proposed methodology, and describe the ML
and DL algorithms with the classification metrics, the belief functions theory and the voting
method. Section 4 presents the experimental results and discussion. Section 5 presents the
conclusion with some suggestions for further research.

2. Related Work

Conventional methods often face challenges due to the complexity and scope of
the involved data, resulting in extended computation times and occasionally diminished
accuracy. However, these obstacles can be effectively overcome by leveraging advanced
techniques in AI and ML [12]. By harnessing these technologies, providers can gain
a better understanding of consumer behaviors, enabling more precise analysis of their
energy needs. This facilitates the production of accurate billing statements tailored to each
user’s specific requirements. Incorporating AI and ML into SG also provides consumers
with comprehensive access to their energy usage and pricing information, empowering
them to proactively respond to demands for energy consumption reduction during peak
periods. As a result, the operational efficiency of SGs is improved, leading to more effective
management of electricity supply and demand. By integrating ICTs into SGs, consumers
and producers are empowered to actively participate in ensuring the proper operation
of the SG. This enables them to play an active role in monitoring and optimizing energy
consumption and production, contributing to the overall functionality and efficiency of
the SG system. In their work, Shi et al. [13] provided a clear overview of recent advances
in using AI to analyze and control the stability of SGs. They extensively examined the
definitions, historical context, and advanced methodologies of AI. Furthermore, the authors
conducted a thorough exploration of various applications of AI in different aspects of SGs,
such as security assessment, fault diagnosis, and stability control. Their research serves as
a valuable resource for understanding how AI can enhance the stability and control of SGs.
While the application of AI methodologies in SGs has demonstrated remarkable results,
challenges persist, particularly concerning the extensive data, imbalanced learning, and
interpretability of AI models. To address these challenges, the authors propose potential
solutions, thereby promoting the continued adoption of AI for the control and analysis of
SG stability.

Developing probabilistic load forecasting (PLF) is a fundamental requirement for
the construction of energy-efficient and reliable SGs. PLF enables accurate prediction
of future electricity demand, considering various factors and incorporating probabilities.
This forecasting technique empowers grid operators to make informed decisions regarding
resource allocation, load balancing, and energy management, leading to optimized planning
and operation strategies. By embracing PLF, SGs can effectively integrate renewable
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energy sources, enhance grid stability, and ensure a balanced supply–demand interaction.
Yang et al. [14] have introduced Bayesian DL as a technique to tackle the challenging task
of PLF. They have proposed an innovative multitask PLF framework utilizing Bayesian
DL techniques, which effectively quantifies shared uncertainties among different customer
groups while considering their unique characteristics. To enhance the model’s performance
and mitigate overfitting, the authors have developed a pooling method based on clustering.
This increases data diversity and volume. Experimental findings indicate that the suggested
model surpassed conventional methods, highlighting its improved predictive performance
in PLF. Energy load forecasting plays a crucial role in the advancement of forthcoming SG
systems. However, the application of conventional statistical and ML methodologies is
accompanied by challenges, such as forecasting errors and a notable risk of overfitting.

The authors of [15] introduced an innovative energy load forecasting (ELF) model,
which exploits deep neural network architectures for regulating energy consumption in SGs.
They extensively scrutinized and simulated two deep neural network architectures—deep
feed-forward neural network (deep-FNN) and deep recurrent neural network (deep-RNN)—
across diverse training set sizes to assess their efficacy. Furthermore, they evaluated the
performances of these architectures by experimenting with different activation functions
and diverse configurations of hidden layers. The comparison of simulation results was
based on the mean absolute percentage error.

Based on their findings, they were able to assert that their suggested model exhibits
superior performance in contrast to existing load forecasting models. In a separate study,
Kuo and Huang [16] introduced a highly precise deep neural network algorithm tailored
for short-term load forecasting (STLF). They conducted a comparative analysis between
their proposed model and five commonly utilized AI algorithms, namely, RF, DT, SVM,
MLP, and LSTM. The primary objective was to evaluate the effectiveness of their model in
accurately forecasting load in comparison to established algorithms. Their research aimed
to validate the model’s capability to achieve precise load forecasting outcomes and establish
its superiority over existing algorithms. With a mean absolute percentage error (MAPE)
of 9.77% and a cumulative variation of root mean square error (CVRMSE) of 11.66%, their
developed model demonstrated notably high accuracy in predicting load demand, thereby
highlighting its effectiveness in the realm of load forecasting.

Lu et al. [17] introduced a decision system grounded in reinforcement learning aimed
at aiding in the selection of electricity pricing plans. The primary objective of this system is
to reduce both electricity expenses and dissatisfaction with consumption among individual
end users within an SG. To tackle this, they framed the decision-making without transi-
tion probabilities, employing an enhanced state framework. Addressing computational
and prediction hurdles, they utilized a kernel approximator-integrated batch Q-learning
algorithm, which enhances both the efficiency and accuracy of the decision system.

3. Proposed Methodology

This section presents our methodology for SG stability.

3.1. Smart Grid Stability

The stability of electrical grids refers to the ability of an electrical system to maintain
a stable equilibrium state or return to such a state after being disrupted. It is crucial for
ensuring a continuous and reliable power supply. Different types of stability include
voltage stability, frequency stability, and dynamic stability. These aspects are essential for
ensuring the proper functioning of electrical grids.

— Frequency Stability: This concerns the network’s ability to maintain its nominal
frequency (e.g., 50 Hz or 60 Hz depending on the region) after a disturbance.

— Voltage Stability: This refers to the network’s ability to maintain stable voltages
in all parts of the electrical system after a disturbance. Voltage variations can be
caused by changes in electricity demand, equipment failures, or alterations in the
network configuration.
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— Dynamic Stability: This refers to the network’s ability to maintain or regain a stable
equilibrium state in the presence of disturbances that evolve over longer periods, often
due to slow variations in load or generation. This includes managing the variability
of renewable energy sources such as wind and solar.

In this paper, we focus on dynamic stability. Predicting SG stability was studied
based on attributes derived from the database to perform binary classification: stable or
unstable. This classification was performed using ML and DL algorithms. To improve the
classification results and consider the uncertain aspect of the data, fusion methods outlined
by the belief function theory and the voting method were employed.

In Figure 1, we summarize all steps performed by the proposed methodology, where
Algorithm 1 presents the pseudo-code.

Data processingSG Input data
Training and testing 

Cross validation

Stability classification 
using ML and DL 

algorithms 

Fusion methods 

Stable Unstable

Figure 1. Steps of proposed methodology.

Algorithm 1: Pseudo-Code of the Proposed Approach
inputs :Smart grid stability augmented dataset
outputs :Model Performance Mp

1 Dp {data preprocessing}
2 xtrain, xtest, ytrain, ytest {Train Test split}
3 ClassifiersML← XGB, GB, SVM, RF, KNN, LR, DT
4 ClassifiersDL← NN, GRU, LSTM, RNN
5 FusCl1← Fusion of all classifiers
6 FusCl2← Fusion of the three best classifiers
7 Vot1← Voting (FusCl1)
8 Vot2← Voting (FusCl2)
9 DS1← Dempster’s (FusCl1)

10 DS2← Dempster’s (FusCl2)
11 Em← accuracy, precision, recall, F1 score {Evaluation metrics}
12 Return← Best Results

3.2. Dataset Processing

To be stable, electrical grids require balanced supply and demand (i.e., the electricity
amount generated must match the amount consumed). In traditional power systems,
balance was achieved by adjusting electricity production based on demand. This approach
required a constant monitoring of electricity usage and a flexible generation system that
could respond quickly to changes in demand. However, with the advent of the SG, a system
of demand response was implemented. Demand response is a strategy where consumers
adjust their electricity usage in response to signals from the grid. As the decentralized SG
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control system aims to achieve the demand response, we use a dataset originally developed
by Vadim Arzamasov [18]. The decentralized SG control system model is made up of two
primary components:

— Simulation of energy production and consumption: This component represents the
various entities that are connected to the grid, each of which could be a consumer, a
producer, or both. For instance, a residential home might consume electricity, a solar
farm might produce electricity, and a building with solar panels might do both. This
simulation takes into account the quantity of electricity each participant produces or
consumes, the timing of this production or consumption, and any constraints they
might have.

— Modeling of electrical energy price variation: This component of the model is con-
cerned with how the price of electrical energy changes in response to the grid’s
frequency. In a functioning power grid, the frequency must be kept within a certain
range to ensure stability. If the frequency deviates too far from this range, it can
indicate an imbalance between supply and demand, which can lead to instability. To
manage this, the price of electricity can be adjusted.

The considered dataset, available in [19], contains 60,000 data points. This dataset was
obtained through 10,000 simulations using the decentralized SG control system with the
following six input values:

— Damping constant (i.e., the efficiency of a control system in modulating its power
output to uphold the stability of the grid frequency);

— Coupling strengths (i.e., the level of interaction and mutual influence between different
subsystems within the grid);

— Averaging time (i.e., the period over which data are collected and averaged to smooth
out short-term fluctuations and highlight longer-term cycles);

— Price elasticity (i.e., the fluctuation in energy consumption relative to alterations in
prices, while holding all other factors constant);

— Reaction time (i.e., the duration taken by participants to respond in adjusting their
consumption and/or production concerning price variations);

— Mechanical power (i.e., the physical energy that is converted into electricity by me-
chanical generators, such as wind turbines or hydroelectric dams).

Note that the simulation was conducted using a configuration consisting of a single
producer node and three consumer nodes interconnected in a star topology. The individual
data points were generated by randomly selecting values for the input variables specified
in the dataset description. Subsequently, the system stability was computed based on
these simulations.

The study’s dataset incorporates 12 characteristics essential for analysis and prediction
purposes. These predictive characteristics include:

— Response time—producer of energy.
— Response time—user_1.
— Response time—user_2.
— Response time—user_3.
— Balance of forces—producer of energy.
— Balance of forces—user_1.
— Balance of forces—user_2.
— Balance of forces—user_3.
— Price elasticity coefficient (gamma)—producer of energy.
— Price elasticity coefficient (gamma)—user_1.
— Price elasticity coefficient (gamma)—user_2.
— Price elasticity coefficient (gamma)—user_3.

The prediction outcome involves two categories:

— Stable.
— Unstable.
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The ‘1’ label has been assigned to denote a stable grid condition, whereas the ‘0’
label represents an unstable grid condition. The dataset comprises features with different
dimensions and scales combined. This could potentially impact the model’s fitting process
and result in biased predictions, leading to errors in classification and inaccurate rates
of precision.

In order to mitigate this issue, standardization was performed before fitting the
framework. This process involved adjusting the features in the dataset to a standardized
scale, i.e., mean (µ) = 0 and standard deviation (σ) = 1.

The dataset is balanced if the positive values are approximately the same as the
negative values.

The dataset is imbalanced if there is a significant disparity between the positive and
negative values. Figure 2 presents the distribution of the predictive states. It shows that the
dataset is imbalanced.
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Figure 2. Distribution of predictive states.

3.3. ML Algorithms Based on Supervised Classification

Supervised classification mirrors human learning by leveraging past experiences to
gain new knowledge and understanding. In this approach, machine learning algorithms
are trained using a dataset containing pre-classified instances and their corresponding
predicted values. From this training set, the algorithm constructs a preliminary model,
enabling it to predict missing values in incomplete datasets [20]. This section will delve
into popular methods commonly employed in supervised classification, briefly outlining
their operating principles, strengths, challenges, and application areas. Furthermore, recent
advancements in these methods will be explored. Specifically, the following ML algorithms
have been used to forecast the stability of the SG.

3.3.1. Support Vector Machine

SVM represents a suite of supervised learning techniques primarily applied to binary
classification tasks but extends its utility across diverse fields like bioinformatics and
finance [21]. SVM delineates a boundary maximizing the separation distance between
various data categories, even in scenarios where the data are not linearly separable. It
accomplishes this by projecting data into a higher-dimensional attribute space and crafting
optimal separation hyperplanes [22]. SVM exhibits efficacy in managing high-dimensional
spaces and excels with unstructured and semi-structured data formats. The choice of kernel
function significantly influences SVM’s aptitude to tackle intricate problems. Nonetheless,
SVM encounters challenges when there is substantial overlap between target classes and its
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performance may falter if the number of characteristics per data point surpasses the count
of training data samples. Under such circumstances, the selection of an optimal kernel
presents a formidable task [23].

3.3.2. Logistic Regression

LR stands as a widely used statistical method specifically designed for binary clas-
sification tasks. It belongs to the family of regression analyses wherein the dependent
variable, often termed as the outcome or response variable, assumes categorical values,
typically denoted as 0 and 1. The principal aim of logistic regression lies in estimating
the probability that a given input pertains to a particular category. This is achieved by
modeling the relationship between the inputs and the probability of the outcome utilizing
the logistic function, also recognized as the sigmoid function. In essence, logistic regression
facilitates the estimation of the probability or risk associated with a particular outcome
based on the value(s) of the independent variable(s) [24].

3.3.3. K-Nearest Neighbor

KNN is a straightforward supervised learning approach applicable to regression and
classification tasks [25]. It is a non-parametric method that involves storing the training
set’s observations to classify new data from the testing dataset. To forecast the category of
new input, the KNN algorithm follows a simple procedure: First, it calculates the Euclidean
distance between the target object for classification and all other objects within the dataset.
Then, using these distance quantities, it selects the nearest neighbors. Finally, the class for
the object is determined by performing a majority vote among the classes of the nearest
neighbors [26]. The Euclidean distance is a prevalent distance function, computed in the
following manner [27]:

deuclidian(a, b) = q
√

∑(ai − bi)
2, (1)

where a = a1 . . . am and b = b1 . . . bm represent the m attribute values. KNN method is
employed for object classification in various fields such as text classification, human activity
recognition, computer vision, handwriting recognition, and trajectory analysis [28]. The
KNN algorithm boasts several advantages, including its simplicity, ease of understanding,
and straightforward implementation. It is relatively quick to learn and can yield satisfactory
performance. KNN also excels in defining the distribution of class data, providing useful
insight into the underlying patterns. Consequently, it is regarded as one of the most
powerful approach in the field of machine learning [29].

3.3.4. Decision Tree

The method presented here is employed for addressing regression and classification
issues. Its purpose is to construct a training model of forecasting the class or value of the
target variable by leveraging historical decision rules. The process begins with a root in the
form of a tree, which then branches out, forming interconnected nodes, and culminates in
leaves that are associated with specific classes to be predicted. Each node within the tree
signifies a distinct rule and traversing the tree entails evaluating a sequence of these rules.
To traverse the tree implies examining a sequence of rules. In essence, this method is an
algorithm for rule-based classification, where the rules are acquired by partitioning the
training data in a manner that maximizes the number of accurate classifications [30].

The DT algorithm is highly effective in addressing nonlinear problems. It excels
at handling both numerical and categorical data simultaneously. Compared to other
algorithms, it requires less data filtering. However, it consists of multiple layers, rendering
it complex and, consequently, the computational complexity of the decision tree escalates
when faced with a substantial quantity of class labels [31].



Symmetry 2024, 16, 459 9 of 21

3.3.5. Random Forest

RF classifier is renowned for its versatility in tackling both classification and regression
tasks. Initially, the algorithm commences at the root node of a tree, encompassing the
entire dataset. Subsequently, it assesses the efficacy of each predictor variable in distin-
guishing between different nodes. Typically, this tree-based approach involves pruning
the tree to an optimal size, mitigating overfitting, a process typically facilitated through
cross-validation [32]. Implementing RF necessitates the configuration of two primary pa-
rameters: the number of trees (ntree) and the selection count of predictor variables chosen
at random (mtry).

3.3.6. Gradient Boosting Machine

Much like RF, GBM serves as another technique employed in supervised machine
learning tasks, spanning various classification and regression scenarios. GBM assembles a
prediction model by amalgamating multiple weak prediction models, typically decision
trees, to form an ensemble [33]. It comprises three pivotal components: (i) a loss function
intended for optimization, (ii) a weak learner entrusted with making predictions, and (iii) an
additive model that integrates weak learners to enhance loss function optimization [34].
GBM entails three primary tuning parameters: the maximum number of trees (ntree), the
maximum depth of interactions among independent variables (tree depth), and the learning
rate, alternatively referred to as shrinkage [35].

3.3.7. Extreme Gradient Boosting

XGBoost has emerged as a prominent machine learning model, significantly advancing
tree-boosting algorithms in recent years. This system generates a prediction model by
employing gradient descent to optimize the loss function, ultimately yielding a boosting
ensemble of weak classification trees [36]. Notably, XGBoost demonstrates exceptional
efficiency in reducing processing time and is versatile, and applicable to both regression
and classification tasks. The parameters of the XGBoost algorithm are categorized into three
groups, as outlined by Chen et al. [37]: General Parameters, Task Parameters, and Booster
Parameters. In the context of the work, three specific general parameters were selected to
fine-tune the XGBoost algorithm during the application of the Local Sensitivity Method
(LSM): colsample_bytree (the subsample ratio of columns when constructing each tree),
subsample (the subsample ratio of the training instances), and n rounds (the maximum
number of boosting iterations).

3.4. Implementation of DL Classifiers

DL algorithms encompass a category of ML methods rooted in artificial neural net-
works comprising multiple layers. These algorithms are engineered to autonomously learn
and extract hierarchical data representations by employing interconnected layers of nodes,
commonly referred to as neurons or units. Numerous DL algorithms have been devised
and deployed to forecast the resilience of the SG.

3.4.1. Neural Network

The initial layer of the neural network is referred to as the input layer, where data are
fed into the network. Conversely, the final layer is known as the output layer, responsible
for providing the classification results. The input and output layers are considered the
hidden layers [38]. A network becomes deeper as it incorporates more hidden layers. The
network parameters are iteratively adjusted through a process known as backpropagation.

3.4.2. Convolutional Neural Networks

CNNs consist of multiple layers and are mainly employed for tasks such as image
processing, time series prediction, and identifying and categorizing anomalies in objects.
These networks incorporate extra layers known as “filtering” layers, which enable the
learning of filter coefficients or convolutional filters, alongside weights and biases assigned
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to individual neurons [39]. The operational mode of a CNN involves multiple layers that
process and extract information [39]. These layers include:

— Convolution layer: This comprises multiple filters tasked with executing the convolu-
tion operation on the input data.

— Rectified linear unit (ReLU): This layer conducts operations on the data, producing a
rectified feature map as its output.

— Pooling layer: The rectified feature map is subsequently forwarded through a pooling
layer, which conducts subsampling and diminishes the dimensions of the feature map.

— Connected layer: This layer is constructed using the flattened array from the pooling
layer as its input, facilitating image classification and identification.

3.4.3. Recurrent Neural Networks

RNNs have gained significant popularity in the field of DL [40–42]. Although they
were developed in the 1980s, their widespread adoption has occurred only in recent years
due to advancements in computing power and the availability of massive amounts of data.
RNNs are unique neural networks that enable information propagation in both forward and
backward directions, mimicking the functionality of the nervous system. These networks
possess recurrent connections, allowing them to retain and utilize data in their memory.
RNNs, or Recurrent Neural Networks, are designed to process sequential data effectively
by utilizing previous outputs as additional inputs. This unique characteristic enables RNNs
to achieve high prediction accuracy. In the operating mode of an RNN layer, the inputs are
sequentially traversed, moving from x1 to xt and beyond. At each time step t, the last cell
of the RNN combines the current input xt with the prediction from the previous step ht−1
to compute the output ht. The resulting vector ht serves as the final output of the RNN
layer. This process establishes the recurrence relation defined by the RNN layer.

ht = f (xt, ht−1). (2)

3.4.4. Long Short-Term Memory

The activation function used in RNNs, specifically the tanh function, often encoun-
ters a large number of values nearing zero frequently during derivative computations.
Additionally, classical RNNs have a tendency to remember only recent information be-
fore forgetting it. To address these limitations, LSTM employs the sigmoid function and
possesses an internal memory that is dynamically and constantly changing based on the
input data. This enables LSTMs to overcome the mentioned issues [43,44]. LSTM networks
extend the capabilities of RNNs by introducing an extended memory mechanism. They
allow “weights” to the data, enabling RNNs to process new inputs and either forget them
or give them the significance to influence the output. In the context of LSTMs, the hidden
units are referred to as the following [42]:

— Forget gates: These gates identify and retain pertinent information from the past.
— Input gates: These gates choose and incorporate information from the present input

that is deemed important for long-term memory storage.
— Output gates: These gates select crucial information from the new cell state to create

the following hidden state and output.

Due to their complex architecture, the learning phase of LSTMs necessitates a greater
amount of time in comparison to traditional neural networks or RNNs. However, LSTMs
achieve significantly improved performance. The LSTM network also employs a recur-
rent expression but introduces an additional variable known as the cell state c to defer
the recurrence.

ct = f (xt, ht−1, ct−1). (3)

In the LSTM architecture, data are conveyed from one cell to the next via two channels:
h and c. At time t, the updates to these two channels are determined by the interaction
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between their preceding values ht−1 and ct−1 and the current element of the input sequence
xt. In [44], there is a comprehensive understanding of the LSTM architecture including the
specific equations involved.

3.4.5. Gated Recurrent Unit

The GRU represents the latest advancement in RNN models and offers notable en-
hancements compared to both RNNs and LSTMs. Unlike the RNN, the GRU incorporates
two key gates known as the update gate and reset gate [44–47], within each GRU unit,
instead of the three gates found in an LSTM cell. The update gate in a GRU plays a crucial
role in determining the extent to which past data should be retained and transmitted to
the following conditions. To elaborate on the process, the reset gate of the GRU initiates by
storing significant information from the previous time step in a separate memory space.
Subsequently, it performs element-wise multiplications between the input vector and the
hidden state, taking into account their respective weights. This multiplication is further
combined with the product of the reset gate and the previous hidden state. In the last, the
resulting sum is passed through an activation function, as described in [44].

3.5. Fusion Methods

ML and DL algorithms play a crucial role in prediction and classification tasks, aiming
to achieve more accurate decisions. In decision support systems, where vast amounts of
data are involved, such as medical imaging, satellite or radar imagery analysis, climate
prediction, and signal and image processing, the scale of information is immense. More-
over, these data are frequently characterized by imprecision, uncertainty, vagueness, and
incompleteness, posing additional challenges to the analysis and interpretation process.
The presence of such factors introduces challenges in representing knowledge effectively.
This can occur due to insufficient numerical information or the utilization of natural lan-
guage terms to describe certain attributes. Uncertainty arises concerning the reliability
and accuracy of the data itself. The source providing the data can be unreliable, prone to
errors, or deliberately delivering false data. Consequently, the data obtained are partial and
prone to inaccuracy. In this framework, uncertainty in SG data refers to the lack of precise
or complete knowledge about certain aspects of the network’s operation, performance,
or environmental conditions. This uncertainty can arise from various sources and may
impact decision-making processes and the overall reliability of the SG. For example, in
renewable energy generation, the output of renewable energy sources like solar and wind
power is inherently uncertain due to weather conditions. Also, in an SG, data are collected
from various sensors and devices. Communication errors, sensor inaccuracies, or device
malfunctions can introduce uncertainty into the data, affecting the accuracy of monitoring
and control systems. Addressing and managing uncertainty in SG data is crucial for mak-
ing informed decisions, improving grid resilience, and ensuring the efficient and secure
operation of the electrical network. To address the challenges posed by imprecision and
uncertainty, it becomes crucial to employ formalisms that can effectively model these imper-
fections. Furthermore, in order to maximize the utilization of available information, these
formalisms need to incorporate fusion mechanisms, such as combination or aggregation
techniques [48]. This fusion phase enables the generation of synthesized information that
can aid in decision-making processes. Among these formalisms, we will describe the theory
of belief functions and the voting method.

3.5.1. Belief Functions

Belief functions stem from the pioneering work of Arthur Dempster in generalizing
Bayesian formalism [49]. Glenn Shafer played a considerable role in formalizing the credal
aspect of the theory, leading to the development of the DS method, also known as the
theory of evidence. This theory, rooted in probabilistic mathematics, establishes an official
setting for making deductions amid uncertainty, providing a means to model knowledge
effectively. Through the use of belief functions, which serve as tools for assessing subjective
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probabilities, we can assess the level of truthfulness in a given assertion. By incorporating
measures of evidence, coefficients of weakening, and the rule of combination, this frame-
work enables the treatment of information derived from diverse sources across different
fields, ultimately attaining a level of reliability. The utilization of the DS theory proves
highly beneficial in the decision-making process [50]. The DS theory can be summarized
through the following steps [51]: Initially, we express the available information in the form
of mass functions. The mass function, denoted as m, represents the discerning frame Ω and
m(A) is defined as follows:

m : 2Ω → [0, 1] with ∑
A⊆Ω

m(A) = 1 (4)

By incorporating the belief degree regarding the reliability of the source, we apply the
mass function m to rectify the data. Consequently, we obtain a revised mass function that
can be described as follows:

M = µ.m(A);∨A ̸= Ω (5)

Ultimately, we integrate the information to arrive at the optimal decision. In this
scenario, we take into account two sources, each represented by the mass functions m1
and m2. The fusion of these two sources results in a new mass function, which can be
represented as follows:

(m1 ⊕m2)(C) = ∑
A,B:C=A∩B

m1(A).m2(B). (6)

To ensure an informed decision-making process following the fusion step, the pig-
nistic transformation plays a crucial role. This transformation is defined as a probability
distribution, represented by the following:

Betp(ω) = ∑
A⊆Ω,ω∈A

m(A)

(1−m(Ø)) | A | . (7)

The decision is made based on the pignistic transformation by selecting the element x
that possesses the highest probability:

Rp(x) = arg max
x∈Ω

Betp(ω)(x). (8)

The DS fusion theory offers the advantage of enabling decision-making even in the
event of classifier failures. Additionally, this theory allows classifiers, despite utilizing differ-
ent learning algorithms, to approach and solve a given problem from diverse perspectives.

3.5.2. Voting Method

The voting method represents a direct and efficient fusion strategy, impartial to any
single classifier. However, it is important to recognize that each classifier’s performance
can fluctuate depending on the context. Therefore, evaluating its effectiveness necessi-
tates considering the significance or precedence of individual classifiers under particular
conditions. This aspect has received thorough examination within the fault classification
domain [52,53]. The voting method is given by the following:

ŷ = arg max
m

∑
j=1

wjXA
(
Cj(x) = i

)
, (9)

where Cj is the classifier and wj is the weight associated with the classifier’s prediction.
The voting method supports two voting approaches:

— Hard Voting: The voting classifier estimator predicts the output by selecting the
class that garners the greatest number of votes from each classifier. Hard voting is
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distinguished by its simplicity and ease of application. It simply involves choosing
the class with the most votes, making it simple and intuitive. The effectiveness of hard
voting is demonstrated when the individual classifiers in the ensemble are diverse and
their errors are not significantly correlated. In such situations, merging their decisions
through majority voting can lead to more robust and accurate predictions.

— Soft Voting: The prediction of the output class relies on the mean probability attributed
to that class. If ’hard’ is chosen, the predicted class labels are used for the majority
vote, while ’soft’ relies on the argmax of the summed predicted probabilities. The
’soft’ approach is recommended for a set of well-calibrated classifiers. Soft voting can
be more robust in situations where models present different levels of uncertainty. It
enables the most reliable models to make a greater contribution to the final decision.
Also, it can improve overall performance, particularly when it comes to combining
well-calibrated models that provide accurate probability estimates.

4. Results and Discussion
4.1. Classification Measures

In a classification problem, the potential values can be outlined as follows:

— True positives (TP): The count of positive instances correctly identified as positive.
— True negatives (TN): The count of negative instances correctly identified as negative.
— False positives (FP): The count of negative instances incorrectly identified as positive.
— False negatives (FN): The count of positive instances incorrectly identified as negative.

The metrics employed to assess the classification are accuracy, precision, recall, and
F1 scores:

— Accuracy in classification models is determined by dividing the count of accurate
predictions by the total number of predictions made during the evaluation. The
accuracy is given by

Accuracy =
TP + TN

TP + FP + TN + FN
. (10)

— Precision, often known as positive predictive value, gauges the ratio of accurately
classified positive instances to the total number of instances predicted as positive by
the model. The precision is given by

Precision =
TP

TP + FP
. (11)

— Recall, also known as sensitivity or true positive rate, quantifies the ratio of correctly
classified positive instances to the total number of positive instances in the dataset.
The recall is given by

Recall =
TP

TP + FN
. (12)

— The F1 score is a metric that integrates precision and recall into one value by computing
their harmonic mean. This offers a balanced evaluation of the classification model’s
effectiveness. The F1 value is given by

F1 = 2× Precision× Recall
Precision + Recall

. (13)

In our case, the number of states exhibits an imbalanced distribution, as depicted in
Figure 2. To address this issue, the weighted-averaged score, which considers precision,
recall, and F1 score, is employed to mitigate the impact of the weakest scores. The weighted
average is computed by averaging the precision, recall, and F1 scores for each class, while
taking into account the support of each class. Support denotes the real count of occurrences
for each class within the test database. Among these metrics, the F1 score is considered
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more suitable as it represents the harmonic mean of precision and recall. By using the F1
score, a balance between precision and recall is maintained, and the score is improved only
if the classifier accurately identifies more instances of a specific class.

The performance of classification results can also be assessed using the AUC-ROC
(Area Under the Receiver Operating Characteristic) ROC curve, a commonly employed
evaluation metric for binary classification tasks. It assesses the classifier’s capability to
differentiate between the two classes. The AUC represents the area under the curve, with
the false positive rate plotted on the x-axis and the true positive rate plotted on the y-axis.
An excellent model should have an AUC close to 1, indicating a high degree of separability
between the classes. This means that the model can effectively distinguish between the
positive and negative instances.

Similarly, the precision–recall (PR) curve is used for evaluating binary classification
algorithms. The AUC-PR is derived by mapping precision against recall across different
threshold values. Precision measures the ratio of accurately classified positive instances
among all instances predicted as positive, while recall quantifies the ratio of accurately
classified positive instances among all actual positive instances. Likewise, an AUC-PR
score closer to 1 indicates better classifier performance, as it signifies a higher precision and
recall trade-off.

Google Collaboratory is used as a framework for training and testing ML and DL
algorithms. This cloud service offers approximately 12 GB of RAM and GPU support that
can be expanded to 25 GB.

4.2. Results on Independent Classifiers

After calculating the measures of Equations (10)–(13), the accuracy for each ML and
DL classifier is shown, respectively, in Tables 1 and 2.

Table 1. Accuracy of ML classifiers.

Classifiers Accuracy

XGB 97.79%

GB 92.47%

SVM 78.79%

RF 92.21%

KNN 81.14%

LR 80.76%

DT 79.48%

Table 2. Accuracy of DL classifiers.

Classifiers Accuracy

CNN 85%

GRU 98%

LSTM 98%

RNN 89%

From Table 1, the XGB achieves the lowest error rate at 97.79%. Figure 3 shows the
ROC curves for the SG stability prediction based on ML classifiers and it is clear that the
XGB gave the best AUC.
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Figure 3. ROC curves for SG stability predicting ML classifiers.

From Table 2, the GRU and the LSTM achieve the lowest error rates at 98%. The result
is obvious in Figure 4 which shows that the GRU and LSTM have the greatest AUC-ROC
score for SG stability prediction based on all the DL classifiers.
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Figure 4. ROC curves for SG stability predicting DL classifiers.

4.3. DS Fusion Results
4.3.1. ML Results

In this section, we employ DS theory combining seven ML classifiers provided with the
following mass functions, mXGB, mGB, mSVM, mRF, mKNN , mLR, and mDT , respectively,
for the XGB, GB, SVM, RF, KNN, LR, and DT classifiers. First, we fuse all classifiers. The
classification rate is then tested by combining the three best classifiers RF, XGB, and GB.
Thus, two types of combination (data fusion) between classifiers are obtained according to
the mass combination DS rules:

— mXGB ⊕mGB ⊕mSVM ⊕mRF ⊕mKNN ⊕mLR ⊕mDT ;
— mRF ⊕mXGB ⊕mGB.

Using the pignistic transformation of the acquired masses enables us to accomplish a
determination regarding the fusion results. Table 3 displays the results of the fusion for
two various combinations of classifiers for the ML algorithms based on the DS theory. The
fusion of all algorithms gave 89% accuracy. However, it achieved 82% when combining the
RF, XGB, and GB classifiers.
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Table 3. Performance comparison of the models based on all and only the three best ML classifiers
with DS theory.

DS Accuracy DS Weakness

All classifiers 89% 11%

RF, XGB, GB 82% 18%

4.3.2. DL Results

In this section, we employ DS theory combining four DL classifiers presented by the
mass function s mCNN , mGRU , mLSTM, and mRNN , respectively, for each classifier CNN,
GRU, LSTM, and RNN. First, we fuse all classifiers. The classification rate is then tested by
combining the two best classifiers, GRU and LSTM. Thus, two types of combination (data
fusion) between classifiers are obtained according to the mass combination DS rules:

— mCNN ⊕mGRU ⊕mLSTM ⊕mRNN ;
— mGRU ⊕mLSTM.

The pignistic transformation of the obtained masses allows us to determine the fusion
results. Table 4 displays the results of the fusion of the two various combinations of classifiers
for the DL algorithms based on the DS theory. The obtained accuracy, for the fusion of all
classifiers, is 92%. By fusing the GRU and LSTM classifiers, the accuracy is 93%.

Table 4. Performance comparison of the models based on all and only the two best DL classifiers
with DS theory.

DS Accuracy DS Weakness

All classifiers 92% 8%

GRU, LSTM 93% 7%

4.4. Voting Fusion Results

Applying the soft and hard voting approaches, the results of fusion classifiers based
on ML and DL are presented in the following sections.

4.4.1. ML Results

This section presents the results of the voting fusion approach based on ML algorithms.
Table 5 displays the accuracy results. As seen from these results, using soft voting, the
fusion of the RF, XGB, and GB classifiers achieves 99.8%.

Table 5. Performance comparison of the models based on all and only the three best ML classifiers
with voting theory.

Voting Mode Voting Accuracy Voting Weakness

All classifiers Hard 99% 1%

Soft 98% 2%

RF, XGB, GB Hard 99.76% 0.24%

Soft 99.80% 0.20%

Figure 5 presents the confusion matrix for the seven ML classifiers. Here, the TP, TN,
FN, and FP for the seven ML classifiers using voting theory are 10,531, 4670, 1615, and 1184,
respectively. The TP and TN indicate that the predictions are accurate. The FP indicates
that the model incorrectly predicts the positive class. The FN indicates that the model fails
to identify and predict the positive class.

Figure 6 shows the classification for the seven ML classifiers. It effectively demon-
strates the merits of the voting method in predicting the SG stability, yielding good stable
classification results.
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Figure 5. Confusion matrix for the 7 ML classifiers using voting theory.

Figure 6. Report classification for the 7 ML classifiers using voting theory.

In Figure 7, we present the confusion matrix for the three best ML classifiers. Here, one
can observe that the use of the three best ML classifiers offers a better prediction compared
to the case where we use seven classifiers.
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Figure 7. Confusion matrix for the three best ML classifiers using voting theory.

In Figure 8, we show the binary classification of predicting the SG stability using the
three best ML classifiers. As seen from these results, the prediction performance in this case
outperforms the one using seven ML classifiers.
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Figure 8. Report classification for the three best ML classifiers using voting theory.

4.4.2. DL Results

This section presents the results of the voting fusion approach based on DL algorithms.
Table 6 displays the accuracy results. Here, the fusion of the GRU and LSTM classifiers

achieved 99% using soft voting.

Table 6. Performance comparison of the models based on all and only the two best DL classifiers
with voting theory.

Voting Mode Voting Accuracy Voting Weakness

All classifiers
Hard 99.2% 0.8%

Soft 99% 1%

GRU, LSTM
Hard 99.76% 0.24%

Soft 99.6% 0.4%

The confusion matrices for all and the two best DL classifiers are depicted in
Figures 9 and 10, respectively. In Figure 9, one can see that the TP, TN, FN, and FP
for all DL classifiers using voting theory are 9226, 5094, 1660, and 2116, respectively. Also,
the FP indicates that the model incorrectly predicts the positive class and the FN indicates
that the model fails to identify and predict the positive class. Compared with Figure 5, the
results obtained with the ML case are better.
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Figure 9. Confusion matrix for all DL classifiers using voting theory.

In Figure 10, the TP, TN, FN, and FP for the two best DL classifiers using voting theory
are 10,962, 4554, 1222, and 1262, respectively. In comparison with Figure 9, the classification
results of the two best DL classifiers are better than all DL classifiers in terms of TP and FP.
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Figure 10. Confusion matrix for the two best DL classifiers using voting theory.

4.5. Comments on Results

Based on the above results we concluded some points:

— The ML results based on the voting fusion approach gave the best performances
(99.8%) compared with those obtained with DL algorithms (99.6%).

— The fusion ML results surpassed those obtained with the fusion DL classifiers as well
as with the independent classifiers.

— The merits of the voting method are well proved in this work since the accuracy
obtained with the voting method is better than those obtained with the DS theory.

— All the results found are proven by the confusion matrices shown in Figures 5–10.
— In this study, leveraging fusion techniques proves advantageous as it addresses the

inherent uncertainty within the data. By integrating multiple sources of information,
we effectively maximize the utility of available data, consequently enhancing both the
quality and reliability of the foundational dataset.

5. Conclusions

This study proposed a prediction approach based on AI techniques to enhance the sta-
bility of the SG network. The SG dataset was trained using various ML and DL algorithms.
Since the learning phase of these algorithms relied on imprecise, uncertain, and unreliable
data, we employed two fusion methods known as the belief functions and the voting
methods, in order to overcome these limitations. The classification accuracy, sensitivity,
precision, and F1 score, the confusion matrix, and the AUC-ROC curve are used to evaluate
the performance of ML and DL algorithms, without and with the fusion methods. The test
results are performed and demonstrated the accuracy and feasibility of the voting fusion
method while determining SG stability. Thus, the results obtained with the voting method
were superior to those obtained with the belief functions method, achieving an accuracy
of 99.8%.

Future work will consist of extending this research by using an SG dataset including
additional energy sources to better predict the SG stability. Another important research axis
is related to the improvement of the obtained accuracy by exploring advanced techniques
based on DL, such as reinforcement learning and transfer learning.
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