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Abstract: Antimicrobial peptides (AMPs) are vital components of innate immunotherapy. Existing
approaches mainly rely on either deep learning for the automatic extraction of sequence features
or traditional manual amino acid features combined with machine learning. The peptide sequence
contains symmetrical sequence motifs or repetitive amino acid patterns, which may be related
to the function and structure of the peptide. Recently, the advent of large language models has
significantly boosted the representational power of sequence pattern features. In light of this, we
present a novel AMP predictor called UniproLcad, which integrates three prominent protein language
models—ESM-2, ProtBert, and UniRep—to obtain a more comprehensive representation of protein
features. UniproLcad utilizes deep learning networks, encompassing the bidirectional long and
short memory network (Bi-LSTM) and one-dimensional convolutional neural networks (1D-CNN),
while also integrating an attention mechanism to enhance its capabilities. These deep learning
frameworks, coupled with pre-trained language models, efficiently extract multi-view features from
antimicrobial peptide sequences and assign attention weights to them. Through ten-fold cross-
validation and independent testing, UniproLcad demonstrates competitive performance in the field
of antimicrobial peptide identification. This integration of diverse language models and deep learning
architectures enhances the accuracy and reliability of predicting antimicrobial peptides, contributing
to the advancement of computational methods in this field.

Keywords: antimicrobial peptides; deep learning; protein languages models

1. Introduction

The misuse of antibiotics has led to the development of drug resistance in bacteria,
rendering infections challenging to treat and potentially life-threatening [1]. Antimicrobial
peptides (AMPs) present a potential alternative to antibiotics [2]. They constitute a class
of small protein molecules or peptides with antimicrobial activity, widely found in the
flora and fauna of the natural world. AMPs possess the capability to combat various
microorganisms, including bacteria and fungi. These peptides exert their antimicrobial
effects through diverse mechanisms such as disrupting cell membranes, interfering with
protein synthesis, and inducing self-destruction in microorganisms. The unique mechanism
of action displayed by AMPs sets them apart from antibiotics, making it challenging for
bacteria to develop resistance against them [3].

However, the wet lab experiments required for identifying and characterizing AMPs
are complex and time-consuming, necessitating the development of efficient predictive
models through modern computational science. Currently, several computation-based
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AMP predictors have already been developed, ClassAMP utilizes a combination of features,
including charge, hydrophobicity, BLOSUM-50 matrix scores, conformational similarity,
normalized van der Waals volume, polarity, and polarizability [4]. Following feature se-
lection, these characteristics are employed as input for a multiclass classification model
composed of random forests and support vector machines. This integrated approach en-
ables the accurate prediction and classification of AMPs. IAMPpred is specifically designed
for variable-length AMP sequences. It employs a 1D-CNN to process the AMP sequences,
extracting feature vectors from the hidden layers to serve as representations of the peptides’
features. Subsequently, these feature vectors are input into a support vector machine (SVM)
to accomplish the classification task. This integrated methodology effectively addresses
the challenge posed by variable-length sequences and enables accurate classification of
AMPs [5]. IAMPE [6] categorizes amino acids into different groups using their 13CNM
resonance spectra and analyzes the composition and distribution of members within these
groups to construct feature vectors for antimicrobial peptide sequences. Then, these vectors
were input into SVM and random forests for AMP classification prediction. AMPfun [7]
employs a comprehensive feature set, including n-gram features, amino acid composition
(AAC) features, pseudo amino acid composition (PseAAC) features, and physicochemical
features. Following feature selection, the model utilizes SVM and Random Forest (RF) algo-
rithms for the classification and prediction of AMP functionalities. iAMPCN [8] employed
diverse encoding methods for input sequences, utilizing distinct CNN to extract features;
subsequently, these extracted vectors are input into a multilayer perceptron for classifi-
cation, culminating in the successful prediction of AMP functionalities. This approach
showcases a nuanced strategy, leveraging different encoding techniques and specialized
CNN architectures to enhance the accuracy of feature extraction and subsequent functional
predictions for AMPs. sAMPpred-GAT [9] used graph attention mechanisms and incor-
porated structural features into deep learning networks, further improving the predictive
accuracy of AMPs. iAMP-Attenpred [10] uses the BERT feature extraction method and
CNN-BiLSTM-Attention combination model to achieve binary classification prediction
of antimicrobial peptides. Despite the success of the aforementioned classifiers on their
respective datasets, according to the research conducted by XU, these classifiers did not
perform well on a comprehensive dataset [11]. We analyze that the classifiers were unable
to fully capture the diversity of data distributions. Hence, there is a need to develop a
novel AMP classifier that enhances overall accuracy and possesses improved generalization
capabilities by ensuring a more comprehensive extraction of AMP features.

Protein language models are a specific type of neural network that possess the ability
to predict the subsequent character or vocabulary based on preceding text and have found
applications in the field of biochemistry as a transfer learning tool [12]. By inputting
protein sequences and learning the inherent biochemical properties, structural information,
and other intrinsic patterns, protein language models generate feature vectors that can
be applied to various downstream protein tasks. Existing research has demonstrated
favorable results in multiple downstream prediction tasks employing protein language
models [13]. However, different protein language models are developed using different
training datasets, leading to differences in the emphasis placed on protein representation
by each model. Consequently, a single protein language model may suffer from incomplete
protein representation.

In order to apply protein language models to the task of antimicrobial peptide pre-
diction and overcome the issue of incomplete protein representation inherent in a single
protein language model, we merged three different protein language models: ESM-2, Prot-
Bert, and UniRep. They are based on Transformer, BERT, and RNN, respectively. Therefore,
the emphasis on representing proteins also varies, leading to differences in the emphasis on
protein feature vectors. We extracted and fused protein features from these three different
protein language models. The merged vectors elevate the comprehensiveness of protein
representation to a new level.
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Peptide sequences can exhibit symmetry through repetitive or mirrored patterns
of amino acids, which can be crucial for the peptide’s stability, folding, and interaction
with other molecules. Further, 1D-CNN can learn to identify and extract symmetrical
features from peptide sequences by adjusting the weights of its convolutional filters. This
bidirectional processing ability makes the Bi-LSTM particularly well suited to capturing
symmetrical features within sequences, as symmetry often involves the interrelationship
between the two ends of the sequence. Therefore, the merged feature vectors are then
input into a hybrid deep learning network composed of multi-layered bidirectional LSTM
networks, 1D-CNN, and an attention mechanism. The performance score of this model
is validated through relevant verification methods, ultimately achieving superior results
compared to state-of-the-art research.

2. Materials and Methods
2.1. Dataset and Data Preprocessing

To date, plenty of AMP databases exist. The Antimicrobial Peptide Database (APD) [14]
is an early-established repository that aggregates extensively sourced AMP sequences and
related information. It encompasses AMP data from various biological domains, including
bacteria, fungi, and animals, along with classification, structure, and activity informa-
tion for these peptides. Linking Antimicrobial Peptide [15] (LAMP) provides sequences
of AMPs from various organisms, both internal and external, accompanied by relevant
literature citations and additional annotation data. The Collection of Antimicrobial Pep-
tides [16] (CAMP) consolidates AMP information from different species, including various
structural classification details. The Database of Antimicrobial Activity and Structure of
Peptides [17] (DBAASP) serves as a database for storing and providing information on
AMPs, encompassing sequences, structures, antimicrobial activity, and relevant literature
citations. The Data Repository of Antimicrobial Peptides [18] (DRAMP) is a comprehensive
AMP database containing structural data and annotation entries. The Structurally Anno-
tated Therapeutic Peptides Database [19] (SATPdb) offers a wealth of AMP structural data,
primarily predicted through computational tools. These database establishments facilitate
researchers, aiding in the profound exploration and scientific advancement of the field
of AMPs.

To mitigate the impact of varying data distributions across different databases, we
utilized a comprehensive benchmark evaluation dataset for training and validation. This
benchmark dataset comprises AMP and non-AMP peptide data, the positive data are from
six different databases: APD, LAMP, CAMP, DBAASP, DRAMP, and SATPdb, the negative
data was randomly extracted from UniProt. As new databases may reference data from
earlier databases, leading to potential data overlap between different databases, the CD-HIT
tool [20] was employed to eliminate redundant AMP and non-AMP peptides, and sequences
with a similarity exceeding 90% between peptide sequences from different databases were
removed. Based on the research by Yue Zhang [21] and Ke Yan [9], excessively long peptide
chains may result in more complex structures, making protein synthesis challenging;
conversely, overly short AMPs may lack sufficient functional sites or structural domains
and are prone to degradation in the environment. Therefore, sequences with lengths
ranging from 10 to 100 amino acids were selected, and excluded sequences that contained
non-standard amino acids (B, J, O, U). This process resulted in a benchmark evaluation
dataset comprising 4550 AMPs and 4550 non-AMPs. The lengths of AMPs typically lean
towards the shorter side, predominantly falling within the range of 20–40 amino acids, the
antimicrobial activity of AMPs tends to weaken with increasing length, and, as the number
of amino acids increases, the quantity of AMPs gradually decreases. In contrast, non-AMPs
generally exhibit greater length [7] from the sequence distribution plot of our constructed
dataset, which is shown in Figure 1. This observation underscores the conformity of our
dataset to the aforementioned pattern, implying that the dataset effectively captures the
diverse length distribution of AMP. It is important to note that the non-AMP sequences in
this dataset are longer on average than the AMP sequences, which may introduce some
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bias in the experiments. However, since most existing works have evaluated their models
based on this dataset [11], we have also utilized it for our study.
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To assess the model’s generalization ability, an independent test set named XUAMP,
created by Xu et al. [11], was utilized. This dataset includes 1536 AMPs and 1536 non-AMPs.
The CD-HIT tool was applied to the independent test set and the benchmark evaluation
dataset to remove sequences with a similarity exceeding 90%, ensuring the independence
of the data and providing a more objective evaluation of the model’s generalization ability.

To better compare our model with the latest model iAMP-Attenpred, we also utilized
the datasets from Xing et al.’s [10] research: Xingdataset1 and Xingdataset2. The AMPs in
Xingdataset1 were collected from the AMPer [22], APD3 [14], and ADAM [23] databases,
and only sequences containing standard amino acids were chosen, with sequences having
a similarity higher than 90% removed, and non-AMPs peptides were collected from the
UniProt database, resulting in a total of 3594 AMPs and 3925 non-AMPs. For Xingdataset2,
AMPs were collected from APD [14], and only sequences containing standard amino acids
were chosen, and, with sequences having a similarity higher than 40% removed, non-
AMPs were collected from the UniProt database, resulting in a total of 879 AMPs and
2405 non-AMPs.

2.2. The Framework of UniproLcad

In this study, we have created a predictor for AMPs using a deep learning approach.
Our predictor incorporates multi-perspective features extracted from various protein lan-
guage models, enhancing its predictive capabilities. As shown in Figure 2, the predictor
consists of the following key components.

(1) In the Bi-LSTM layer, the model utilizes two stacked Bi-LSTM layers to process
input features. This approach enables the learning of hidden representations and captures
dependencies among contextual information. Theoretically speaking, increasing the num-
ber of Bi-LSTM layers can improve the fitting effect of the model; however, experiments
have shown that using two Bi-LSTM layers can achieve higher model effects than more
layers. The first Bi-LSTM hidden layer has a size of 128, and the size of the second Bi-LSTM
hidden layer is 2.

(2) In the 1D-CNN Layer, we utilize a 1D-CNN to extract protein information from
the hidden layers of a Bi-LSTM network, obtaining higher-dimensional protein feature
vectors to better adapt to our model. Experimental results indicate that the model performs
optimally using a single convolution layer with convolutional units having a kernel size of
2000, input channels of 4, and output channels of 2.
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(3) Attention mechanism: Following the 1D-CNN layer, an attention mechanism is
employed, which can effectively assign attention weights to high-dimensional sequence
features from the output of the 1D-CNN layer. Specifically, it refers to the attention of the
output y at a certain moment on various parts of the input x, which is the redistribution of
weights. In other words, it involves the reassignment of weights for each part of x at each
moment with respect to its contribution to y. The calculation formulas for the attention
mechanism are as follows.

et = tanh (Wht + b) (1)

αt =
exp

(
eT

t νe
)

∑k exp
(
eT

k νe
) (2)

V = ∑
t

αtht (3)

Firstly, obtain the hidden representation of the hidden state ht through a fully con-
nected layer et. Here, W and b represent the parameter matrix and bias of a single-layer
perceptron. Then, calculate the importance values of the elements as the similarity between
the element-wise context vector Et and Ve. The variable Ve represents a high-level represen-
tation of a fixed query. During the training process, the values of Ve are initialized randomly
and then optimized collectively to learn the most effective representation. Normalize the
importance weights using a SoftMax function. Finally, the output V is the product of α
and h.

(4) Output layer: the role of the output layer is to reshape and process the feature
vector produced by the neural network, ultimately yielding classification results. This
involves operations such as flattening, batch normalization, and the Sigmoid activation
function. The output of the attention mechanism is fed into Multilayer Perceptron (MLP).
The first fully connected layer comprises 1024 nodes, followed by layers with 512, 256, 128,
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and 8 nodes, respectively. A linear layer with high discriminative power is necessary for
this purpose, and the linear layer is defined as follows:

xt = Wt
l x(t−1) + bt (4)

where xt and x(t−1) are the output and input vectors, respectively, x0 is the initially flattened
vector, Wt

l is the weight matrix, and bt is the bias for the linear layer.
Batch normalization is applied after each fully connected layer to maintain reasonable

data distributions. Batch normalization operates on the principle of normalizing data within
each training batch to ensure a stable distribution of input data. The specific procedure
involves calculating the mean and standard deviation for each batch of data and then
normalizing the data to have a mean of 0 and a standard deviation of 1. The computation
is expressed as follows:

xi+1 = α
xi − µB

σB
+ β (5)

where xi+1 represents the data after batch normalization, µB denotes the mean of the current
batch, σB represents the standard deviation of the samples, and α and β are used for scaling
and shifting the data samples, respectively.

The Sigmoid function is applied to the output of the final layer. The Sigmoid function
transforms the output to a range between 0 and 1, treating outputs greater than or equal to
0.5 as AMPs and those less than 0.5 as non-AMPs. The specific formulation is expressed
as follows:

S(x) =
1

1 + e−x (6)

where x is the output of the final linear layer.

2.3. Protein Language Model Feature Extraction

Traditional manual feature extraction methods have limitations as they tend to over-
look the differences between protein sequences. Protein language models have been
successfully applied to various downstream protein prediction tasks. Therefore, this study
utilized the UniRep protein language model, the ProtBert protein language model, and the
ESM-2 protein language for feature extraction from AMP sequences. The extracted feature
vectors were then fused to comprehensively obtain the feature representation of AMPs.

2.3.1. UniRep Protein Language Model

The UniRep protein language model employs LSTM neural networks as its founda-
tional architecture. It continuously optimizes the LSTM neural network by predicting
whether the next amino acid value in the sequence is the same as the true amino acid
value. Ultimately, the model uses the average of the hidden layer units of multiple LSTM
networks as the feature representation of the sequence. UniRep utilizes multiple GPUs and
undergoes three weeks of training on approximately 24 million protein sequences from
the UniRef50 database. The model can map protein sequences of different lengths to a
unified length of 1900-dimensional feature vectors. UniRep effectively categorizes protein
sequences with lower uniformity on the sequence into categories with higher structural
similarity. In this model, UniRep was used to extract features from AMPs, mapping them
to 1900-dimensional feature vectors to better represent the global features of AMPs.

2.3.2. ProtBert Protein Language Model

The ProtBert protein language model employs Transformer/BERT architecture and is
trained extensively using over two billion protein sequences from the BDF protein database
and UniRep protein database. The model successfully maps protein sequences of varying
lengths to a unified length of 1024-dimensional feature vectors. ProtBert has demonstrated
successful applications across various downstream tasks, producing favorable outcomes. It
leverages the multi-head attention mechanism derived from the Transformer architecture,
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enabling it to highlight the local characteristics of sequences while retaining a strong
representation of global features [24,25]. In this model, ProtBert was used to extract features
from AMPs, mapping them to 1024-dimensional feature vectors. This ensures a high level
of global features while highlighting the local features of AMPs.

2.3.3. ESM-2 Protein Language Model

The ESM-2 protein language model is an unsupervised protein language model that
operates without the need for annotated data pertaining to protein structure and function.
Instead, it relies solely on vast amounts of protein sequence data. This characteristic
empowers ESM-2 to harness the extensive information present in protein databases, free
from the constraints of experimental data. Another distinctive feature of ESM-2 is its ability
to achieve zero-shot or few-shot predictions. In other words, it does not require additional
training or fine-tuning for each specific task. Utilizing the feature representation generated
by ESM-2 as input enables its direct application to various protein-related tasks. Based on
the aforementioned characteristics, we believe that using the ESM-2 language model to
encode AMPs can yield strong feature representations, the variable-length AMP sequences
were uniformly encoded into 1024-dimensional eigenvectors.

In this study, we adopted a comprehensive approach by integrating three distinct
protein language models—UniRep, ProtBert, and ESM-2—to comprehensively extract fea-
tures from AMP sequences. The rationale behind combining these models lies in their
unique strengths and complementary capabilities. The integration aims to fully lever-
age their respective advantages. UniRep focuses on capturing sequence dependencies,
ProtBert simultaneously emphasizes local and global features, and ESM-2 provides insight-
ful perspectives from an unsupervised standpoint. The amalgamation of these models
seeks to overcome individual model limitations, providing a more robust and nuanced
representation of AMP sequences. This integrated approach is anticipated to yield a more
comprehensive feature set, better capturing the multifaceted characteristics of AMPs and
ultimately enhancing the accuracy and generalization of downstream prediction tasks.

2.4. Deep Learning Network Model
2.4.1. Bi-LSTM Networks

RNN is a recurrent neural network structure that possesses memory capabilities
when processing sequential data, allowing it to capture contextual information within the
sequence [26]. However, traditional RNNs have limitations. In longer text sequences, the
traditional RNN structure faces issues like vanishing or exploding gradients, making it
challenging to effectively capture long-term dependencies.

LSTM is designed to address the issues encountered by traditional RNNs. Introducing
three gates (input gate, forget gate, and output gate) and an internal cell state, LSTM
enables better control over the flow of information [27]. Through carefully designed gate
mechanisms, LSTM can selectively remember or forget information, thereby capturing
long-term dependencies more effectively and mitigating the gradient-related challenges.

Traditional RNNs and LSTM networks transmit information in a unidirectional man-
ner, lacking the ability to gather information about future states. However, protein se-
quences can be seen as a form of biological language, akin to sentences where peptide
segments represent sentences and individual amino acid residues function as words. To
accurately predict outcomes, it is essential to consider the contextual relationships among
these residues [28].

To address the limitations of LSTMs, this study employs bidirectional LSTM (Bi-
LSTM) networks. By processing input from both directions, Bi-LSTM learns long-distance
dependencies in peptide sequences in a bidirectional manner, capturing information
from both the front and back ends. This enhances the neural network’s expressive
power and enables it to better understand the complex relationships within protein
sequences [29,30]. With this architectural design, the output layer incorporates both histori-
cal and prospective information.
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2.4.2. Convolutional Neural Networks

Next, 1D-CNN is a variant of convolutional neural networks specifically designed to
process one-dimensional sequential data [31], such as time series data or text sequences in
natural language processing. Unlike traditional two-dimensional CNNs used in image pro-
cessing, 1D-CNN primarily focuses on feature extraction along a single direction, making it
suitable for data with sequential structures. It has demonstrated excellent performance in
various applications, including processing time-series data, analyzing speech signals, and
handling text sequences in NLP.

In the field of bioinformatics, 1D-CNN finds extensive applications, especially in
tasks involving the processing of protein sequences [32]. This network architecture proves
effective in capturing local features and patterns within sequential data, yielding favorable
results across diverse tasks. In this study, we utilize a 1D-CNN to extract protein informa-
tion from the hidden layers of a Bi-LSTM network, obtaining higher-dimensional protein
feature vectors to better adapt to our model.

2.4.3. Attention Mechanisms

Attention mechanisms are a prevalent technique in deep learning that emulates the
selective focus observed in the human visual system or cognitive processes [33,34]. Atten-
tion mechanisms have found widespread applications in the fields of natural language
processing and computer vision. The fundamental idea behind attention mechanisms is to
assign different attention weights to different parts of information when processing sequen-
tial data, emphasizing more on crucial information, which allows models to concentrate
on the most relevant information for a given task. This capability proves beneficial for
enhancing the handling of long sequences or complex data, ultimately improving model
performance. Furthermore, attention mechanisms are frequently employed in bioinformat-
ics in conjunction with recurrent neural networks, showcasing competitive performance
across a broad spectrum of biological sequence analysis problems [35,36]. In this research,
attention mechanisms are utilized to identify crucial information influencing AMP pre-
diction by feeding the high-dimensional protein feature vectors through a deep learning
network structure, and an attention mechanism is applied to assign attention weights
to these vectors.

For effective training, this study employs a dynamic learning rate algorithm, ReduceL-
ROnPlateau. This algorithm is one of the learning rate schedulers available in PyTorch,
designed to dynamically adjust the learning rate during training based on performance
metrics from the validation set. The primary objective of this scheduler is to reduce the
learning rate when the model’s performance on the validation set ceases to improve, thereby
facilitating more effective convergence. The pseudocode for this scheduler is presented
in Algorithm 1. Specifically, when the accuracy (ACC) on the test set remains unchanged
for two consecutive epochs, the learning rate is adjusted to 70% of its original value. The
utilization of such a scheduler aims to enhance the model’s convergence capabilities and
adaptability to varying complexities in the training process.

Algorithm 1. ReduceLROnPlateau algorithm.

ReduceLROnPlateau: dynamic learning rate algorithm

input: ACC values for each test set
Output: Updated learning rate

1 L← Current learning rate
2 if the ACC value does not change do
3 L← L*0.7
4 else
5 L← L
6 return L
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In order to accomplish the classification task, the proposed model in this study employs
a dynamic learning rate algorithm: in this study, a binary cross-entropy loss function was
employed during the model training process, and the computation of the loss is as follows.

Loss =
1
N

N

∑
n=1

ln (7)

ln = yn · logxn + (1− yn) · log (1− xn) (8)

where xn represents the model’s output, and yn denotes the true label.
The model is evaluated using ten-fold cross-validation, and parameter settings, based

on ESM-2, ProtBert, and UniRep in the train dataset, including a batch size of 64, a learning
rate of 0.001, and an Adam [37] optimizer for model optimization. The training epoch is
set to 20.

2.5. Model Performance Evaluation

By evaluating the performance of the model, one can choose the most suitable combina-
tion of parameters among numerous possibilities for the prediction task, thereby effectively
predicting AMPs. In this study, five metrics are employed to assess the proposed method,
and their calculation formulas are presented in Equation (9):

ACC = TP+TN
TP+TN+FN+FP

MCC = TP×TN−FN×FP√
(TP+FN)(TP+FP)(TN+FP)(TN+FN)

Sn = TP
TP+TN

Sp = TN
FP+TN

(9)

where TP, FP, and FN represent true positives, false positives, true negatives, and false
negatives, respectively. ACC (accuracy) denotes the model’s accuracy; MCC (Matthew’s
correlation coefficient) represents the Pearson correlation coefficient; Sn (sensitivity) indi-
cates the model’s sensitivity; and Sp (specificity) represents the model’s specificity. These
four metrics are commonly used for statistical predictions of model performance.

When ACC = 1, it indicates that all AMP predictions are correct, and when ACC = 0,
it implies that all AMP predictions are incorrect. Sensitivity (Sn) and specificity (Sp),
respectively, represent the model’s ability to predict AMPs and non-AMPs. The closer
MCC is to 1, the model is considered to be more perfect; the closer it is to 0, the closer the
model’s performance is to a random classifier; and the closer it is to -1, the more opposite
the model’s predictions are to reality.

AUC (Area Under the Curve) is a widely used metric for evaluating the performance
of machine learning models in binary classification problems. It assesses the quality of a
model’s predictions by measuring the area under the Receiver Operating Characteristic
(ROC) curve. The ROC curve represents the trade-off between the true positive rate
(sensitivity or recall) and the false positive rate, with the true positive rate plotted on the
y-axis and the false positive rate on the x-axis. The AUC is calculated as the area under this
curve. One key advantage of AUC is its robustness in handling class imbalance, meaning
that it remains reliable even when there is a substantial difference in the number of positive
and negative instances in the dataset. This makes AUC a valuable performance evaluation
metric in practical applications. It allows for the comparison of different models and
facilitates the selection of the model with superior performance.

3. Results and Discussion

To validate the effectiveness of the structures we employed, we conducted ablation
experiments aimed at demonstrating the correctness of the selected architecture. Further-
more, in order to better align the model with our dataset, we performed parameter tuning
optimization. These endeavors were undertaken to ensure the model’s adherence to our
data and to affirm the suitability of the chosen structures and parameter configurations
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for our task. Through these systematic steps, we enhance our confidence in the selected
architecture and parameter settings, thereby improving the model’s adaptability to our
specific requirements.

3.1. Selecting Model Architecture of UniproLcad

Based on the training set, using ten-fold cross-validation, we evaluated the perfor-
mance of protein language models including ESM-2, ProtBert, and UniRep features indi-
vidually, as well as their combinations: ESM-2 features, ProtBert features, UniRep features,
ESM-2 features combined with ProtBert features, ESM-2 features combined with UniRep
features, ProtBert features combined with UniRep features, and ESM-2 features combined
with ProtBert and UniRep features, using the Bi-LSTM architecture and 1D-CNN architec-
ture. This comprehensive assessment allowed us to analyze the predictive capabilities of
these protein language models. The results are depicted in Table 1.

Table 1. Performance of different protein language models in feature extraction on the training set
using ten-fold cross-validation experiments.

Model ACC MCC Sn Sp

ESM-2 0.951 0.942 0.938 0.973
ProtBert 0.947 0.934 0.927 0.955
UniRep 0.932 0.93 0.931 0.927

ESM-2 + ProtBert 0.953 0.949 0.948 0.962
ESM-2 + UniRep 0.947 0.933 0.929 0.956

ProtBert + UniRep 0.945 0.939 0.933 0.936
ESM-2 + ProtBert + UniRep 0.972 0.956 0.963 0.971

For individual protein language models, the feature representation of ESM-2 exhibited
the highest performance, surpassing ProtBert and UniRep by 1.4% and 1.9%, respectively.
In the case of two protein language models, the combination of ESM-2 and ProtBert features
outperformed ESM-2 + UniRep and ProtBert + UniRep by 0.6% and 0.4%, respectively.
Ultimately, the feature representation of ESM-2 + ProtBert + UniRep achieved the highest
overall performance, surpassing ESM-2 and ESM-2 + ProtBert by 2.1% and 1.9%. This
highlights the superiority of combining multiple language models in capturing diverse
aspects of protein sequences.

3.2. Ablation Experiment

In order to ensure the effectiveness of the selected network model, we conducted
ablation experiments on three network modules based on the training set, namely removing
Bi-LSTM, 1D-CNN, and the attention mechanism. The experimental results are depicted in
Table 2.

Table 2. Performance of different deep learning architectures on the training set using ten-fold
cross-validation experiments.

Model ACC MCC Sn Sp

1D-CNN + Attention 0.944 0.928 0.937 0.952
Bi-LSTM+ Attention 0.953 0.937 0.941 0.972
Bi- LSTM + 1D-CNN 0.960 0.942 0.947 0.977

Bi- LSTM + 1D-CNN + Attention 0.972 0.956 0.963 0.971

The removal of Bi-LSTM resulted in a decrease in model accuracy by 2.8%, the re-
moval of 1D-CNN led to a decrease of 1.9% in accuracy, and the removal of the attention
mechanism caused a reduction of 1.2% in model accuracy.
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3.3. Model Parameter Selection

To explore the optimal parameter combination for the predictor, we selected parame-
ters on the training set based on the average results of the model’s ten-fold cross-validation.
Initially, considering the impact of the convolutional kernel size on model performance,
we conducted experiments with different convolutional kernel sizes. Table 3 shows a
performance comparison of various 1D-CNN parameters on the training set. When the
convolutional kernel is set to 2000, the ACC value is maximized, surpassing 1900 and 2100
by 2.2% and 1.9%, respectively. Additionally, the MCC value increased by 0.32% and 0.27%,
compared to 1900 and 2100.

Table 3. Performance of model in different convolutional kernel sizes on the training set using
ten-fold cross-validation experiments.

1D-CNN Kernel Sizes ACC MCC Sn Sp

1900 0.968 0.95 0.951 0.977
2000 0.972 0.956 0.963 0.971
2100 0.952 0.937 0.941 0.960

For the LSTM model, we compared the model performance under different LSTM
structures on the training set using ten-fold cross-validation, including 1-layer unidirec-
tional and bidirectional LSTM, 2-layer unidirectional and bidirectional LSTM, and 3-layer
unidirectional and bidirectional LSTM. The results are presented in Table 4.

Table 4. Performance of model in different LSTM Networks on the training set using ten-fold
cross-validation experiments.

Model ACC MCC Sn Sp

1-layer unidirectional 0.937 0.923 0.93 0.941
2-layer unidirectional 0.949 0.935 0.953 0.947
3-layer unidirectional 0.969 0.948 0.971 0.958
1-layer bidirectional 0.958 0.941 0.943 0.967
2-layer bidirectional 0.972 0.956 0.963 0.971
3-layer bidirectional 0.964 0.949 0.957 0.964

As indicated in Table 4, a one-layer bidirectional LSTM model structure surpasses its
unidirectional counterpart. Our analysis reveals that the unidirectional LSTM state trans-
mission, occurring only from front to back, imposes a directional constraint on information
propagation. In contrast, bidirectional LSTM can assimilate information in both forward
and backward directions, thereby amplifying the neural network’s expressive capacity.
Concerning the layers of the Bi-LSTM model, the two-layer configuration attains superior
performance. In comparison to the three-layer model, it achieves elevated values in ACC,
MCC, Sn, and Sp, with improvements of 0.8%, 0.7%, 0.6%, and 0.7%, respectively.

In order to ensure the advancement of our model, we compare the proposed method
with nine state-of-the-art approaches on the independent XUAMP test set, and the AUC
values for each model were computed on the test set. The evaluated methods include
amPEPpy [38], AMPfun [7], AMPEP [39], ADAM-HMM [40], AMPIR [41], AMPScan-
nerV2 [42], AMPGram [43], Deep-AMPEP30 [44], CAMP-ANN [4], and sAMPpred-
GAT [9]. The results are detailed in Table 5, and the AUC values are visually represented in
Figure 3.

From Table 5, it can be noted that the model proposed in this study achieves the best
performance in terms of ACC, MCC, and Sn. On the other hand, Deep-AMPEP30 attains
the highest Sp but with a very small Sn, indicating that the model is heavily biased towards
predicting positive samples. This suggests that the model has a weak generalization ability.
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Table 5. Model performance on the XU independent test set.

Model ACC MCC Sn Sp

amPEPpy 0.679 0.431 0.400 0.958
AMPfun 0.674 0.414 0.406 0.943
AMPEP 0.661 0.429 0.330 0.992

ADAM-HMM 0.684 0.390 0.521 0.847
Ampir 0.563 0.156 0.266 0.859

AMPScannerV2 0.568 0.137 0.523 0.613
AmpGram 0.564 0.131 0.445 0.682

Deep-AMPEP30 0.533 0.183 0.065 1.0
CAMP-ANN 0.584 0.182 0.385 0.782

sAMPpred-GAT 0.715 0.464 0.530 0.9
UniproLcad 0.749 0.467 0.676 0.822
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We also presented the AUC scores of all the mentioned models based on the XU
independent test set in Figure 3. From Figure 3, it can be seen that the model proposed in
this study achieves the highest AUC, indicating that the model possesses the best predictive
capability and has a relatively low false positive rate. And confusion matrix of the model is
shown in Figure 4.

To further evaluate the performance of our proposed model, we compared it with
the latest method iAMP-Attenpred [10] using ten-fold cross-validation on the training sets
Xingdataset1 and Xingdataset2. The experimental results are presented in Tables 6 and 7,
respectively.

Table 6. Model performance on the Xingdataset1 training set.

Model ACC MCC Sn Sp

UniproLcad 0.980 0.9701 0.9769 0.9892
iAMP-Attenpred 0.983 0.9677 0.9791 0.9881
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Table 7. Model performance on the Xingdataset2 training set.

Model ACC MCC Sn Sp

UniproLcad 0.9824 0.9507 0.9721 0.9867
iAMP-Attenpred 0.9776 0.9433 0.9573 0.9850

Tables 6 and 7 reveal that our proposed method UniproLcad and iAMP-Attenpred
have achieved comparable performance results. Specifically, on the Xingdataset1 dataset,
UniproLcad slightly outperforms iAMP-Attenpred in terms of ACC and Sp, while its perfor-
mance is marginally lower than UniproLcad in MCC and Sn. On the Xingdataset2 dataset,
UniproLcad is superior to iAMP-Attenpred across all metrics. The similar performance
results achieved by the two methods may be attributed to their use of similar network
architectures and protein language models.
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4. Conclusions

In this study, we propose a predictor named UniproLcad, employing a deep learning
framework and multiple protein language models for predicting AMPs. The main contri-
butions of this paper are as follows: (1) Comprehensive representation of protein features:
extracting and integrating multi-perspective features from the ESM-2, ProtBert, and UniRep
models. (2) Building a prediction model using a stacked framework of multiple deep learn-
ing architectures, utilizing the stacking of 1D-CNN and Bi-LSTM networks to effectively ex-
tract high-dimensional features from integrated multi-perspective features that are challeng-
ing to capture. (3) Utilizing an attention mechanism to capture crucial information within
the fused features, followed by multiple layers of MLP to obtain the prediction results for
AMPs. The source code and data are available at https://github.com/harkic/UniproLcad
(accessed on 6 March 2024).In future work, we aim to develop an openly accessible server
to host the proposed model, facilitating researchers in conducting AMP prediction tasks
more conveniently.
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