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Abstract: We study a relaxed inertial forward–backward–half-forward splitting approach with
variable step size to solve a monotone inclusion problem involving a maximal monotone operator, a
cocoercive operator, and a monotone Lipschitz operator. The convergence of the sequence of iterations
generated by the discretisations of a continuous-time dynamical system is established under suitable
conditions. Given the challenges associated with computing the resolvent of the composite operator,
the proposed method is employed to tackle the composite monotone inclusion problem. Additionally,
a convergence analysis is conducted under certain conditions. To demonstrate the effectiveness of the
algorithm, numerical experiments are performed on the image deblurring problem.

Keywords: forward–backward–half-forward splitting method; relaxed parameters; inertial skill;
primal–dual idea

1. Introduction

In a (real) Hilbert space H, we focus on resolving the monotone inclusion problem,
which entails the sum of three operators, as follows:

find x ∈ H such that 0 ∈ Ax + Bx + Cx, (1)

where A : H → 2H is maximal monotone, B : H → H is monotone L-Lipschitz continuous
with L > 0, and C : H → H is β-cocoercive, for some β > 0. Moreover, let A + B be
maximal monotone and assume that it has a solution, namely,

zer(A + B + C) ̸= ∅.

Problem (1) captures numerous significant challenges in convex optimization prob-
lems, signal and image processing, saddle point problems, variational inequalities, partial
differential equations, and similar problems. For example, see [1–4].

In recent years, many popular algorithms dealing with monotone inclusion prob-
lems involving the sum of three or more operators have been covered in the literature.
Although traditional splitting algorithms [5–8] play an indispensable part in addressing
monotone inclusions that include the sum of two operators, they cannot be directly applied
to solve problems beyond the sum of two operators. A generalized forward–backward
splitting (GFBS) method [3] is designed to address the monotone inclusion problem:

find x ∈ H such that 0 ∈
n

∑
i=1

Aix + Cx, (2)

where n ≥ 1, {Ai}n
i : H → 2H indicate maximal monotone operators, and C : H → H

is the same as (1). A subsequent work by Raguet and Landrieu [9] addressed (2) using a
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preconditioned generalized forward–backward splitting algorithm. An equivalent form
of Equation (2) can be expressed as the following monotone inclusion formulated in the
product space:

find x ∈ H such that 0 ∈ Ax + NV x + Cx, (3)

where A : H → 2H and C : H → H are the same as (1), and NV denotes the normal
cone of a closed vector subspace V. Two novel approaches for solving (3) are presented
in [10], where the two methods are equivalent under appropriate conditions. Interestingly,
NV can be extended to a maximal monotone operator. However, the resolvent in this
case is no longer linear, necessitating more complicated work to establish convergence.
In [11], Davis and Yin finished this work by a three-operator splitting method. In a sense,
it extends the GFBS method. It is a remarkable fact that the links between the above
methods were precisely studied by Raguet [12], who also derived a new approach to
solve (2) along with an extra maximal monotone operator M. Note that the case of (3)
occurs when NV is generalized as a maximal monotone operator and C is relaxed to
monotone Lipschitz continuous. A new approach [13] has been established to deal with
this case within the computer-assisted skill. In contrast to [13], two new schemes [14] were
discovered for tackling the same problem through discretising a continuous-time dynamical
system. If NV is replaced by a monotone Lipschitz operator B, (3) can be translated into (1).
Concerning (1), a forward–backward–half-forward (FBHF) splitting method was derived
by Briceño-Arias and Davis [15], who exploited the cocoercivity of C by only utilizing
it once in every iteration with great ingenuity. See also [16–18] for recent advances in
four-operator methods.

Designed as an acceleration method, the inertial scheme is a powerful approach
that leverages the characteristic of each new iteration being defined by fully using the
previous two iterations. The basic idea was first considered in [19] as a heavy ball method,
which was further developed in [20]. Later, Güler [21] and Alvarez et al. [22] generalized
the accelerated scheme in [20] for addressing the proximal point scheme and maximal
monotone problem, respectively. After that, numerous works involving inertial features
were discussed and studied in [23–29].

Relaxation approaches, a principal part of resolving monotone inclusions, offer greater
flexibility to the iterative schemes (see [4,30]). In particular, it makes sense to unite inertial
and relaxation parameters in a way that enjoys their advantages. Motivated by the inertial
proximal algorithm [31], a relaxed inertial proximal algorithm (RIPA) was reported to find
the zero of a maximal monotone operator by Attouch and Cabot [32], who also exploited
RIPA to address non-smooth convex minimization problems and studied convergence
rates in [33]. Further research was made on the more general structure of approaching
the solution of the sum of two operators with one being the cocoercive operator [34].
Meanwhile, the idea of combining inertial effect and relaxation method has also been used
in the context of the Douglas–Rachford algorithm [35], Tseng’s forward–backward–forward
algorithm [36], and alternating minimization algorithm [37].

This paper aims to develop a relaxed inertial forward–backward–half-forward (RIF-
BHF) scheme that serves as an extension of the FBHF method [15] by combining inertial
effects and relaxation parameters to solve (1). It is noteworthy that the FBHF method [15]
was considered in a set constraint (x ∈ X) of the monotone inclusion (1). For simplicity, we
only study (1). Specifically, the relaxed inertial algorithm is derived from the perspective
of discretisations of the continuous-time dynamical system [38], and its convergence is
analysed under certain assumptions. We also discuss the relationship between the relaxed
parameters and inertial effects. Since estimation of the resolvent of L∗BL is generally
challenging, solving the composite monotone inclusion is not straightforward. By drawing
upon the primal–dual idea introduced in [39], the composite monotone inclusion can be
reformulated equivalently as presented in (1), which can be addressed by our scheme.
Similarly, a convex minimization problem is also solved accordingly. At last, numerical
tests are designed to validate the effectiveness of the proposed algorithm.
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The structure of the paper is outlined as follows. Section 2 provides an introduction
to fundamental definitions and lemmas. Section 3 presents the development of a relaxed
inertial forward–backward–half-forward splitting algorithm through discretisations of a
continuous-time dynamical system, accompanied by a comprehensive convergence analysis.
In Section 4, we apply the proposed algorithm to solve the composite monotone inclusion
and the convex minimization problem. Section 5 presents several numerical experiments to
demonstrate the effectiveness of the proposed algorithm. Finally, conclusions are given in
the last section.

2. Preliminaries

In the following discussion, H and G are real Hilbert spaces equipped with an inner
product ⟨·, ·⟩ and corresponding norms ∥ · ∥, and N represents the set of nonnegative
integers. The ⇀ and → signify weak and strong convergence, respectively. H⊕ G denotes
the Hilbert direct sum of H and G. The set of proper lower semicontinuous convex functions
from H to (−∞,+∞] is denoted by Γ0(H). The followings are denoted:

• The set of zeros of A is zer A := {x ∈ H | 0 ∈ Ax}.
• The domain of A is dom A := {x ∈ H | Ax ̸= ∅}.
• The range of A is ran A := {y ∈ H | ∃ x ∈ H : y ∈ Ax}.
• The graph set A is gra A := {(x, y) ∈ H2 | y ∈ Ax}.

The definitions and lemmas that follow are among the most commonly encountered,
as documented in the monograph referenced as [4].

Let an operator A : H → 2H be a set-valued map; then,

• A is characterized as monotone if it satisfies the inequality ⟨x − y, u − v⟩ ≥ 0 for all
(x, u) and (y, v) belonging to the graph of A.

• A is called maximal monotone if no other monotone operator B : H → 2H exists for
which its graph strictly encompasses the graph of A.

• A is called β-strongly monotone with β ∈ (0,+∞) if for all (x, u) ∈ gra A and
(y, v) ∈ gra A, there holds that ⟨x − y, u − v⟩ ≥ β∥x − y∥2.

• A is said to be β-cocoercive with β ∈ (0,+∞) if β∥Ax − Ay∥2 ≤ ⟨Ax − Ay, x − y⟩ for
all x, y ∈ H.

• The resolvent of A is defined by

JλA = (Id + λA)−1,

where Id is identity mapping, and λ > 0. The mapping A : H → H is L-Lipschitz
continuous with L > 0 if for every pair of points x and y in H, the inequality ∥Ax −
Ay∥ ≤ L∥x − y∥ holds. Specifically, A is referred to as nonexpansive when L = 1.

Let f ∈ Γ0(H); the subdifferential of f , denoted by ∂ f , is defined as ∂ f : H →
2H : x 7→ u ∈ H : ∀y ∈ H, ⟨y − x, u⟩+ f (x) ≤ f (y). It is well-known that ∂ f is maximal
monotone. The proximity operator of f ∈ Γ0(H) is then defined as:

prox f (u) = arg min
x

{
1
2
∥x − u∥2 + f (x)

}
.

The well-established relationship prox f = J∂ f holds. According to the Baillon–Haddad
theorem, if f : H → R is a convex and differentiable function with a gradient that is
Lipschitz continuous with constant 1

β for some β ∈ (0,+∞), then ∇ f is said to be β-
cocoercive. The following equation will be employed later:

∥αx + (1 − α)y∥2 = α∥x∥2 + (1 − α)∥y∥2 − α(1 − α)∥x − y∥2,

for all x ∈ H, y ∈ H, and α ∈ R.
The subsequent two lemmas will play a crucial role in the convergence analysis of the

proposed algorithm.
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Lemma 1 ([23], Lemma 2.3). Assume {φk}k≥0, {δk}k≥1, and {αk}k≥1 are the sequences in
[0,+∞) such that for each k ≥ 1,

φk+1 ≤ φk + αk(φk − φk−1) + δk,
∞

∑
k=1

δk < +∞

and there exists a real number α satisfying 0 ≤ αk ≤ α < 1 for all k ≥ 1. Thus, the following
assertions hold:

(i) ∑∞
k=1[φk − φk−1]+ < +∞, where [t]+ = max{t, 0};

(ii) There exists φ∗ ∈ [0,+∞) such that limk→+∞ φk = φ∗.

Lemma 2 ((Opial) [4]). Let C be a nonempty subset of H, and let {xk}k≥1 be a sequence in H
satisfying the following conditions:

(1) For all x∗ ∈ C, limk→∞ ∥xk − x∗∥ exists;
(2) Every weak sequential cluster point of {xk}k≥1 belongs to C.

Then {xk}k≥1 converges weakly to a point in C.

3. The RIFBHF Algorithm

We establish the RIFBHF algorithm from the perspective of discretisations of continuous-
time dynamical systems. First, we pay attention to the second-order dynamical system of
the FBHF method studied in [15]:

x(t) = JγA(I − γ(B + C))z(t),

z̈(t) + δ(t)ż(t) + τ(t)[z(t)− x(t)− γ(Bz(t)− Bx(t))] = 0,

z(0) = z0, ż(0) = v0,

(4)

where δ, τ : [0,+∞) → [0,+∞) indicate Lebesgue measurable functions, 0 < γ < β
βL+1

and β and L are as in (1), and z0, v0 ∈ H. Let

Tz = z − JγA(I − γ(B + C))z − γ[Bz − BJγA(I − γ(B + C))z].

Thereby, (4) is equal to {
z̈(t) + δ(t)ż(t) + τ(t)Tz(t) = 0,

z(0) = z0, ż(0) = v0.
(5)

Note that the cocoercivity of an operator implies its Lipschitz continuity, which implies,
in turn, that B + C is Lipschitz continuous with the Lipschitz constant L + 1

β . One can find
that T is Lipschitz continuous by Proposition 1 in [36]. Therefore, by the Cauchy–Lipschitz
theorem for absolutely continuous trajectories, it can be deduced that the trajectory of (4)
exists and is unique.

Next, the trajectories of (5) are approximated at the time point (khk)k∈N using discrete
trajectories (zk)k∈N. Specifically, we employ the central discretisation z̈(t) ≈ zk+1−2zk+zk−1

h2
k

and the backward discretisation ż(t) ≈ zk−zk−1
hk

. Let wk be an extrapolation of zk and zk−1;
one gets

1
h2

k
(zk+1 − 2zk + zk−1) +

δk
hk

(zk − zk−1) + τkTwk = 0,

which implies
zk+1 = zk + αk(zk − zk−1)− λkTwk,
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where αk = 1 − δkhk and λk = h2
kτk. Define that wk = zk + αk(zk − zk−1) for all k ≥ 1; then,

one gets the following RIFBHF iterative for all k ≥ 1:
wk = zk + αk(zk − zk−1),

xk = Jγk A(wk − γk(B + C)wk),

tk = xk + γk(Bwk − Bxk),

zk+1 = (1 − λk)wk + λktk.

(6)

Remark 1. The subsequent iterative algorithms can be regarded as specific instances of the proposed
algorithm:

(i) FBHF method [15]: assume αk = 0 and λk = 1 when k ≥ 1,{
xk = Jγk A(zk − γk(B + C)zk),

zk+1 = xk − γk(Bxk − Bzk).

(ii) Inertial forward–backward–half-forward scheme [40]: assume λk = 1 when k ≥ 1,
wk = zk + αk(zk − zk−1),

xk = Jγk A(wk − γk(B + C)wk),

zk+1 = xk + γk(Bwk − Bxk).

(iii) Relaxed forward–backward–half-forward method: assume αk = 0 when k ≥ 1,
xk = Jγk A(zk − γk(B + C)zk),

tk = xk − γk(Bxk − Bzk),

zk+1 = (1 − λk)zk + λktk.

Furthermore, the convergence results of the proposed algorithm will be established.
The convergence analysis relies heavily on the following properties.

Proposition 1. Consider the problem (1). Suppose {γk}k≥1 is a sequence of positive numbers,
and {tk}k≥1, {wk}k≥1, and {xk}k≥1 are the sequences generated by (6). Assume that yk =
wk − γk(B + C)wk in (6) for all k ≥ 1. For all z∗ ∈ zer(A + B + C), then

∥tk − z∗∥2 ≤ ∥wk − z∗∥2 − L2(χ2 − γ2
k)∥wk − xk∥2

− 2βγk
χ

(χ − γk)∥Cwk − Cz∗∥2 − χ

2β

∥∥∥∥wk − xk −
2βγk

χ
(Cwk − Cz∗)

∥∥∥∥2
,

where γk ∈ (0, χ), and

χ =
4β

1 +
√

1 + 16β2L2
≤ min{2β, L−1}.

Proof. By definition, we get xk = Jγk A(yk) and 0 ∈ (A + B + C)z∗ such that 1
γk
(yk − xk) ∈

Axk and −(B + C)z∗ ∈ Az∗. Therefore, in view of the monotonicity of A and B, one has

⟨xk − z∗,
1

γk
(yk − xk) + (B + C)z∗⟩ ≥ 0, (7)

and
⟨xk − z∗, Bxk − Bz∗⟩ ≥ 0. (8)
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Using (7) and (8), we yield

⟨xk − z∗, xk − yk − γkBxk⟩
= ⟨xk − z∗, γkCz∗⟩+ ⟨xk − z∗, xk − yk − γk(B + C)z∗⟩

+ ⟨xk − z∗, γk(Bz∗ − Bxk)⟩
≤ ⟨xk − z∗, γkCz∗⟩.

Therefore, we obtain

2γk⟨xk − z∗, Bwk − Bxk⟩
= 2⟨xk − z∗, γkBwk + yk − xk⟩+ 2⟨xk − z∗, xk − yk − γkBxk⟩
≤ 2⟨xk − z∗, γk(B + C)wk + yk − xk⟩+ 2⟨xk − z∗, γkCz∗ − γkCwk⟩
= 2⟨xk − z∗, wk − xk⟩+ 2⟨xk − z∗, γkCz∗ − γkCwk⟩
= ∥wk − z∗∥2 − ∥xk − z∗∥2 − ∥wk − xk∥2 + 2⟨xk − z∗, γkCz∗ − γkCwk⟩. (9)

Since C is cocoercive, one gets for all ε > 0:

2⟨xk − z∗, γkCz∗ − γkCwk⟩
= 2⟨wk − z∗, γkCz∗ − γkCwk⟩+ 2⟨xk − wk, γkCz∗ − γkCwk⟩
≤ −2γkβ∥Cwk − Cz∗∥2 + 2⟨xk − wk, γkCz∗ − γkCwk⟩

= −2γkβ∥Cwk − Cz∗∥2 + ε∥wk − xk∥2 +
γ2

k
ε
∥Cwk − Cz∗∥2

− ε
∥∥∥wk − xk −

γk
ε
(Cwk − Cz∗)

∥∥∥2

= ε∥wk − xk∥2 − γk

(
2β − γk

ε

)
∥Cwk − Cz∗∥2

− ε
∥∥∥wk − xk −

γk
ε
(Cwk − Cz∗)

∥∥∥2
. (10)

Thus, in view of (9), (10), and the Lipschitz continuity of B, then

∥tk − z∗∥2 = ∥xk + γk(Bwk − Bxk)− z∗∥2

= ∥xk − z∗∥2 + 2γk⟨xk − z∗, Bwk − Bxk⟩+ γ2
k∥Bwk − Bxk∥2

≤ ∥xk − z∗∥2 + ∥wk − z∗∥2 − ∥xk − z∗∥2 − ∥wk − xk∥2

+ γ2
k∥Bwk − Bxk∥2 + 2⟨xk − z∗, γkCz∗ − γkCwk⟩

≤ ∥wk − z∗∥2 − ∥wk − xk∥2 + γ2
k∥Bwk − Bxk∥2 + ε∥wk − xk∥2

− γk
(
2β − γk

ε

)
∥Cwk − Cz∗∥2 − ε∥wk − xk −

γk
ε
(Cwk − Cz∗)∥2

≤ ∥wk − z∗∥2 − ∥wk − xk∥2 + γ2
k L2∥wk − xk∥2 + ε∥wk − xk∥2

− γk

(
2β − γk

ε

)
∥Cwk − Cz∗∥2 − ε

∥∥∥wk − xk −
γk
ε
(Cwk − Cz∗)

∥∥∥2

= ∥wk − z∗∥2 −
(

1 − ε − γ2
k L2
)
∥wk − xk∥2

− γk
ε
(2βε − γk)∥Cwk − Cz∗∥2 − ε

∥∥∥wk − xk −
γk
ε
(Cwk − Cz∗)

∥∥∥2
. (11)

Similar to [15], let χ =
√

1−ε
L = 2βε for 0 < ε < 1, allowing us to determine the

widest interval for γk such that the second and third terms on the right-hand side of (11)
are negative.
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Proposition 2. Consider the problem (1) and assume that z∗ ∈ zer(A + B + C). Suppose that
{λk}k≥1 > 0, 0 < γk < χ, and χ is defined as in Proposition 1. Assume {αk}k≥1 is nondecreasing
and satisfies 0 ≤ αk ≤ α < 1. Let {zk}k≥1 denote the sequence generated by (6). Then

(i) ∥zk+1 − z∗∥2 ≤ ∥wk − z∗∥2 − φk∥zk+1 − wk∥2,

where φk =
(

L2(χ2−γ2
k )

λk(1+γk L)2 +
1−λk

λk

)
.

(ii) Define that

Πk := ∥zk − z∗∥2 − αk∥zk−1 − z∗∥2 +
(
αk(1 + αk)− φk(α

2
k − αk)

)
∥zk − zk−1∥2.

Then
Πk+1 − Πk ≤ −ζk∥zk+1 − zk∥2, (12)

where ζk = φk(1 − αk+1)− αk+1(1 + αk+1) + φk+1(α
2
k+1 − αk+1).

Proof.

(i) Proposition 1 leads to

∥zk+1 − z∗∥2

= ∥(1 − λk)wk + λktk − z∗∥2

= ∥(1 − λk)(wk − z∗) + λk(tk − z∗)∥2

= (1 − λk)∥wk − z∗∥2 + λk∥tk − z∗∥2 − λk(1 − λk)∥tk − wk∥2

≤ (1 − λk)∥wk − z∗∥2 + λk

(
∥wk − z∗∥2 − L2(χ2 − γ2

k)∥wk − xk∥2
)

− λk(1 − λk)∥tk − wk∥2

= ∥wk − z∗∥2 − λkL2(χ2 − γ2
k)∥wk − xk∥2 − λk(1 − λk

)
∥tk − wk∥2. (13)

According to the Lipschitz continuity of B,

1
λk

∥zk+1 − wk∥ = ∥tk − wk∥ ≤ ∥tk − xk∥+ ∥xk − wk∥

= γk∥Bwk − Bxk∥+ ∥wk − xk∥
≤ (1 + γkL)∥wk − xk∥,

which implies that

L2(χ2 − γ2
k
)

λk(1 + γkL)2 ∥zk+1 − wk∥2 ≤ λkL2(χ2 − γ2
k
)
∥wk − xk∥2. (14)

Combining (13) and (14), we have

∥zk+1 − z∗∥2 ≤ ∥wk − z∗∥2 −
(

L2(χ2 − γ2
k
)

λk(1 + γkL)2 +
1 − λk

λk

)
∥zk+1 − wk∥2.

(ii) It follows from the definition of wk and the Cauchy–Schwartz inequality that

∥zk+1 − wk∥2 = ∥zk+1 − zk − αk(zk − zk−1)∥2

= ∥zk+1 − zk∥2 + α2
k∥zk − zk−1∥2 − 2αk⟨zk+1 − zk, zk − zk−1⟩

≥ ∥zk+1 − zk∥2 + α2
k∥zk − zk−1∥2 − 2αk∥zk+1 − zk∥∥zk − zk−1∥

≥ (1 − αk)∥zk+1 − zk∥2 + (α2
k − αk)∥zk − zk−1∥2. (15)
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Simultaneously, we have

∥wk − z∗∥2 = ∥zk + αk(zk − zk−1)− z∗∥2

= ∥(1 + αk)(zk − z∗)− αk(zk−1 − z∗)∥2

= (1 + αk)∥zk − z∗∥2 − αk∥zk−1 − z∗∥2 + αk(1 + αk)∥zk − zk−1∥2. (16)

By Propositions 2(i), (15), and (16), we have

∥zk+1 − z∗∥2 ≤ ∥wk − z∗∥2 − φk∥zk+1 − wk∥2

≤ (1 + αk)∥zk − z∗∥2 − αk∥zk−1 − z∗∥2 + αk(1 + αk)∥zk − zk−1∥2

− φk
(
(1 − αk)∥zk+1 − zk∥2 + (α2

k − αk)∥zk − zk−1∥2)
= (1 + αk)∥zk − z∗∥2 − αk∥zk−1 − z∗∥2 − φk(1 − αk)∥zk+1 − zk∥2

+
(
αk(1 + αk)− φk(α

2
k − αk)

)
∥zk − zk−1∥2

= (1 + αk)∥zk − z∗∥2 − αk∥zk−1 − z∗∥2 − πk∥zk+1 − zk∥2

+ ηk∥zk − zk−1∥2, (17)

where πk := φk(1 − αk) and ηk := αk(1 + αk)− φk(α
2
k − αk). Furthermore, we define

that
Πk := ∥zk − z∗∥2 − αk∥zk−1 − z∗∥2 + ηk∥zk − zk−1∥2.

Now, by (17) and αk ≤ αk+1, we obtain

Πk+1 − Πk = ∥zk+1 − z∗∥2 − αk+1∥zk − z∗∥2 + ηk+1∥zk+1 − zk∥2

− ∥zk − z∗∥2 + αk∥zk−1 − z∗∥2 − ηk∥zk − zk−1∥2

≤ ∥zk+1 − z∗∥2 − (1 + αk)∥zk − z∗∥2 + αk∥zk−1 − z∗∥2

+ ηk+1∥zk+1 − zk∥2 − ηk∥zk − zk−1∥2

≤ (1 + αk)∥zk − z∗∥2 − αk∥zk−1 − z∗∥2 − πk∥zk+1 − zk∥2

+ ηk∥zk − zk−1∥2 − (1 + αk)∥zk − z∗∥2 + αk∥zk−1 − z∗∥2

+ ηk+1∥zk+1 − zk∥2 − ηk∥zk − zk−1∥2

= −(πk − ηk+1)∥zk+1 − zk∥2. (18)

If follows from 0 < αk ≤ αk+1 ≤ α that

πk − ηk+1 = φk(1 − αk)− αk+1(1 + αk+1) + φk+1(α
2
k+1 − αk+1)

≥ φk(1 − αk+1)− αk+1(1 + αk+1) + φk+1(α
2
k+1 − αk+1).

Let ζk = φk(1 − αk+1)− αk+1(1 + αk+1) + φk+1(α
2
k+1 − αk+1); we obtain

Πk+1 − Πk ≤ −ζk∥zk+1 − zk∥2.

The proof is completed.

Furthermore, seeking to ensure the convergence of (6), let limk→+∞ αk = α ≥ 0,
limk→+∞ γk = γ > 0 and limk→+∞ λk = λ > 0 by the idea of Boţ et al. [36]. Proposition
2(ii) implies that

lim
k→+∞

ζk =
L2χ2 + 1 + 2γL

λ(1 + γL)2 (1 − α)2 − 1 + α − 2α2.
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Since χ =
√

1−ε
L , we have

lim
k→+∞

ζk =
2(1 + γL)− ε

λ(1 + γL)2 (1 − α)2 − 1 + α − 2α2.

Then, to ensure limk→+∞ ζk > 0, the following holds:

0 < λ <
2(1 + γL)− ε

(1 + γL)2
(1 − α)2

(2α2 − α + 1)
.

Next, we establish the principal convergence theorem.

Theorem 1. In problem (1), we assume that z∗ ∈ zer(A + B + C). Let a nondecreasing sequence
{αk}k≥1 satisfy 0 ≤ αk ≤ α < 1. Assume that η ≤ γk ≤ χ − η, 0 < η < χ

2 , and χ is defined as
in Proposition 1. In addition, let {λk}k≥1 be nonnegative, and

0 < lim
k→+∞

λk = λ <
2(1 + γL)− ε

(1 + γL)2
(1 − α)2

(2α2 − α + 1)
, (19)

where ε = 2
1+
√

1+16β2L2
. Then, the sequence {zk}k≥1 obtained by (6) converges weakly to a solution

of zer(A + B + C).

Proof. For any z∗ ∈ zer(A + B + C), by (19), we have limk→+∞ ζk > 0. This implies the
existence of k0 ≥ 1 such that for every k ≥ k0,

Πk+1 − Πk ≤ −ζk∥zk+1 − zk∥2 ≤ 0. (20)

As a result, the sequence {Πk}k≥k0 is nonincreasing, and the bound for {αk}k≥1 yields

−α∥zk−1 − z∗∥2 ≤ ∥zk − z∗∥2 − α∥zk−1 − z∗∥2 ≤ Πk ≤ Πk0 , (21)

which indicates that

∥zk − z∗∥2 ≤ α∥zk−1 − z∗∥2 + Πk0

≤ αk−k0∥zk0 − z∗∥2 + Πk0

1 − αk−k0

1 − α
. (22)

Combining (20)–(22) and α ∈ [0, 1), we have

k

∑
i=k0

ζi∥zi+1 − zi∥2 ≤ Πk0 − Πk+1

≤ Πk0 + α∥zk − z∗∥2

≤ αk−k0+1∥zk0 − z∗∥2 + Πk0

1 − αk−k0+1

1 − α

≤ ∥zk0 − z∗∥2 +
Πk0

1 − α
,

which indicates that limk→+∞ ζk∥zk+1 − zk∥ = 0. Since lim infk→+∞ ζk > 0, this yields
limk→+∞ ∥zk+1 − zk∥ = 0. Let us take account of (17) and Lemma 1 and observe that
limk→+∞ ∥zk − z∗∥ exists.

Meanwhile,

∥tk − wk∥ =
1

λk
∥zk+1 − wk∥ ≤ 1

λk
∥zk+1 − zk∥+

αk
λk

∥zk − zk−1∥, (23)
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which implies that limk→+∞ ∥tk − wk∥ = 0. In addition, for every k ≥ 1, we have

∥tk − wk∥ = ∥xk + γk(Bwk − Bxk)− wk∥
≥ ∥xk − wk∥ − γk∥Bwk − Bxk∥
≥ (1 − γkL)∥xk − wk∥.

Due to γk <
1
L , we deduce that

lim
k→+∞

∥xk − wk∥ = 0. (24)

Assume z̄ is a weak limit point of the sequence {zk}k≥1. Since {zk}k≥1 is bounded,
there exists a subsequence {zki

}i≥0 that converges weakly to z̄. In view of (23) and (24),
{wki

}i≥0 and {xki
}i≥0 also converge weakly to z̄. Next, since xki

= Jγki
A
(
wki

− γki
(B +

C)wki

)
, we have uki

:= γ−1
ki

(wki
− xki

)− (B + C)wki
+ (B + C)xki

∈ (A + B + C)xki
. There-

fore, utilizing (24), the fact that γk ∈ [η, χ − η], and combined with the Lipschitz continuity
of B + C, we conclude that uki

→ 0. Due to the maximal monotonicity of A + B and
the cocoercivity of C, it follows that A + B + C is maximal monotone, and its graph is
closed in the weak–strong topology in H×H (see Proposition 20.37(ii) in [4]). As a result,
z̄ ∈ zer(A + B + C). Following Lemma 2, we conclude that the sequence {zk}k≥1 weakly
converges to an element of zer(A + B + C). This completes the proof.

Remark 2 (Inertia versus relaxation). The inequation (19) establishes a relationship between
inertial and relaxation parameters. Figure 1 displays the relationship between αk and λk by a graph-
ical representation for some given values of γ and ε, which has a similar graphical representation to
Figure 1 in [36]. It is noteworthy that the expression of the upper bound for λk resembles that in
([36], Remark 2) if ε ↘ 0. Assume that 2(1+γL)−ε

(1+γL)2 is constant; it follows from (19) that the upper

bound of λk takes the form of λmax(α, γ) = 2(1+γL)−ε
(1+γL)2

(1−α)2

(2α2−α+1) with 0 ≤ α < 1. Further, note
that the relaxation parameter λmax(α, γ) is a decreasing function with respect to inertial parameter
α on the interval [0, 1]: for example, when α ↗ 1, then λmax(α, γ) ↘ 0. Of course, we can also get
λmax(γ) =

2(1+γL)−ε
(1+γL)2 when α = 0, and λmax(γ) is also decreasing on (0, 1

L ) because of limiting

values 2 − ε as γ ↘ 0 and 1 − ε
4 as γ ↗ 1

L .

Figure 1. Balance between αk and λk with ε = 0.1, γ = 0.45
L (left), and γ = 0.9

L (right).

Remark 3. The parameters for FBHF [15] and RIFBHF are given in Table 1, which shows that
the two schemes have the same range of step sizes. Different from FBHF [15], RIFBHF introduces
relaxation parameter λk and inertial parameter αk. Note that RIFBHF can reduce to FBHF [15] if
λk = 1 and αk = 0.
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Table 1. The parameter selection range for FBHF [15] and RIFBHF.

Algorithms γk αk limk→+∞ λk = λ

FBHF [15] [η, χ − η] 0 1

RIFBHF [η, χ − η] [0, 1)
(

0, 2(1+γL)−ε
(1+γL)2

(1−α)2

(2α2−α+1)

)

Remark 4. The existence of the over-relaxation (λk > 1) for RIFBHF deserves further discussion.

If 0 ≤ α <

√
θ2+4(2γ2L2+2γL+ε)(1−ε−γ2L2)−θ

2(2γ2L2+2γL+ε)
with θ = 2γL − γ2L2 + 3 − 2ε for k ≥ k0, we

conclude that λk has over-relaxation. In addition, observe that the over-relaxation in [36] exists

when 0 ≤ α <

√
(3−γL)2+8γL(1−γL)−3+γL

4γL for k ≥ k0. Although the upper bounds of α for the two
approaches are different, the over-relaxation (λk > 1) for the two methods is possible when α is in a
small range.

4. Composite Monotone Inclusion Problem

The aim of this section is to use the proposed algorithm to solve a more generalized
inclusion problem, which is outlined as follows:

0 ∈ Ax + L∗BLx + Cx, (25)

where A : H → 2H and B : G → 2G represent two maximal monotone operators, C : H →
H is a β-cocoercive operator with β > 0, and L : H → G is a bounded linear operator.
In addition, the following assumption is given:

zer(A + L∗BL + C) ̸= ∅.

The key to solving (25) is to know the exact resolvent JL∗BL. As we know, JL∗BL can be
estimated exactly using only the resolvent of the operator B, the linear operator L, and its
adjoint L∗ when L∗L = νI for some ν > 0. However, this condition usually does not hold in
our interesting problems, such as total variation regularization. To address this challenge,
we introduce an efficient iterative algorithm to tackle (25) by combining the primal–dual
approach [39] and (6). Specifically, drawing inspiration from the fully splitting primal–dual
algorithm studied by Briceño-Arias and Combettes [39], we naturally rewrite (25) as the
following problem, letting K = H⊕ G:

find x ∈ K such that 0 ∈ Mx + Sx + Nx, (26)

where 
M : K → 2K : (x, y) 7→ (Ax)× (B−1y),

S : K → K : (x, y) 7→ (L∗y,−Lx),

N : K → K : (x, y) 7→ (Cx, 0).

(27)

Notice that M is maximal monotone and S is monotone Lipschitz continuous within a
constant ∥L∥, as stated in Proposition 2.7 of [39]. This implies that M + S is also maximal
monotone since S is skew-symmetric. A result yields the cocoercivity of N by the cocoer-
civity of C. Therefore, it follows from (6) and (27) that the following convergence analysis
can deal with (26), which implies that (25) is also solved.

Corollary 1. Suppose that A : H → 2H is maximal monotone; let B : G → 2G be maximal
monotone, and assume that C : H → H is β-cocoercive with β > 0. Let L : H → G be a nonzero
bounded linear operator. Given initial data x0, x1 ∈ H and y0, y1 ∈ G, the iteration sequences
are defined:
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

w1,k = xk + αk(xk − xk−1),

w2,k = yk + αk(yk − yk−1),

z1,k = Jγk A(w1,k − γk(L∗w2,k + Cw1,k)),

z2,k = Jγk B−1(w2,k + γkLw1,k),

t1,k = z1,k + γk(L∗w2,k − L∗z2,k),

t2,k = z2,k + γk(−Lw1,k + Lz1,k),

xk+1 = (1 − λk)w1,k + λkt1,k,

yk+1 = (1 − λk)w2,k + λkt2,k,

(28)

where η ≤ γk ≤ χ − η, 0 < η < χ
2 , χ is defined in Proposition 1, and {αk}k≥1 is non-decreasing

such that 0 ≤ αk ≤ α < 1. Assume that the sequence {λk}k≥1 fulfils the condition

0 < lim
k→+∞

λk = λ <
2(1 + γ∥L∥)− ε

(1 + γ∥L∥)2
(1 − α)2

(2α2 − α + 1)
,

where ε = 2
1+
√

1+16β2∥L∥2
. Therefore, the iterative sequence {xk}k≥1 generated by (28) weakly

converges to a solution of zer(A + L∗BL + C).

Proof. Using Proposition 2.7 in [39], we observe that M is maximal monotone and S is
Lipschitz continuous together with ∥L∥. Considering the β-cocoercivity of C, it follows that
N is also β-cocoercive. Additionally, for arbitrary k ≥ 1, let

xk = (xk, yk),

wk = (w1,k, w2,k),

zk = (z1,k, z2,k),

tk = (t1,k, t2,k).

Therefore, using (27) and Proposition 2.7 (iv) in [39], we can rewrite (28) in the follow-
ing form: 

wk = xk + αk(xk − xk−1),

zk = Jγk M(wk − γk(S + N)wk),

tk = zk + γk(Swk − Szk),

xk+1 = (1 − λk)wk + λktk,

which has the same structure as (6). Meanwhile, our assumptions guarantee that the
conditions of Theorem 1 are held. Hence, according to Theorem 1, the sequence {xk}k≥1
generated by (28) weakly converges to an element of zer(A + L∗BL + C).

In the following, we apply the results of Corollary 1 to tackle the convex minimiza-
tion problem.

Corollary 2. Consider the convex optimization problem as follows:

min
x∈H

f (x) + g(Lx) + h(x), (29)

where f ∈ Γ0(H), g ∈ Γ0(G), h : H → R is convex differentiable with 1
β -Lipschitz continuous

gradient for some β > 0, and L : H → G is a bounded linear operator. For (29), given initial data
x0, x1 ∈ H and y0, y1 ∈ G, iteration sequences are presented for k ≥ 1:
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

w1,k = xk + αk(xk − xk−1),

w2,k = yk + αk(yk − yk−1),

z1,k = proxγk f (w1,k − γk(L∗w2,k +∇h(w1,k))),

z2,k = proxγk g∗(w2,k + γkLw1,k),

t1,k = z1,k + γk(L∗w2,k − L∗z2,k),

t2,k = z2,k + γk(−Lw1,k + Lz1,k),

xk+1 = (1 − λk)w1,k + λkt1,k,

yk+1 = (1 − λk)w2,k + λkt2,k,

(30)

where η ≤ γk ≤ χ − η, 0 < η < χ
2 , χ is defined in Proposition 1, and {αk}k≥1 is nondecreasing

such that 0 ≤ αk ≤ α < 1. Assume that the sequence {λk}k≥1 satisfies that

0 < lim
k→+∞

λk = λ <
2(1 + γ∥L∥)− ε

(1 + γ∥L∥)2
(1 − α)2

(2α2 − α + 1)
,

where ε = 2
1+
√

1+16β2∥L∥2
. If zer(∂ f + L∗ ◦ ∂g ◦ L+∇h) is nonempty, then the sequence {xk}k≥1

weakly converges to a minimizer of (29).

Proof. According to [4], ∂ f and ∂g are maximal monotone. In view of the Baillon–Haddad
theorem, ∇h is indicated to be β-cocoercive. Thus, solving (29) with our algorithm is
equivalent to (25) under suitable qualification conditions, which gives

A = ∂ f , B = ∂g and C = ∇h.

Therefore, it follows from the same arguments as the proof of Corollary 1 that we arrive at
the conclusions of Corollary 2.

5. Numerical Experiments

This section reports the feasibility and efficiency of (6). In particular, we discuss
the impact of parameters on (6). All experiments were conducted using MATLAB on a
standard Lenovo machine equipped with an Intel(R) Core(TM) i5-8265U CPU @ 1.60 GHz
with 1.80 GHz boost. Our objective is to address the following constrained total variation
(TV) minimization problem:

min
z∈D

1
2
∥Az − d∥2

2 + µ∥z∥TV , (31)

in which A ∈ Rm×n represents the blurring matrix, z signifies the unknown original image
in Rn2

, and D indicates a nonempty closed convex set and represents the prior information
regarding the deblurred images. Specifically, D is selected as a nonnegative constraint set,
µ > 0 indicates the regularization parameter, ∥z∥TV denotes the total variation term, and d
stands for the recorded blurred image data.

Notice that (31) can be equivalently written with the following structure:

min
z

1
2
∥Az − d∥2

2 + µ∥z∥TV + δD(z), (32)

where δD(z) represents the indicator function, which equals 0 when z ∈ D and +∞
otherwise. The term ∥z∥TV can be expressed as a combination of a convex function φ (either
using ∥ · ∥1 for the anisotropic total-variation or ∥ · ∥2 for the isotropic total-variation) with
a first-order difference matrix H, denoted as ∥z∥TV = φ(Hz) (refer to Section 4 in [41]),
where H represents a 2n2 × n2 matrix written as:
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H :=
[

In
⊗

E
E
⊗

In

]
and E :=


0
−1 1

. . . . . .
−1 1


n×n

,

where In denotes the n × n identity matrix, and
⊗

is the Kronecker product. Consequently,
it is evident that (32) constitutes a special instance of (29).

In order to assess the quality of the deblurred images, we employ the signal-to-noise
ratio (SNR) [40], which is defined by

SNR = 10log
∥x∥2

∥x − xr∥2 ,

where x is the original image, and xr is the deblurred image. The following stopping
criterion is utilized to terminate iterative algorithms by the relative error between adjacent
iterative steps. We choose test image “Barbara" with a size of 512 × 512 and use four
typical image blurring scenarios as in Table 2. In addition, the range of the values in
the original images is [0, 255], and the norm of operator A in (31) is equal to 1 for the
selected experiments. The cocoercive coefficient β is 1, and ∥H∥2 = 8 for the total variation,
as estimated in [41], where H is the linear operator. We terminate the iterative algorithms if
the relative error is less than 5 × 10−4 or if the maximum number of iterations reaches 1000.

Table 2. Description of image blurring scenarios.

Scenario Blur Kernel Gaussian Noise

1 9 × 9 box average kernel σ = 1.5
2 9 × 9 box average kernel σ = 3
3 7 × 7 Gaussian kernel with σa = 10 σ = 1.5
4 7 × 7 Gaussian kernel with σa = 10 σ = 3

Prior to the comparisons, we do a test to display how the performance of RIFBHF is
affected by different parameters. For simplicity, we set γk = γ for all k ≥ 1. In view of (19),
the relationship between inertial parameter α and relaxation parameter λ is presented as
follows:

0 < lim
k→+∞

λk = λ <
2(1 + γ∥L∥)− ε

(1 + γ∥L∥)2
(1 − α)2

(2α2 − α + 1)
,

where 0 ≤ α < 1, and ε = 2
1+
√

1+16β2∥L∥2
. As we know, the upper boundedness of λ

is similar to the one of ([36], Remark 2) if ε ↘ 0. Firstly, we assume γ = 4β

1+
√

1+16β2L2
,

α = 0, and λ = 1, or α = 0.3 and λ = 0.6 for RIFBHF. The SNR values and the numbers
of iterations used with various µ for RIFBHF are recorded in Tables 3 and 4. Observe that
the SNR values in image blurring scenarios 1 and 2 are the best when µ = 1, while the
SNR values in image blurring scenarios 3 and 4 are the best when µ = 0.1. Therefore,
we choose µ = 1 for image blurring scenarios 1 and 2 and µ = 0.1 for image blurring
scenarios 3 and 4. For the case of µ = 1 in image blurring scenario 1, we further study the
effect of the other parameters. The development of the SNR value and the normalized
error of the objective function log( f − f ∗)/ f ∗ along the running time are considered; here,
f represents the present objective value, while f ∗ signifies the optimal objective value.
To obtain an approximation of the optimal objective value, we set the function value given
by running experimental algorithms for 5000 iterations as an estimate of the optimal value.
One can observe that a larger γ results in better error when α = 0.2 and λ = 0.7, and a
larger α also brings better error when γ = 0.2√

8
and λ = 0.7 in Figure 2. Of course, α and γ

also affect the value of λ. Meanwhile, a conclusion that a larger λ allows for better error
can be given. It is worth noting that over-relaxation (λ > 1) exists, and it enjoys a better
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effect. Figure 3 shows the development of SNR for different parameters; the experiment
results are similar to those in Figure 2.

Table 3. SNR values and iterations when γ = 4
1+

√
1+16∗8

, α = 0, and λ = 1 with different parameter
µ for Barbara image in four blurred scenarios.

µ

Scenario 1 2 3 4
SNR (dB) Iter SNR (dB) Iter SNR (dB) Iter SNR (dB) Iter

0.1 17.5358 50 17.5144 52 17.9741 45 17.9510 48
0.5 17.5414 55 17.5196 56 17.9385 49 17.9148 51
1 17.5515 61 17.5304 62 17.9071 54 17.8799 55
2 17.4859 65 17.4658 65 17.8012 56 17.7788 57
3 17.4001 65 17.3831 65 17.7126 56 17.6937 57
4 17.3251 65 17.3106 66 17.6368 57 17.6203 57
5 17.2584 67 17.2443 68 17.5713 58 17.5553 59
6 17.1948 69 17.1823 69 17.5117 60 17.4972 60
7 17.1344 71 17.1230 71 17.4563 61 17.4422 62
8 17.0779 73 17.0663 74 17.4033 63 17.3895 64
9 17.0237 75 17.0123 76 17.3530 65 17.3413 65

10 16.9718 77 16.9608 78 17.3049 67 17.2940 67

Figure 2. Behaviour of the error of objective value log( f − f ∗)/ f ∗ against running time for different
parameters α, γ, and λ.
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Table 4. SNR values and iterations when γ = 4
1+

√
1+16∗8

, α = 0.3, and λ = 0.6 with different
parameter µ for Barbara image in four blurred scenarios.

µ

Scenario 1 2 3 4
SNR (dB) Iter SNR (dB) Iter SNR (dB) Iter SNR (dB) Iter

0.1 17.4757 52 17.4513 53 17.9109 46 17.8957 49
0.5 17.4740 55 17.4573 56 17.8890 50 17.8643 51
1 17.5060 62 17.4884 63 17.8783 56 17.8545 57
2 17.4687 68 17.4502 68 17.7913 59 17.7707 60
3 17.3929 69 17.3785 70 17.7093 60 17.6920 61
4 17.3214 70 17.3072 70 17.6367 61 17.6212 61
5 17.2577 72 17.2446 72 17.5723 62 17.5582 63
6 17.1970 74 17.1850 75 17.5144 64 17.5007 65
7 17.1384 76 17.1277 76 17.4600 66 17.4480 66
8 17.0832 78 17.0725 79 17.4078 68 17.3953 69
9 17.0298 81 17.0203 81 17.3580 70 17.3463 71

10 16.9787 83 16.9686 84 17.3103 72 17.3005 72

Figure 3. Behaviour of SNR against running time for different parameters α, γ, and λ.

To further validate the rationality and efficiency of (30), the following algorithms and
parameter settings are utilized:

• FBHF [15]: γ = 4β

1+
√

1+16β2L2
for four image blurring scenarios.
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• PD: the first-order primal–dual splitting algorithm [42] with τ = 1
3 , σ = 1

3 , and θ = 1
for four image blurring scenarios.

• RIFBHF: γ = 4β

1+
√

1+16β2L2
using α = 0.2 and λ = 0.9 for image blurring scenarios 1

and 2 and α = 0.6 and λ = 0.8 for image blurring scenarios 3 and 4.

Figure 4 plots the normalized error of the objective function of FBHF, PD, and RIFBHF
along the running time. Note that PD appears to be the fastest algorithm. FBHF and
RIFBHF are almost the same in image blurring scenarios 1 and 2, while in image blurring
scenarios 3 and 4, the effect of RIFBHF is better than that of FBHF, which shows that
our algorithm is acceptable. Meanwhile, to succinctly illustrate the deblurring impact of
the proposed algorithm, the deblurred results of image blurring scenario 4 are shown in
Figure 5. One can observe visually the better deblurred images generated by RIFBHF.

Figure 4. Behaviour of the error of objective value log( f − f ∗)/ f ∗ against running time for different
image burring scenarios, i.e., (a) scenario 1, (b) scenario 2, (c) scenario 3, and (d) scenario 4.
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(a) (b)

(c) (d)

Figure 5. (a) The original image of Barbara. (b) The blurred image of Barbara. (c) The deblurred
image by FBHF. (d) The deblurred image by RIFBHF.

6. Conclusions

In this paper, we proposed an RIFBHF algorithm to solve (1). On the way, the pro-
posed approach was deduced by discretising a continuous-time dynamical system, and a
variable stepsize was introduced into the proposed algorithm. Additionally, we studied
the theoretical convergence properties of (6) under reasonable parameter conditions. In-
spired by the primal–dual scheme, our approach tackled both the composite monotone
inclusion problem (25) and analysed the composite convex optimization problem (29). Sub-
sequently, we conducted numerical experiments focused on image deblurring to illustrate
the effectiveness of our proposed technique.
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13. Ryu, E.K.; Vũ, B.C. Finding the forward-Douglas-Rachford-forward method. J. Optim. Theory Appl. 2020, 184, 858–876. [CrossRef]
14. Rieger, J.; Tam, M.K. Backward-forward-reflected-backward splitting for three operator monotone inclusions. Appl. Math. Comput.

2020, 381, 125248. [CrossRef]
15. Briceño-Arias, L.M.; Davis, D. Forward-backward-half forward algorithm for solving monotone inclusions. SIAM J. Optim. 2018,

28, 2839–2871. [CrossRef]
16. Alves, M.M.; Geremia, M. Iteration complexity of an inexact Douglas-Rachford method and of a Douglas-Rachford-Tseng’s F-B

four-operator splitting method for solving monotone inclusions. Numer. Algorithms 2019, 82, 263–295. [CrossRef]
17. Giselsson, P. Nonlinear forward-backward splitting with projection correction. SIAM J. Optim. 2021, 31, 2199–2226. [CrossRef]
18. Briceño-Arias, L.; Chen, J.; Roldán, F.; Tang, Y. Forward-partial inverse-half-forward splitting algorithm for solving monotone

inclusions. Set-Valued Var. Anal. 2022, 30, 1485–1502. [CrossRef]
19. Polyak, B.T. Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 1964, 4, 1–17.

[CrossRef]
20. Nesterov, Y. A method for unconstrained convex minimization problem with the rate of convergence O( 1

k2 ). Doklady AN SSSR
1983, 269, 543–547.

21. Güler, O. New proximal point algorithms for convex minimization. SIAM J. Optim. 1992, 2, 649–664. [CrossRef]
22. Alvarez, F.; Attouch, H. An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator

with damping. Set-Valued Anal. 2001, 9, 3–11. [CrossRef]
23. Alvarez, F. Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone

operators in Hilbert space. SIAM J. Optim. 2003, 14, 773–782. [CrossRef]
24. Ochs, P.; Chen, Y.; Brox, T.; Pock, T. iPiano: Inertial proximal algorithm for nonconvex optimization. SIAM J. Imaging Sci. 2014, 7,

1388–1419. [CrossRef]
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