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Abstract: This paper delves into the analysis of a stochastic epidemic model known as the susceptible–
vaccinated–exposed–infectious–recovered (SVEIR) model, where transmission dynamics are gov-
erned by a nonlinear function. In the theoretical analysis section, by suitable stochastic Lyapunov
functions, we establish that when the threshold value, denoted as Rs

0, falls below 1, the epidemic
is destined for extinction. Conversely, if the reproduction number R0 of the deterministic model
surpasses 1, the model manifests an ergodic endemic stationary distribution. In the numerical sim-
ulations and data interpretation section, leveraging a graphical analysis with COVID-19 data, we
illustrate that random fluctuations possess the capacity to quell disease outbreaks, underscoring the
role of vaccines in curtailing the spread of diseases. This study not only contributes to the under-
standing of epidemic dynamics but also highlights the pivotal role of stochasticity and vaccination
strategies in epidemic control and management. The inherent balance and patterns observed in epi-
demic spread and control strategies, reflect a symmetrical interplay between stochasticity, vaccination,
and disease dynamics.

Keywords: stochastic SVEIR model; stability analysis; stationary distribution

MSC: 92D30; 60H10

1. Introduction

Over the past two decades, mathematical modeling has played a crucial role in both
preventing and controlling infectious diseases, including severe acute respiratory syndrome
(SARS) [1], human immunodeficiency virus infection/acquired immune deficiency syn-
drome (HIV/AIDS) [2], and H1N1 (swine flu) [3]. These models describe the evolution of
various subpopulations over time within epidemic models. One widely used model is the
SEIR (susceptible–exposed–infectious–recovered) model, which divides the population into
four compartments: susceptible (S), individuals who are at risk of infection; exposed (E),
individuals who have come into contact with infective individuals but show no symptoms;
infectious (I), individuals displaying symptoms; and recovered (R), individuals who have
recovered from the disease [4]. The SEIR model has various complex variants, including
those with different control measures such as various incidence rates, constant and feedback
vaccination and treatment controls, as well as models involving multiple interconnected
regions or towns [5–10], and others cited within. The rate of incidence is widely recognized
as playing a significant role in disease modeling, with factors such as population density
and lifestyle influencing the increase and decrease in epidemics [11,12]. Many researchers
have employed nonlinear incidence rates in their studies; for more in-depth information,
readers are referred to [13–19] and related references. Vaccination is widely acknowledged
as one of the most effective means of disease control and prevention [20], playing a pivotal
role in the complete eradication of diseases like smallpox and partial control of diseases
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such as measles [21]. Numerous scholarly works have explored the dynamics of epidemic
models with different vaccination schedules [7,13,19,22–26].

In 2018, Gao and Huang [22] conducted a study on the model described below:

dS
dt

= A − βSI
1 + aS + bI

− (δ0 + µ)S + ηV,

dE
dt

=
βSI

1 + aS + bI
− (δ0 + δ1)E,

dI
dt

= δ1E − (δ0 + δ2 + δ3)I,

dR
dt

= δ2 I − δ0R,

dV
dt

= µS − (δ0 + η)V.

(1)

All the parameters in model (1) are positive. The variables S, E, I, R, and V represent the
respective counts of susceptible, exposed, infectious, recovered, and vaccinated individuals
at time t. Table 1 provides the biological interpretations of the remaining parameters.

Table 1. Biological interpretations of variables and parameters in model (1).

Parameter Description

A The recruitment rate of new individuals

β
The contact rate or the rate of transfer of virus from an infectious individual to
the susceptible

δ0 The natural mortality rate

η
The rate at which the vaccinated individuals lose their immunity and join the
susceptible class

µ The vaccination rate coefficient
δ1 The rate at which exposed individuals become infectious
δ2 The recovery rate of the infectious individuals
δ3 The disease-related death rate of infectious individuals
a The proportion constant related to susceptible individuals
b The proportion constant related to infectious individuals

The results in [22] showed that the basic reproduction number of model (1) is

R0 =
βδ1S0

(1 + aS0)(δ0 + δ1)(δ0 + δ2 + δ3)
, where S0 =

(δ0 + η)A
δ2

0 + (µ + η)δ0
. (2)

It is proved that if R0 < 1, the disease-free equilibrium is globally asymptotically stable
and if R0 > 1, model (1) has an endemic equilibrium (S∗, E∗, I∗, R∗, V∗) which is globally
asymptotically stable.

The inherent randomness of epidemic growth and spread, attributed to the unpre-
dictable nature of person-to-person contacts [27] and the susceptibility of populations
to various disturbances [28], suggests that stochastic models may offer a more suitable
approach for modeling epidemics in many scenarios [29–42]. Stochastic models are particu-
larly beneficial in capturing the random occurrences of infectious contacts during the latent
and infectious periods [43]. Many realistic stochastic epidemic models can be derived from
their deterministic counterparts. For instance, Cai [38] developed a general SIRS epidemic
model with a ratio-dependent incidence rate and its corresponding stochastic differential
equation version. Ball and Neal [44] explored a general stochastic SIR model within a closed
finite population, deriving a threshold parameter that determines the possibility of global
epidemics. Yang et al. [45] examined the ergodicity and extinction of stochastic SIR and
SEIR epidemic models with saturated incidence. Zhang and Zhang [42] investigated the
threshold behavior of a deterministic and a stochastic SIQS epidemic model by considering
varying total population sizes.
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In its investigation of the stochastic epidemic model, our analysis not only sheds light
on the dynamics of disease transmission and control but also unravels the symmetrical
aspects inherent in epidemic behavior. By exploring the effects of stochasticity and vaccina-
tion strategies on disease spread, we can uncover a symmetrical relationship between these
factors and the patterns observed in epidemic outcomes.

This paper focuses on a stochastic SVEIR epidemic model with a nonlinear inci-
dence rate. 

dS =

(
A − βSI

1 + aS + bI
− (δ0 + µ)S + ηV

)
dt + σ1SdB1(t),

dE =

(
βSI

1 + aS + bI
− (δ0 + δ1)E

)
dt + σ2EdB2(t),

dI = (δ1E − (δ0 + δ2 + δ3)I)dt + σ3 IdB3(t),

dR = (δ2 I − δ0R) + σ4RdB4(t),

dV = (µS − (δ0 + η)V) + σ5dB5(t).

(3)

The parameters in model (1) remain unchanged, with σ2
i > 0 denoting the intensities of

white noise. Additionally, Bi(t) (i = 1, 2, . . . , 5) represents independent standard Brownian
motions, initialized at Bi(0) = 0.

In the study of epidemic model behavior, analyzing steady states and their stability is
crucial [19]. In deterministic models, this analysis involves examining the stability of the
disease-free equilibrium (or endemic equilibrium) through the basic reproduction number
R0. However, in the case of the stochastic model (3), there is no endemic equilibrium.
Nevertheless, Khasminskii [46] demonstrated that the presence of an ergodic stationary
distribution for model (3) can reveal the persistence of the infection.

The primary objective of this paper is to examine the extinction and the existence of
an ergodic stationary distribution for model (3). We establish sufficient conditions for both
the extinction and the existence of an ergodic stationary distribution.

The paper is organized as follows: Section 2 introduces the necessary preliminaries
for subsequent analysis. Section 3 establishes sufficient conditions for both the extinction
and the existence of an ergodic stationary distribution in model (3). Section 4 presents
numerical simulations based on published data from COVID-19 to support our findings.
Lastly, some concluding remarks summarize the results.

2. Preliminaries

Let (Ω, F , {Ft}t≥0, P) be a complete probability space with a filtration {Ft}t≥0 satis-
fying the usual conditions, where it is increasing and right-continuous, and {F0} contains
all P-null sets. Additionally, define Rd

+ = {x ∈ Rd : xi > 0, 1 ≤ i ≤ d}.
We consider the d-dimensional stochastic differential equation (SDE) in general:

dx(t) = f (t, x(t))dt + g(t, x(t))dBt, (4)

here f (t, x(t)) is a function in Rd defined in [t0, ∞] × Rd, g(t, x(t)) is a d × m matrix, and f
and g are local Lipschitz functions in x. The term Bt represents an m-dimensional standard
Brownian motion defined on the complete probability space (Ω,F , {Ft}t≥0, P). The

notation C2,1
(
Rd × [t0, ∞];R+

)
refers to the family of all non-negative functions V(x, t)

defined on Rd × [t0, ∞] such that they are continuously twice differentiable in x and once
in t. The differential operator L of Equation (4) is defined [30] as

L = ∂
∂t + ∑d

i=1 fi(t) ∂
∂xi

+
1
2 ∑d

i,j=1
[
gT(x, t)g(x, t)

]
ij

∂2

∂xi∂xj
.
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When the operator L operates on a function V ∈ C2,1
(
Rd × [t0, ∞];R+

)
,

LV(x, t) = Vt(x, t) + Vx(x, t) f (x, t) +
1
2

trace
[
gT(x, t)Vxxg(x, t)

]
,

where Vt(x, t) = ∂V
∂t , Vx(x, t) =

(
∂V
∂x1

, · · · , ∂V
∂xd

)
, and Vxx =

(
∂2V

∂xi∂xj

)
d×d

. By Itô’s formula, if

x(t) is solution of (4), then dV(x, t) = LV(x, t)dt + Vx(x, t)g(x, t)dBt.
The following lemma pertains to the existence and uniqueness of a global positive

solution, which is a prerequisite for investigating the long-term behavior of system (3).

Lemma 1. Given any initial value (S(0), E(0), I(0), R(0), V(0)) ∈ R5
+, there exists a unique

solution X(t) = (S(t), E(t), I(t), R(t), V(t)) of system (3) on t ≥ 0 and this solution will almost
surely remain within R5

+.

Proof. Since the coefficients of the system (3) satisfy the local Lipschitz condition, for any
initial value (S(0), E(0), I(0), R(0), V(0)) ∈ R5

+ there is a unique local solution in [0, τe],
where τe denotes the explosion time [30]. To establish global solution existence, it suffices
to demonstrate that τe = ∞ almost surely (a.s.). To achieve this, let k0 be sufficiently large
such that every component of X0 lies within the interval [ 1

k0
, k0]. For each integer k > k0,

define the stopping time as follows:

τk = in f
{

t ∈ [0, τe) : minX(t) ≤ 1
k

or maxX(t) ≥ k
}

.

In this paper, we define in f ∅ = ∞ (where ∅ denotes the empty set). It is evident that τk
is increasing as k → ∞. Let τ∞ = lim

k→∞
τk, hence τ∞ ≤ τe almost surely. If we can prove

that τ∞ = ∞ almost surely, then τe = ∞ ensuring X(t) ∈ R5
+ almost surely. for all t ≥ 0.

Therefore, demonstrating τ∞ = ∞ almost surely is crucial for completing the proof. If this
assertion is contradicted there exit constants T > 0 and η ∈ (0, 1) such that P{τ∞ ≤ T} > η.
Consequently, there exists an integer k1 ≥ k0 such that P{τk ≤ T} > η for all k ≥ k1.

Define a C2 − f unction W: R5
+ → R1

+

W(S, E, I, R, V)

= (S − 1 − lnS) + (E − 1 − lnE) + (I − 1 − lnI) + (R − 1 − lnR) + (V − 1 − lnV).

The non-negativity of this function follows from the inequality u − 1− lnu ≥ 0 f or any u > 0.
Using Itô’s formula, we have

dW(S, E, I, R, V) =LWdt + σ1(S − 1)dB1(t) + σ2(E − 1)dB2(t) + σ3(I − 1)dB3(t)

+ σ4(R − 1)dB4(t) + σ5(V − 1)dB5(t),

where

LW =

(
1 − 1

S

)(
A − βSI

1 + aS + bI
− (δ0 + µ)S + ηV

)
+

(
1 − 1

E

)(
βSI

1 + aS + bI
− (δ0 + δ1)E

)
+

(
1 − 1

I

)
(δ1E − (δ0 + δ2 + δ3)I) +

(
1 − 1

R

)
(δ2 I − δ0R) +

(
1 − 1

V

)
(µS − (δ0 + η)V)

+
1
2
(σ2

1 + σ2
2 + σ2

3 + σ2
4 + σ2

5 )

=A + 5δ0 + δ1 + δ2 + δ3 + η + µ +
1
2
(σ2

1 + σ2
2 + σ2

3 + σ2
4 + σ2

5 ) +
βI

1 + aS + bI

− βSI
(1 + aS + bI)E

− δ3 I − A
S
− ηV

S
− δ1E

I
− δ2 I

R
− µS

V
− δ0(S + E + I + R + V)

≤A + 5δ0 + δ1 + δ2 + δ3 + η + µ +
1
2
(σ2

1 + σ2
2 + σ2

3 + σ2
4 + σ2

5 ) +
βI

1 + aS + bI
.
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If aS + 1 ≥ I, then βI
1+aS+bI = β

aS+1
I +b

≤ β
1+b . While if aS + 1 < I, 0 < aS+1

I < 1, and we

can obtain that βI
1+aS+bI < β

b . Therefore, there exists a fixed positive constant F which is
independent of S(t), E(t), I(t), R(t), V(t), and t. Thus we obtain

dW ≤Fdt + σ1(S − 1)dB1(t) + σ2(E − 1)dB2(t) + σ3(I − 1)dB3(t)

+ σ4(R − 1)dB4(t) + σ5(V − 1)dB5(t).

By integrating both sides from 0 to τk ∧ T, and taking expectations, we obtain

EW ≤ W(S(0), E(0), I(0), R(0), V(0)) + FT.

For any positive k ≥ k1, let us define Ωk = {τk < T}, leading to P(Ωk) >
η
2 . Note that for

every υ ∈ Ωk, at least one of the values in the set (S(υ), E(υ), I(υ), R(υ), V(υ)) is either 1
k

or k. Therefore, we have W ≥ 1
k − 1 − ln 1

k , or W ≥ k − 1 − lnk. So we obtain

W(S(0), E(0), I(0), R(0), V(0)) + FT ≥E[IΩk W(S(t), E(t), I(t), R(t), V(t))]

=P(Ωk)W(S(t), E(t), I(t), R(t), V(t))

>
η

2

[(
1
k
− 1 − ln

1
k

)
∧ (k − 1 − lnk)

]
,

where IΩk is the indicator function of Ωk. Setting k → ∞, we have

∞ > W(S(0), E(0), I1(0), I2(0), R(0)) + FT = ∞.

This completes the proof.

The following lemma can be proven by employing the same arguments presented in
lemma 3.1 of [47]; hence, we omit its detailed proof here.

Lemma 2. Let (S(t), E(t), I(t), R(t), V(t)) be any solution of system (3) with any initial value.

Assume that µ > σ2
max
2 , then

(i) lim
t→∞

S(t)
t

= lim
t→∞

E(t)
t

= lim
t→∞

I(t)
t

= lim
t→∞

R(t)
t

= lim
t→∞

V(t)
t

= 0 a.s. Moreover,

lim
t→∞

lnS(t)
t

= lim
t→∞

lnE(t)
t

= lim
t→∞

lnI(t)
t

= lim
t→∞

lnR(t)
t

= lim
t→∞

lnV(t)
t

= 0 a.s. ;

(ii) lim
t→∞

1
t

∫ t

0
S(u)dB1(u) = lim

t→∞

1
t

∫ t

0
E(u)dB2(u) = lim

t→∞

1
t

∫ t

0
I(u)dB3(u)

= lim
t→∞

1
t

∫ t

0
R(u)dB4(u) = lim

t→∞

1
t

∫ t

0
V(u)dB5(u) = 0 a.s.,

where σmax = σ2
1 ∨ σ2

2 ∨ σ2
3 ∨ σ2

4 ∨ σ2
5 .

Consider a regular time-homogeneous Markov process X(t) in Rd
+, characterized by

the following:

dX(t) = b(X)dt +
k

∑
r=1

σr(X)dBr(t),

where the diffusion matrix is given by

A(X) = (aij(x)), aij(x) =
k

∑
r=1

σi
r(x)σj

r(x).

The lemma below is crucial for proving the existence of a stationary distribution.



Symmetry 2024, 16, 467 6 of 16

Lemma 3 ([46]). The Markov process X(t) possesses a unique ergodic stationary distribution m(·)
if there exists a bounded domain U ∈ Rd with a smooth boundary such that its closure Ũ ⊂ Rd

satisfies the following properties:

(i) Within the open domain U and its neighborhood, the minimum eigenvalue of the diffusion
matrix A(t) remains bounded away from zero.

(ii) For any x ∈ Rd \ U, the average time τ for a trajectory originating from x to each the set U is
finite. Additionally, supx∈K Exτ < ∞ for every compact K ⊂ Rd.

Furthermore, if f(·) is a function integrable with respect to measure m, then

P
(

lim
T→∞

1
T

∫ T

0
f (Xx(t))dt =

∫
Rd

f (Xx(t))m(dx)
)
= 1,

for every x ∈ Rd.

Remark 1. To establish condition (i) it is adequate to demonstrate that F exhibits uniform ellipticity
in U. Here, F(u) = b(x)ux +

1
2 trace(A(x)uxx). This implies the existence of a positive constant

M such that ∑d
i,j=1 aij(x)ζiζ j ≥ M|ζ|2, x ∈ U, ζ ∈ Rd [29,48]. To confirm condition (ii), it is

sufficient to establish the existence of a non-negative C2-function V and a neighborhood U such that
for some K > 0, LV<−K, x ∈ Rd \ U [49].

3. Theoretical Analysis

Stochastic Lyapunov functions play a crucial role in understanding the long-term
behavior of stochastic systems and assessing the impact of randomness on system dynamics.
However, the derivation and implementation of stochastic Lyapunov functions involve
a rigorous mathematical process to analyze the stability of stochastic systems. In the
following discussion, we shall construct suitable stochastic Lyapunov functions to obtain
the extinction and stationary distribution and ergodicity results for the stochastic system.

3.1. Extinction of the Stochastic Epidemic Model (3)

In this subsection, we will explore the sufficient criteria for the extinction of the infected
individuals. Set

Rs
0

.
=

2βδ1(δ0 + δ1)

a[(δ0 + δ1)2(δ0 + δ2 + δ3 +
1
2 σ2

3 ) ∧
1
2 δ2

1σ2
2 ]

.

Theorem 1. Let (S(t), E(t), I(t), R(t), V(t)) be the solution of model (3) with any initial value

(S(0), E(0), I(0), R(0), V(0)) ∈ R5
+. If Rs

0 < 1 and δ0 >
σ2

max
2 , then the solution of model (3) satisfies

lim
t→∞

1
t

∫ t

0
S(u)du =

A(δ0 + η)

δ2
0 + ηδ0 + µδ0

, lim
t→∞

1
t

∫ t

0
V(u)du =

Aµ

δ2
0 + ηδ0 + µδ0

,

lim
t→∞

1
t

∫ t

0
E(u)du = lim

t→∞

1
t

∫ t

0
I(u)du = lim

t→∞

1
t

∫ t

0
R(u)du = 0.

Proof. Let Q(t) = δ1E(t) + (δ0 + δ1)I(t). By applying Itô′s formula, we obtain
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d ln Q(t) =

[ δ1βSI
1+aS+bI − (δ0 + δ1)(δ0 + δ2 + δ3)I

δ1E + (δ0 + δ1)I
−

δ2
1σ2

2 E2 + (δ0 + δ1)
2σ2

3 I2

2[δ1E + (δ0 + δ1)2 I]2

]
dt

+
δ1σ2E

δ1E + (δ0 + δ1)I
dB2(t) +

(δ0 + δ1)σ3 I
δ1E + (δ0 + δ1)I

dB3(t)

≤ δ1β

a(δ0 + δ1)
dt − 1

[δ1E + (δ0 + δ1)I]2

[
((δ0 + δ1)

2(δ0 + δ2 + δ3) +
1
2
(δ0 + δ1)

2σ2
3 )I2

+
1
2

δ2
1σ2

2 E2
]

dt +
δ1σ2E

δ1E + (δ0 + δ1)I
dB2(t) +

(δ0 + δ1)σ3 I
δ1E + (δ0 + δ1)I

dB3(t)

≤ δ1β

a(δ0 + δ1)
dt − 1

2(δ0 + δ1)2

[
(δ0 + δ1)

2(δ0 + δ2 + δ3 +
1
2

σ2
3 ) ∧

1
2

δ2
1σ2

2

]
dt

+
δ1σ2E

δ1E + (δ0 + δ1)I
dB2(t) +

(δ0 + δ1)σ3 I
δ1E + (δ0 + δ1)I

dB3(t).

(5)

Integrating (5) from 0 to t, combining with Lemma 2, and noting Rs
0 < 1, we have

lim
t→∞

sup
lnQ(t)

t
≤ δ1β

a(δ0 + δ1)
− 1

2(δ0 + δ1)2

[
(δ0 + δ1)

2(δ0 + δ2 + δ3 +
1
2

σ2
3 ) ∧

1
2

δ2
1σ2

2

]
< 0 a.s.,

which implies that
lim
t→∞

E(t) = 0, lim
t→∞

I(t) = 0 a.s..

In other words, the susceptible individuals E(t) and the infectious individuals I(t) will
both exponentially approach zero with probability one. From model (3), it is evident that
lim
t→∞

R(t) = 0 a.s. This implies that

lim
t→∞

1
t

∫ t

0
E(u)du = lim

t→∞

1
t

∫ t

0
I(u)du = lim

t→∞

1
t

∫ t

0
R(u)du = 0 a.s.

On the other hand, according to model (3), we have

dS(t) =
(

A − βSI
1 + aS + bI

− (δ0 + µ)S + ηV
)

dt + σ1S(t)dB1(t) (6)

Integrating (6) from 0 to t on both sides, we can derive

S(t)− S(0) = At −
∫ t

0

βS(u)I(u)
1 + aS(u) + bI(u)

du −
∫ t

0
(δ0 + µ)S(u)du +

∫ t

0
ηV(u)du +

∫ t

0
σ1S(u)dB1(u).

And then, we can obtain

(δ0 + µ)
∫ t

0
S(u)du ≤ At −

∫ t

0
(δ0 + µ)S(u)du +

∫ t

0
ηV(u)du +

∫ t

0
σ1S(u)dB1(u). (7)

In the same way, we can obtain

(δ0 + η)
∫ t

0
V(u)du ≤

∫ t

0
µS(u)du +

∫ t

0
σ5V(u)dB5(u). (8)

According to (7) and (8), we can obtain

(δ0 + µ − ηµ

δ0 + η
)
∫ t

0
S(u)du ≤ At +

ησ5

δ0 + η

∫ t

0
V(u)dB5(u) +

∫ t

0
σ1S(u)dB1(u). (9)
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By dividing both sides of (9) by t, taking the limit superior, and combining this result with
Lemma 2, one can deduce that

lim
t→∞

1
t

∫ t

0
S(u)du =

A(δ0 + η)

δ2
0 + ηδ0 + µδ0

a.s.

And similarly, we can obtain

lim
t→∞

1
t

∫ t

0
V(u)du =

Aµ

δ2
0 + ηδ0 + µδ0

a.s.

This completes the proof.

3.2. Stationary Distribution and Ergodicity of the Stochastic Model (3)

Theorem 2. Assume R0 > 1, where R0 is defined in (2). If the following conditions are satisfied:

(i)

m1 = 2δ0 − σ2
1 > 0,

m2 = 2δ0 − σ2
2 > 0,

m3 =
4δ1(δ0 + δ3) + 2(2δ0 + δ3(δ0 + δ2 + δ3))− (2δ0 + 2δ1 + δ3)σ

2
3

2δ1
> 0,

m4 =
4δ0δ2 + 2δ0(2δ0 + δ3)− (2δ0 + 2δ2 + δ3)σ

2
4

2δ2
> 0,

m5 =
2δ0µ + 2δ0(δ0 + η)− (µ + δ0)σ

2
5

µ
> 0;

(ii)

0 < F < min
(

m1θ2
1S∗2, m2θ2

2E∗2, m3θ2
3 I∗2, m4θ2

4 R∗2, m5θ2
5V∗2

)
,

where

F =
2δ0σ2

1 S∗2

2δ0 − σ2
1
+

2δ0σ2
2 E∗2

2δ0 − σ2
2
+

[4δ1(δ0 + δ3) + 2(2δ0 + δ3)(δ0 + δ2 + δ3)](2δ0 + 2δ1 + δ3)σ
2
3 I∗2

δ1[4δ1(δ0 + δ3) + 2(2δ0 + δ3)(δ0 + δ2 + δ3)− (2δ0 + 2δ1 + δ3)σ
2
3 ]

+
[4δ0δ2 + 2δ0(2δ0 + δ3)](2δ0 + 2δ2 + δ3)σ

2
4 R∗2

δ2(4δ0δ2 + 2δ0(2δ0 + δ3)− (2δ0 + 2δ2 + δ3)σ
2
4 )

+
2δ0(µ + η + δ0)(δ0 + µ)σ2

5 V∗2

µ[2δ0(µ + η + δ0)− (δ0 + µ)σ2
5 ]

,

θ1 =
2δ0

2δ0 − σ2
1

, θ2 =
2δ0

2δ0 − σ2
2

,

θ3 =
4δ1(δ0 + δ3) + 2(2δ0 + δ3)(δ0 + δ2 + δ3)

4δ1(δ0 + δ3) + 2(2δ0 + δ3)(δ0 + δ2 + δ3)− (2δ0 + 2δ1 + δ3)σ
2
3

,

θ4 =
4δ0δ2 + 2δ0(2δ0 + δ3)

4δ0δ2 + 2δ0(2δ0 + δ3)− (2δ0 + 2δ2 + δ3)σ
2
4

, θ5 =
2δ0(µ + η + δ0)

2δ0(µ + η + δ0)− (δ0 + µ)σ2
5

and S∗, E∗, I∗, R∗, V∗ are defined as the endemic equilibrium of the deterministic model (1), then
there exists a unique stationary distribution π(·) for the stochastic model (3) with any initial value
X0 ∈ R5

+ and it has the ergodic property.
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Proof. Since R0 > 1, there is an endemic equilibrium P∗ = (S∗, E∗, I∗, R∗, V∗) of the
deterministic model (1). Then, we have

A =
βS∗ I∗

1 + aS∗ + bI∗
+ (δ0 + µ)S∗ − ηV∗,

βS∗ I∗

1 + aS∗ + bI∗
= (δ0 + δ1)E∗,

δ1E∗ = (δ0 + δ2 + δ3)I∗, δ2 I∗ = δ0R∗, µS∗ = (δ0 + η)V∗.
(10)

Define
V(X) = V1(X) +

2δ0 + δ3

2δ1
V2(X) +

2δ0 + δ3

2δ2
V3(X) +

δ0

µ
V4(X), (11)

where

V1(X) = (S − S∗ + E − E∗ + I − I∗ + R − R∗ + V − V∗)2,

V2(X) = (I − I∗)2, V3(X) = (R − R∗)2, V4(X) = (V − V∗)2.

Then, V is positive definite and lim
|X|→∞

V(X) = ∞. By virtue of (10), we can obtain

LV1 =2[(S − S∗) + (E − E∗) + (I − I∗) + (R − R∗) + (V − V∗)][A − δ0(S + E + I + R + V)

−δ0 I] + σ2
1 S2 + σ2

2 E2 + σ2
3 I2 + σ2

4 R2 + σ2
5 V2

=2[(S − S∗) + (E − E∗) + (I − I∗) + (R − R∗) + (V − V∗)][−δ0(S − S∗)− δ0(E − E∗)

− (δ0 + δ3)(I − I∗)− δ0(R − R∗)− δ0(V − V∗)] + σ2
1 S2 + σ2

2 E2 + σ2
3 I2 + σ2

4 R2 + σ2
5 V2

≤2[−δ0(S − S∗)2 − δ0(E − E∗)2 − (δ0 + δ3)(I − I∗)2 − δ0(R − R∗)2 − δ0(V − V∗)2

− (2δ0 + δ3)(E − E∗)(I − I∗)− (2δ0 + δ3)(I − I∗)(R − R∗)− 2δ0(S − S∗)(V − V∗)]

+ σ2
1 S2 + σ2

2 E2 + σ2
3 I2 + σ2

4 R2 + σ2
5 V2,

LV2 = 2(I − I∗)[δ1(E − E∗)− (δ0 + δ2 + δ3)(I − I∗)] + σ2
3 I2

= −2(δ0 + δ2 + δ3)(I − I∗)2 + 2δ1(E − E∗)(I − I∗) + σ2
3 I2,

LV3 = 2(R − R∗)[δ2(I − I∗)− δ0(R − R∗)] + σ2
4 R2

= −2δ0(R − R∗)2 + 2δ2(I − I∗)(R − R∗) + σ2
4 R2,

LV4 = 2(V − V∗)[µ(S − S∗)− (δ0 + η)(V − V∗)] + σ2
5 V2

= −2(δ0 + η)(V − V∗)2 + 2µ(S − S∗)(V − V∗) + σ2
5 V2.

This implies that
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LV =LV1 +
2δ0 + δ3

2δ1
LV2 +

2δ0 + δ3

2δ2
LV3 +

δ0

µ
LV4

≤− 2δ0(S − S∗)2 − 2δ0(E − E∗)2 −
[

2(δ0 + δ3) +
(2δ0 + δ3)(δ0 + δ2 + δ3)

δ1

]
(I − I∗)2

− 2
[

2δ0 +
δ0(2δ0 + δ3)

δ2

]
(R − R∗)2 −

[
2δ0 +

2δ0(δ0 + η)

µ

]
(V − V∗)2 + σ2

1 S2 + σ2
2 E2

+
(2δ0 + 2δ1 + δ3)σ

2
3

2δ1
I2 +

(2δ0 + 2δ2 + δ3)σ
2
4

2δ2
R2 +

(δ0 + µ)σ2
5

µ
V2

=− (2δ0 − σ2
1 )

(
S − 2δ0

2δ0 − σ2
1

S∗
)2

− (2δ0 − σ2
2 )

(
E − 2δ0

2δ0 − σ2
2

E∗
)2

−
(

2δ1(δ0 + δ3)

δ1
+

(2δ0 + δ3)(δ0 + δ2 + δ3)

δ1
− 2δ0 + δ2 + δ3

2δ1
σ2

3

)
×(

I − 2δ1[2δ1(δ0 + δ3) + (2δ0 + δ3)(δ0 + δ2 + δ3)]

4δ1(δ0 + δ3) + 2(2δ0 + δ3)(δ0 + δ2 + δ3)− (2δ0 + 2δ1 + δ3)σ
2
3

I∗
)2

−
(

2δ0δ2

δ2
+

2δ0(2δ0 + δ3)− (2δ0 + 2δ2 + δ3)

2δ2

)
×(

R − 4δ0δ2 + 2δ0(2δ0 + δ3)

4δ0δ2 + 2δ0(2δ0 + δ3)− (2δ0 + 2δ2 + δ3)σ
2
4

R∗
)2

−
(

2δ0µ + 2δ0(δ0 + η)− (µ + δ0)σ
2
5

µ

)(
V − 2δ0(µ + η + δ0)

2δ0(µ + η + δ0)− (δ0 + µ)σ2
5

V∗
)2

+ F

=− m1(S − θ1S∗)2 − m2(E − θ2E∗)2 − m3(I − θ3 I∗)2 − m4(R − θ4R∗)2

− m5(V − θ5V∗)2 + F

If F satisfies the following criteria

0 < F < min
(

m1θ2
1S∗2, m2θ2

2E∗2, m3θ2
3 I∗2, m4θ2

4 R∗2, m5θ2
5V∗2

)
,

then the ellipsoid

m1(S − θ1S∗)2 + m2(E − θ2E∗)2 + m3(I − θ3 I∗)2 + m4(R − θ4R∗)2 + m5(V − θ5V∗)2 = F

is completely contained within R5
+. One can choose U to be any neighborhood of the

ellipsoid such that Ū ⊂ R(
+5), where Ū is the closure of U. Thus, we get LV(X) < −1

for X ∈ R5
+ \ U, thus indicating the condition in Lemma 3 hold. Therefore, the stochastic

model (3) possesses a stationary distribution and exhibits ergodicity.

4. Numerical Simulations and Data Interpretation

Since the emergence of COVID-19 in late December 2019, the pandemic remains a
substantial concern. However, the situation appears to have improved with the availability
of vaccines. The purpose of this section is to provide a numerical example illustrating
our main results, and offer recommendations for controlling pandemic based on data
from COVID-19.

4.1. Model Validation

Based on official data and the research of various scholars, we have conducted a simple
data analysis to obtain important parameters, presented in Table 2.
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Table 2. Relevant variables and parameter values.

Parameter Value Reference

A 100,000 Estimate
a 0.5 [50]
b 0.5 [50]
δ0 7.14 × 10−3 [51]
µ 0.4 Estimate
η 0.3 [52]
δ1 0.2 [53]
δ2 0.02 [53]
δ3 0.2 Estimate
σ1 0.06 Estimate
σ2 0.115 Estimate
σ3 0.03 Estimate
σ4 0.008 Estimate
σ5 0.008 Estimate
S(0) 11,081,000 [53]
E(0) 600 [53]
I(0) 410 [53]
R(0) 30 [53]
V(0) 0 [53]

We set β = 1.398 × 10−3, and obtain Rs
0 = 0.8759 < 1 and δ0 = 7.14 × 10−3 > σ2

max
2 =

6.6125 × 10−3 by using these parameter values. The dynamics of model (3) is presented in
Figure 1. It shows that the disease will become extinct, which supports the results stated in
Theorem 1.

0 10 20 30 40 50 60

t

0

2

4

6

8

10

12

S
(t

)

10
6

Stochastic

Determinstic

0 10 20 30 40

t

0

100

200

300

400

500

600

700

E
(t

)

Stochastic

Determinstic

0 10 20 30 40 50 60

t

0

100

200

300

400

500

I(
t)

Stochastic

Determinstic

0 200 400 600 800 1000

t

0

10

20

30

40

50

60

70

80

R
(t

)

Stochastic

Determinstic

0 10 20 30 40 50 60

t

0

2

4

6

8

10

V
(t

)

10
6

Stochastic

Determinstic

Figure 1. The spread of COVID-19 when Rs
0 < 1.
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We set β = 0.1898 and σ2 = 0.07, and the other parameter values used are those given
in Table 2. Then, we obtain R0 = 2.1929 > 1, and m1 = 0.0107, m2 = 0.0094, m3 = 0.5098,
m4 = 0.131, m5 = 0.0252, 0 < F = 1.9007 × 109 < min

(
m1θ2

1S∗2, m2θ2
2E∗2, m3θ2

3 I∗2,
m4θ2

4 R∗2, m5θ2
5V∗2) = 1.9410 × 109. The dynamics of model (3) is presented in Figure 2.

This indicates that the disease will prevail by our analytical results stated in Theorem 2.
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Figure 2. The spread of COVID-19 when R0 > 1.

4.2. Sensitivity Analysis of R0 and Rs
0

To effectively control infectious diseases, it is crucial to investigate the impact of vari-
ous factors on disease transmission. Therefore, in this study, we examine the relationship
between certain parameters and Rs

0 and R0, as well as potential measures to mitigate the
spread of disease.

Firstly, we demonstrate the influence of the pertinent parameters on the threshold Rs
0,

as depicted in Figure 3a,b.
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Figure 3. The relationship between Rs
0 and related parameters. (a) Relationship between Rs

0 and β.
(b) Relationship between Rs

0 and σ2.

Upon setting β ∈ [10−4, 10−2] while keeping the remaining parameter values un-
changed from those presented in Table 2, we observe that Rs

0 exhibits a decreasing trend as
β decreases (refer to Figure 3a). Similarly, under the constant parameter values specified
in Table 2, when σ2 varies within the range [0, 0.5] and β = 1.398 × 10−3, we note that Rs

0
displays a decreasing pattern as σ2 increases (see Figure 3b). This observation indicates that
the introduction of random fluctuations in our stochastic model can effectively suppress
disease outbreaks.

We further investigate the relationship between several parameters and the value of
R0, as depicted in Figure 4. According to the definition of R0 in Equation (2), it is evident
that R0 decreases as β decreases or µ increases. To clearly illustrate the impact of β and µ
on R0, we fix A = 10, δ0 = 0.01, δ1 = 0.1, δ2 = 0.01, δ3 = 0.15, a = 0.01, and vary β within
the range [0.01, 0.1] and µ within the range [0, 0.8]. Through the analysis of Figure 4, it
is evident that by reducing interpersonal contact and promoting vaccination efforts, the
spread of the disease can be effectively controlled, aligning with the current strategies
implemented in response to the ongoing pandemic.

0

0.8

20

0.6 0.1

40

0.4

60

0.05
0.2

0 0

Figure 4. Relationship between R0 and β, µ.

5. Concluding Remarks

In this paper, we considered a stochastic SVEIR epidemic model with a nonlinear
incidence rate. We utilized two key values to determine the system dynamics: one is defined
as Rs

0, and the other is the reproduction number R0 of the corresponding deterministic
model. We demonstrated that when Rs

0 < 1, the disease will become extinct. On the other
hand, if R0 > 1 and the other parameter values satisfy the conditions in Theorem 2, the
disease will persist.
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We extracted feasible coefficients from published studies on COVID-19 transmission
to exemplify our findings. Through our sensitivity analysis, we revealed that the stochastic
model, with the introduction of random fluctuations, can effectively mitigate disease
outbreaks. Specifically, the contact transmission rate β and the vaccination rate coefficient
µ exert substantial influence on the value of Rs

0. These results indicate that reducing
interpersonal contact and increasing vaccine usage are effective strategies for controlling
epidemic spread.

The utilization of stochastic Lyapunov functions and numerical simulations with
COVID-19 data accentuates the symmetrical interplay between random fluctuations, vac-
cination efficacy, and disease containment. This symmetrical perspective enhances our
understanding of epidemic dynamics and underscores the importance of balanced strate-
gies in mitigating disease outbreaks. As such, this study aligns with the principles of
symmetry, emphasizing the harmonious interactions and equilibrium present in epidemic
modeling and control efforts.

Finally, it should be noted that there are several areas that warrant further investi-
gation in the field of stochastic epidemic modeling. For instance, (1) in the model we
assumed Brownian noise, but in reality, some cases involve Lévy noise; (2) in the numerical
simulation part, we assumed certain parameter values, but the actual parameter values
are still uncertain; (3) the conditions outlined in Theorem 2 are intricate; (4) the nonlinear
incidence rate may vary when modeling different diseases; (5) since most vaccines have a
time limit, it is essential to incorporate this limitation into the model. In our future work,
we will focus on addressing these questions.
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