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Abstract: Occlusion or posture change of the face in natural scenes has typical asymmetry; how-
ever, an asymmetric face plays a key part in the lack of information available for facial expression
recognition. To solve the problem of low accuracy of asymmetric facial expression recognition,
this paper proposes a fusion of channel global features and a spatial local information expression
recognition network called the “Channel–Spatial Integration Network” (CSINet). First, to extract
the underlying detail information and deepen the network, the attention residual module with a
redundant information filtering function is designed, and the backbone feature-extraction network
is constituted by module stacking. Second, considering the loss of information in the local key
area of face occlusion, the channel–spatial fusion structure is constructed, and the channel features
and spatial features are combined to enhance the accuracy of occluded facial recognition. Finally,
before the full connection layer, more local spatial information is embedded into the global channel
information to capture the relationship between different channel–spatial targets, which improves
the accuracy of feature expression. Experimental results on the natural scene facial expression data
sets RAF-DB and FERPlus show that the recognition accuracies of the modeling approach proposed
in this paper are 89.67% and 90.83%, which are 13.24% and 11.52% higher than that of the baseline
network ResNet50, respectively. Compared with the latest facial expression recognition methods
such as CVT, PACVT, etc., the method in this paper obtains better evaluation results of masked facial
expression recognition, which provides certain theoretical and technical references for daily facial
emotion analysis and human–computer interaction applications.

Keywords: facial expression recognition; attention mechanism; channel–spatial information;
feature fusion

1. Introduction

Human facial expressions are an important way for humans to convey emotional
information and they have a wide range of potential applications in human–computer
interaction [1], safe driving monitoring [2,3], medical diagnosis [4], and educational coun-
seling [5]. In recent years, deep learning–based facial expression recognition methods have
achieved better performance using laboratory data sets, but faces in natural scenes are
usually occluded or only part of the face is observed during body movement, and this facial
asymmetry leads to poor expression recognition in natural scenes. How to overcome the in-
fluence of obstacles such as occlusion and incomplete facial information on the accuracy of
expression recognition in natural scenes is a current research hotspot in the field of affective
computing and an urgent problem to be solved to improve the quality of human–computer
interaction for facial expression recognition in real-world environments [6].

To solve the challenging problem of losing key information by occlusion and posing
change, the related research in recent years mainly adopts global feature-based recognition
methods [7,8], local feature-based recognition methods [9,10], and two fusion recognition
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methods [11]. Global feature-based recognition methods usually input the whole face image
into the network and extract the overall features by using reconstruction to occlude part of
the image to complement the information or attention mechanism to focus on the key areas.
For example, Pan et al. [12] proposed a method for occluded facial expression recognition
with the help of nonoccluded facial images, which employs adversarial learning so that
the occluded facial image learns the feature distribution of the unoccluded facial image
to recognize the global facial image expression. However, recognition methods based on
global facial features usually ignore the collaborative relationship to local high-frequency
detail information, which is more effective in facial images with complete information but
needs to be improved for scenes with severe occlusion and drastic pose changes.

Local feature–based recognition methods focus on local features of the face, such as the
eyebrows, eyes, mouth, and other parts of the face, which mainly intercept the local region
by cropping, and then extract the local key information to recognize the expression [13].
Psychologist Mehrabian [14] found that 55% of human emotion transmission comes from
facial expressions, and the human visual system can utilize both local details and the whole
face to perceive the semantic information transmitted by occluded faces in natural scenes.
For example, Wang [15] cropped the whole facial image into several regions and used a
self-attention network to adaptively obtain the importance of the facial regions for the
recognition of occlusion and gesture change expressions, to improve the accuracy of the
model in recognizing occluded facial expressions using different local features. Although
the local feature-based recognition method pays attention to the detailed information of the
key facial regions, it does not take into account the influence of the overall facial features
on the correct recognition of expressions, and it is difficult to express the complete global
features with the fragmented local information.

Some scholars tried to increase the understanding of the semantics of occluded facial
expressions in the natural environment by fusing local and global feature methods [16–18].
Li et al. [9] proposed a convolutional neural network with an attention mechanism, which
perceives the occluded region of the face by focusing on the key features of the nonoccluded
region of the face, but it is difficult for a single local spatial information to communicate
with the global channel information, and single semantics ignores the global contextual in-
formation, which results in wrong expression recognition. Wadhawan et al. [19] transferred
the learning of local facial signatures in five subnetworks to global expression classification
to reduce the impact in predicting facial expressions with extreme poses, lighting, and
occlusion conditions. However, the separation of the local and global model training
approach hinders the multidimensional details and semantic features from learning from
each other, suppressing the impact of local features on the overall facial expression, and the
overall facial expression semantics are difficult to accurately express. Yu et al. [20] used
a shared shallow module to learn information from local regions and global images, and
then constructed a widget-based module to extract local dynamic information related to the
overall facial expression. The method of understanding the overall semantics of the facial
expression through the learning of local detail features did not distinguish the importance
of local features, resulting in the influence of the facial expression recognition of salient
features. Therefore, salient regions do not play an important role.

Recently, some researchers have begun to experiment with new underlying network
paradigms [21,22]. For example, Chen et al. [23] used graph neural networks (GCNs) to
design a subspace streaming learning method for intensity-invariant facial expression
recognition, which treats the target task as a node classification problem and learns the
streaming representation using two subspace analyses, the locality preserving projection,
and the peak-guided locality preserving projection. However, graph neural networks
are usually limited to shallow learning, making it difficult to extract highly semantic
features and thus failing to accurately recognize facial expressions with small differences.
Cheng et al. [24] proposed a novel unified model called the “transformer autoencoder”
(TAE) using a transformer-based architecture, aiming to populate modally incomplete data
from partially observed data, and while better recognition performance was obtained on
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the DEAP and SEED-IV data sets, the transformer architecture needs to address its high
computational cost and the problem of requiring large amounts of data for specific tasks.

Existing methods [25–27] do not pay attention to the local details of high-frequency
information and global spatial feature learning obstacles; channel information and spatial
information fusion is not sufficient; and the significant region of low impact, and so on,
leading to the natural environment of the facial expression recognition is difficult, among
other issues. Therefore, this paper proposes a channel–spatial fusion network (CSINet) for
the natural environment of the multistate human facial expression recognition. The network
model contains three main parts as follows: the backbone feature-extraction network
with a redundant-information filtering function, the channel–spatial information fusion
structure, and the local global feature coordination enhancement module. Specifically, in
the backbone feature-extraction network, the network is stacked and deepened by using
the attention residual unit [28], which enhances and extracts high-frequency features, such
as eyebrows, eye lines, and the corner of the mouth, to obtain the high-semantic features
of the facial expression and, at the same time, the attention residual unit filters out a
large amount of redundant information in regions that are of little help to the expression
recognition such as the hair, cheeks, forehead, etc., to reduce the interference of the low-
frequency information on the model and improve the robustness of the algorithm. In the
channel–spatial information fusion structure, a method of fusing channel attention and
spatial attention feature layers is designed, which first highlights the channel features and
spatial features, respectively, and then uses convolutional operation to fuse their extracted
important features with the original high-semantic features, which effectively strengthens
the information exchange between the channel and the space, and improves the effect of
the local details on the global spatial structure. In the local global feature coordination
enhancement module, the loss of spatial information of the target is avoided by obtaining
the position information and embedding it into the channel attention, and this module can
accurately capture the relationship between different channels and improve the accuracy of
feature expression.

Compared with existing facial expression recognition networks with global and local
feature fusion, the main contributions of this paper are as follows:

(1) An attention residual module emphasizing detailed features is used in the critical
backbone feature-extraction session, which is the basis of expression classification.

(2) Avoiding the split between spatial local features and global channel feature learn-
ing, and embedding spatial local salient features into optimized channel features to
improve the semantic expression accuracy.

(3) Avoiding the separation of the training of the local network and the overall network
during the model training process, and adopting the end-to-end one-piece training
method to improve the collaboration ability of detail features to semantic features.

(4) This paper architects a new spatial integration model for occlusion or gesture change
facial expression recognition channels through the design of different functional
modules, which provides new theoretical and technical support for deep learning–
based emotion computing methods.

2. CSINet Design

This paper proposes a channel–spatial fusion network that can realize the task of high-
precision recognition of occluded facial expressions in natural environments. The network
mainly consists of the following three parts: (1) a backbone feature-extraction network; (2)
a channel–spatial feature fusion structure; and (3) a coordination and enhancement module
for local and global features. The overall network structure is shown in Figure 1. Among
them, the backbone feature-extraction network constructed by the attention residual module
solves the problem of local and global information redundancy and insignificant important
features. The channel–spatial feature fusion structure can make up for the problem of
insufficient fusion of single-channel information and spatial information, which leads to the
difficulty of recognizing occluded facial features. The local global feature coordination and
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enhancement module is used to enhance the representation of locally significant features,
and improve the impact of locally important features on global semantics, to recognize
the occluded or occluded facial features and identify the occluded or occluded faces. The
local global feature coordination enhancement module is used to enhance the local salient
feature representation to improve the impact of locally important features on the global
semantics, to recognize the real expression of the face in the region of occlusion or posture
change. In addition, the CSINet model is not trained in steps and adopts an end-to-end
integrated training mode, which avoids mutual learning of multidimensional details and
global semantic features and improves the generalization ability of expression recognition.
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Figure 1. Channel–spatial fusion network structure.

2.1. Attention Residual Module

In the feature-extraction stage, the basic feature-extraction module is composed of
three functional blocks of a 3 × 3 convolutional layer, normalization layer, and ReLU
activation function layer arranged in sequence and repeated once to constitute the basic
feature-extraction unit. The network structure is shown in Figure 2.
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The logical computational relationship of this module can be expressed by Equation (1)

T = δ(BN( f3×3(IO))) (1)

where IO denotes the original training image; f3×3 denotes the convolutional layer with
a convolutional kernel size of 3; BN denotes the normalization layer; δ(·) denotes the
activation function, and here the ReLU activation function is used; and T denotes the
extracted feature vector. The attention residual structure is combined with the basic feature-
extraction module to form a new type of feature-extraction module with residual mapping
function and attention to the important features, and the structure of the backbone feature-
extraction network stacked with this new type of module is shown in Figure 3. The original
face image usually contains rich low-frequency information, and the detailed edge features
such as eyebrows, eyes, mouth, etc. mainly exist in the high-frequency information, while
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the high-frequency information is weak and the detailed features are gradually lost in the
process of constant convolution. Therefore, it is necessary to introduce the residual jump-
connection branch [29,30], which adds shallow high-frequency information after a certain
stage of network learning, and strengthens the expression of the detailed edge features.
Although the jump connection of the residual structure strengthens the transmission of
high-frequency information to the deep layer, but creates more low-frequency information
of color brightness, low-frequency information has a discrete effect on the deep high-level
semantic information, which is not conducive to the accurate identification of the target.
Therefore, adding the attention mechanism to the jump-connection branch can effectively
attenuate the transmission of redundant information. The attention mechanism [3–5] gives
more weight to the important information through the learning of features to enhance the
expression and transmission of the important features, and the calculation of the expression
is shown in Equation (2)

Tn = BN( f3×3(δ(BN( f3×3(Tn−1))))) + Acbam(Tn−1) (2)

where Tn−1 is the input feature of the nth attentional residual module; f3×3 denotes the
convolutional layer with convolutional kernel size 3; BN denotes the normalization layer;
δ(·) denotes the ReLU activation function; Acbam(·) denotes the spatial hybrid attentional
mechanism of the CBAM [31] channel; and Tn denotes the output feature of the nth
attentional residual module. According to Figure 3 and Equation (2), the pseudo-code
algorithm is as Algorithm 1.

Algorithm 1: Attention Residual Module Feature-Extraction Algorithm

1 function ARM(x);
Input: Original low-resolution image
Output: eigenmaps

2 if x = 0 then
3 return 0;
4 else
5 x1 = Acbam(x);
6 x2 = f 3×3(x);
7 x3 = BN(x2);
8 x4 = δ(x3);
9 x5 = f 3×3(x4);
10 x6 = BN(x5);
11 x7 = x1 + x6;
12 return x7;
13 end
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In the pseudo-code Algorithm 1, the variable x is a feature map learnable parameter,
which is a high-dimensional set of parameters, exactly a feature map with a multidimen-
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sional tensor, rather than a specific numerical value, and x1 − x6 with subscripts likewise
refer to the feature maps computed by the different network layers, and the sequence
of processing by the different network layers is by the letters of the subscripts from the
smallest to the largest, and the final result of the network processing x7 is returned.

2.2. Channel–Spatial Feature Fusion Structure (CSFF)

The feature map information carriers are usually channel information and spatial
information, and channel information refers to the information difference between different
color channels (e.g., red, green, and blue channels in an RGB image) for each pixel point in
an image [32,33]. Channel information represents the global characteristics of an image,
such as the color, lightness, and darkness of the image [34,35]. Spatial information, on the
other hand, refers to the spatial relationship between the position of each pixel point in an
image and the surrounding pixel points. Spatial information represents the local features of
an image, such as texture, edges, etc. In contrast, in fine-grained visual classification tasks,
both channel information and spatial information need to be considered because the detail
information usually involves both the color and shape of the image [36,37]. Therefore,
a fusion of spatial detail features with global features of channels is an effective way to
improve the accuracy of visual classification tasks. Figure 4 shows the network structure of
the channel–spatial feature fusion method.
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The feature fusion mechanism proposed in this paper needs to obtain two feature maps
with identical dimensions but different weighting parameters at the same time. Combining
the observation of Figures 1 and 4, we take the last layer of feature maps after the end
of the main feature extraction, and do the channel and spatial attention weighting on the
feature map T, respectively, to obtain the weighted channel feature map Tse [20] and the
spatial feature map Tsam [21]. The feature map Tse, Tsam, and the original feature map To are
spliced in the channel dimension, and the spatial and channel features are fused and learn
useful information from each other by using the size 3 × 3 filter convolution operation. The
feature fusion process is represented by Equation (3)

Tn = f 3×3(δ(Concat[To, Tse, Tsam])) (3)

where To is the original feature map; Tse is the feature map weighted by the SENet channel
attention mechanism; Tsam is the feature map weighted by spatial attention; Concat[•]
denotes the superposition of the different feature layers over the channel dimensions; δ(•)
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denotes the ReLU activation function; and f3×3 denotes the convolutional kernel size of
three, and the feature map Tn is obtained after the fusion of the spatial features of the
channel by the operation in Equation (3).

2.3. Local Global Feature Coordination Enhancement Module (LGFE)

In visual tasks, it is generally believed that local information contains a large amount
of spatial location information, which is crucial for capturing object structure in visual tasks,
and embedding location information into global channel information will help enhance the
representation of objects of interest [36]. In this paper, inspired by the coordinate attention
mechanism [38], the feature tensor weighted by spatial attention aggregates features along
the H(height) direction, and the feature tensor weighted by channel attention aggregates
features along the W(width) direction. In this way, long-range dependencies in one spatial
direction can be captured and precise position information in the other spatial direction
can be retained at the same time. The network structure is shown in Figure 5.
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As shown in the figure, two 1D global pooling operations are utilized to aggregate
the input features along the vertical and horizontal directions, respectively, while the input
feature maps come from the channel-attention-weighted feature map Tse [39] and spatial-
attention-weighted feature map Tsam [40], respectively, to form two separate directionally
oriented feature maps Tse, h in the H-direction and Tsam, w in the W-direction sensing feature
maps. These two feature maps embedded with direction-specific information are encoded
as two separate attention maps, each of which captures the long-range dependencies of
the input feature maps in one spatial direction, thus preserving positional information.
Finally, these two attention maps are applied to the input feature map by multiplication
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to emphasize the representation of interest. The network computation process can be
represented by Equations (4)–(8)

Tc×h×1 = P(1,w)(Tse) (4)

Tc×1×w = P(h,1)(Tsam) (5)

gh = δ(Tc×h×1) (6)

gw = δ(Tc×1×w) (7)

Tn+1 = Tn × gh × gw (8)

where, Tse is the feature map after channel attentional weighting; P(1,w)(•) denotes pooling
along the H-direction with a pooling kernel size of (1, w); Tsam is the feature map after
spatial attentional weighting; P(h,1)(•) denotes pooling along the W-direction with a pooling
kernel size of (h, 1); δ(·) denotes the Sigmoid activation function; gh is the attentional weight
in the H-direction of the space; gw is the attentional weight in the W-direction of the space;
Tn is the feature map after fusion of the channel space features; and Tn+1 is the output
tensor. According to Equations (4)–(8), the pseudo-code algorithm is as Algorithm 2.

Algorithm 2: Coordinated Enhancement Algorithm for Local Global Features

1 function LGFE(x);
Input: Characterization of the front layer
Output: Local Global Feature Coordination Enhanced Fusion Feature Map

2 if x = 0 then
3 return 0;
4 else
5 if x = Tse then
6 Tc×h×1 = P(1,w)(x);
7 end
8 if x = Tsam then
9 Tc×1×w = P(h,1)(x);
10 end
11 if x = x then
12 x = x;
13 end
14 x1 = Concat[Tc×h×1, Tc×1×w , x]
15 x2 = f1×1(x1)
16 return x2;
17 end

In the pseudo-code Algorithm 2, the variable x involved in the computation is a feature
map with a multidimensional tensor. Tc×h×1, Tc×1×w, x1, and x2 are obtained after specific
network layer operations to obtain a new feature layer, when the learnable feature maps go
through the different network layers to perform the corresponding rule computation, and
finally, the algorithm returns the computed feature map x2.

3. Data Sets and Experimental Platforms
3.1. Data Set Construction

The images of the data set in the laboratory environment are obtained from volunteers
in the background, light source, posture, and facial unobstructed conditions, while most
of the samples in the facial expression data set in the natural scene are taken from the real
face image material collected from the internet, in which the main factors affecting the
recognition of facial expressions, such as posture, lighting, occlusion, and other conditions,
well simulate the state of the face in the real environment. Therefore, this paper selects the
representative RAF-DB [41] and FERPlus [42] data sets in natural scenes to evaluate the
accuracy of the modeling algorithm, and considers the special occlusion and pose factors to
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evaluate the performance of facial occlusion and pose variation expression recognition on
the following two sub–data sets: Occlusion Datasets and Pose Variation Datasets. Figure 6
illustrates some samples from the RAF-DB, FERPlus, Occlusion Datasets, and Pose Variation
Datasets data sets.
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RAF-DB is a data set of facial expressions in natural scenes collected from the internet,
which consists of 29,672 diverse facial images. The image faces in the data set are highly
varied in terms of age, gender, ethnicity, head pose, illumination conditions, occluders
(e.g., eyeglasses, facial hair, or self-obscurations), and postprocessing manipulations (e.g., a
wide variety of filters and special effects), and are labeled with seven kinds of FERPlus is
an extended version of the FER2013 data set, with 28,709 training samples and 3589 test
samples, all of which were manually screened and scaled to the same pixel size. The
Occlusion Datasets were collected by Wang et al. [15] from the test sets of RAF-DB and
FERPlus as an occlusion data set, with a total of 1340 images. Wang et al. also considered the
effect of head pose variation on facial expression recognition, and collected head pose pitch
angle and yaw angle images from the RAF-DB and FERPlus test sets, of which 2419 images
are larger than a 30◦ angle, and 1192 images are larger than a 45◦ angle, which constitutes
the Pose Variation Datasets data set. Since the research object of this paper is occlusion or
pose variation facial expression recognition in natural scenes, the RAF-DB and FERPlus
data sets and their sub–data sets, Occlusion Datasets and Pose Variation Datasets, can
validate the reliability and effectiveness of this paper’s method.

3.2. Experimental Platform and Parameter Settings

The experimental hardware environment for the model training test in this paper is as
follows: the CPU of the computer is 12th Gen Intel® Core™ i5-12600KF 3.70 GHz; the sys-
tem memory is 16 G; and the graphics card is NVIDIA GeForce RTX 3070 GPU, with 8 GB of
video memory capacity. The software environment is as follows: Windows 10 operating sys-
tem; Pycharm compilation environment; PyTorch1.12 deep learning framework; cuda11.6
accelerated computing platform; Anaconda3.0 environment manager; and the program-
ming language is Python3.8. After many experimental explorations, the channel–spatial
fusion network proposed in this paper for facial expression recognition is summarized with
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important hyperparameters. The model achieves stable and reliable performance when the
model parameters are set as in Table 1.

Table 1. Experimental setup.

Set Item Parameter

Iteration 200
Batch size 32

Initial learning rate 1 × 10−2

Min learning rate (1 × 10−2) × 0.01
Optimizer SGD

Momentum 0.9
Weight decay 5 × 10−4

Learning rate decay type COS
Thread 4

4. Experimentation and Analysis
4.1. Comparison Experiment with Existing Methods

To verify the performance of facial expression recognition of the CSINet model pro-
posed in this paper, ResNet50 [43] is selected as the baseline model (the backbone feature-
extraction network of the model in this paper is improved based on ResNet50) and repre-
sentative spatially localized feature expression recognition networks (RAN, CVT) are used,
as well as the expression recognition network that fuses the channel–spatial information
(MA-Net, AMP-Net, VTFF, PACVT) for comparison. The network models in this paper
follow the model training settings in Tables 1 and 2 and record the expression recognition
accuracies obtained by different network models on different data sets.

Table 2. Correctness of expression recognition on RAF-DB and FERPlus data sets with different
network models.

Mold RAF-DB (%) FERPlus (%)

ResNet50 (baseline) [30] 76.43 79.31
RAN [15] 86.90 88.55
CVT [44] 88.14 88.81

MA-Net [45] 88.40 -
AMP-Net [46] 89.25 -

VTFF [47] 88.14 88.67
PACVT [47] 88.21 88.72

CSINet (Ours) 89.67 90.83

In Table 2, except for the algorithm proposed in this paper based on the experimental
setup, the recognition accuracy data are obtained on RAF-DB and FERPlus data sets,
and the recognition accuracy of other network models are referred to the corresponding
literature experimental conclusions (“-” indicates that the relevant literature does not
provide this experimental data). The experimental results show that compared with the
basic ResNet50, the method in this paper has 13.24% and 11.52% substantial improvement,
indicating that the simple deep network cannot recognize the expression features well.
When comparing with RAN, CVT, and other networks that only use spatially localized
features for recognition, the network in this paper improves the recognition accuracy by
1.53–2.77%, which is mainly due to the fact that the CSINet algorithm takes into account
the importance of fusing channel global information with spatial local features, and in
fine-grained visual classification tasks, it is necessary to consider both channel information
and spatial information, because the detail region images contain both colors and edge
shapes, and the color information is usually represented by the channel, and the shape
contour features are distributed in the image space. Therefore, the interactive fusion of
channel–spatial information compensates for the lack of important information about a
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single spatial feature in the natural scene applications with a lack of important information,
which helps to improve the network generalization ability and the accuracy of recognizing
facial expressions. On the RAF-DB and FERPlus data sets, compared with the expression
recognition networks based on channel–spatial fusion such as MA-Net, AMP-Net, VTFF,
PACVT, etc., the network model in this paper obtains recognition accuracies of 89.67% and
90.83%, respectively, which are higher than those recorded by the existing models. The
better recognition performance of the CSINet network is mainly attributed to the attention
residuals. The better recognition performance of the CSINet network is mainly due to the
design and use of the attention residual module. In the process of shallow feature extraction,
detailed high-frequency information is easily lost. The low-frequency information is easily
transferred to the deep feature layer due to the residual jump connection, which results
in the dispersion of the semantic features. The attention residual module effectively
inhibits the transfer of redundant information and enhances the representation of the
detailed features.

To verify the performance of the CSINet network for occlusion or pose variation facial
expression recognition in the natural environment, this paper makes a comparison with
existing related network models on the Occlusion Datasets and Pose Variation Datasets,
respectively, and the results are recorded in Table 3.

Table 3. Comparison of recognition accuracies of different network models on the joint data set of
Occlusion Datasets and Pose Variation Datasets.

Mold
Occlusion (%) Pose > 30◦ (%) Pose > 45◦ (%)

RAF-DB FERPlus RAF-DB FERPlus RAF-DB FERPlus

RAN [15] 82.72 83.63 86.74 82.23 85.20 80.40
FER-VT [48] 84.32 85.24 88.03 88.56 86.08 87.06

CVT [44] 83.95 84.79 87.97 88.29 88.35 87.20
MA-Net [45] 83.65 - 87.89 - 87.99 -

AMP-Net [46] 85.28 85.44 89.75 88.52 89.25 87.57
GE-LA [49] 85.30 86.24 89.94 89.02 89.45 88.80

CSINet (Ours) 85.74 86.49 90.16 89.61 89.60 89.13

Observing Table 3, it can be seen that in the natural scene where the face is under occlu-
sion or lack of facial information for posture change and other unfavorable environments
for expression recognition, the recognition accuracy of this paper’s method is improved
to a different degree compared to other facial expression recognition methods, which in-
dicates that this paper’s method has a better generalization ability and robustness for the
problem of occlusion and posture facial expression recognition. Unlike RAN, FER-VT, CVT,
and other networks that only consider spatial features, the channel–spatial feature fusion
structure proposed in this paper combines the spatial structure features of local details with
the global channel information, which is weighted by the attention to fuse the learning
details and semantic information, thus facilitating the reduction of the negative effects of
occlusion and gesture changes. Compared with MA-Net, AMP-Net, and other networks
that single focus on channel enhancement of global features while ignoring spatial semantic
information, the method in this paper enhances local features from spatial streams and
global features from channel streams, respectively, and considers both local detail feature
enhancement and global semantic feature expression, which improves the relevance and
discriminability of global contextual features. Compared with the GE-LA network, al-
though this network considers the enhanced fusion of channel–spatial features at the same
time, it ignores the problem of losing detailed features and spatial location information of
the base feature-extraction network, which causes the network to lose texture features of
local regions such as eyebrows, corners of eyes, and corners of mouths, etc., and the separa-
tion of the spatial location information from the channel information results in the network
model’s difficulty in capturing the visual task with long-range dependent relationships in
the visual task, which results in difficulties in recognizing occlusion and gesture change
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facial expressions. In this paper, the local global feature coordination enhancement module
embeds local spatial position information into channel information to reduce the negative
effect of the convolutional operation on long-range dependency modeling in visual tasks
and improves the generalization performance of the network for occlusion and gesture
change facial expressions.

4.2. Ablation Experiments

The above experiments have illustrated the good performance of the CSINet network,
but have not yet verified that the main improvement modules all play a positive role.
This section conducts ablation experiments on the three main part-structural modules of
the CSINet network composition—namely, ARM, CSFF, and LGFE—to assess the impact
of the different modules on the overall performance of the network. The results of the
experiments are recorded in Table 4.

Table 4. Experimental results of ablation of the main improvement modules on the natural scene data set.

Ablation Strategy ARM CSFF LGFE RAF-DB (%) FERPlus (%)

(a) × × × 76.43 79.31
(b)

√
× × 84.29 85.19

(c) ×
√

× 83.84 84.38
(d) × ×

√
86.74 88.20

The baseline network for the ablation experiments still chooses ResNet50 as the base
comparison model because the CSINet network proposed in this paper modifies and adds
three main modules to ResNet50. In strategy (a), the ResNet50 network obtains recognition
accuracies of 76.43% and 79.31% on the data sets RAF-DB and FERPlus, respectively, and
in strategy (b), the Attention Residual Module [50] is replaced with the traditional basic
residual structure in ResNet50. The recognition accuracies on the data sets are improved by
7.86% and 5.88%, respectively, which is an increase of a large magnitude that indicates that
the ARM module improves the ability to extract important features from the bottom layer
of the network. Its redundant information filtering function effectively avoids the discrete
effect of a large amount of low-frequency information on high semantic features.

With the addition of the channel–spatial feature fusion structure (CSFF) in strategy (c),
the recognition accuracies on the data set are improved by 7.41% and 5.07%, respectively,
and the improvement is not as large as that of strategy (b), but it also fully illustrates the
importance of the channel–spatial feature fusion structure (CSFF), because any target in
an image is composed of color information and spatial structure features, so in the visual
recognition, channel information and spatial features must be considered simultaneously
in the visual recognition task. In most network models, only the information of a single
mode is usually taken into account while ignoring the assistance of other modes. In this
paper, we propose the CSFF structure to fuse the enhanced channel features with spatial
features and use convolutional operations to make the channel and the space learn each
other’s important information, to improve the model’s ability to recognize the semantics
of expressions.

In strategy (d), the Local Global Feature Coordination Enhancement (LGFE) module
embeds the local spatial location information into the channel information to avoid the
inefficiency of the convolutional operation in capturing the local relationship to the long-
range dependence in the visual task, and the recognition accuracy is improved by 10.31%
and 8.89% on the RAF-DB and FERPlus data sets, respectively. The improvement of the
recognition effect with the addition of the LGFE module is by a larger margin, which shows
that the network’s ability to capture cross-channel information, as well as orientation-aware
and location-sensitive information, affects the accuracy of the model in localizing and
recognizing the object of interest. Therefore, the design of the local global feature coordina-
tion enhancement module improves the model’s ability to recognize expressions that are
affected by occlusion and posture change faces over long distances in natural environments.
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4.3. Visualization Analysis

To better explain the CSINet effectiveness, this experiment utilizes the GradCam
(gradient-weighted class activation mapping) [51] method to visualize and analyze the
ResNet50 baseline model, the spatially localized feature expression recognition network
FER-VT, the fusion channel–spatial information expression recognition network AMP- Net,
and the models in this paper. To test the network model’s focus on important regions more
broadly, this paper collects normal facial images as well as samples with occlusion and
gesture change features from the RAF-DB data set, which contains both full facial samples
and occlusion and gesture change sample cases such as illumination, adornment, hair,
gesture, head deflection angle, and so on. Figure 7 shows the results of different network
model visualizations.

Symmetry 2024, 16, x FOR PEER REVIEW 14 of 21 
 

 

 
Figure 7. Visualization of different network models for facial expression recognition. 

As shown in Figure 7, the first row is the original image, which contains eight kinds 
of multimodal expressions as follows: anger, contempt, disgust, fear, happiness, neutral-
ity, sadness, and surprise (left to right). The second row is the visualization of the baseline 
model ResNet50. The third row is the visualization of the spatially localized feature ex-
pression recognition network FER-VT. The fourth row is the visualization of the expres-
sion recognition network AMP-Net that fuses the channel–spatial information. Finally, the 
fifth row is the visualization of the CSINet network proposed in this paper. It can be seen 
that the spatial location of the face concerned by the baseline ResNet50 network in the 
second row is not in the key feature expression region, the focus range is diffuse and un-
focused, and the occluded and offset part of the face is unfocused, which results in the 
phenomenon of recognition difficulties. The third row of spatial local features expression 
recognition network FER-VT considers local detail features, the heat map focus begins to 
focus on the eyes, eyebrows, mouth, and other key local areas, but the focus is small and 
there is a large offset situation. The fourth line AMP-Net network fuses channel infor-
mation with spatial information, which enhances the network�s focus on the important 
areas of the face and semantic expression ability. From the heat map, it can be seen that 
the focus on the eyes, eyebrows, and mouth focus areas have been focused on learning by 
the network, the focus on the region is more complete, and the area is significantly larger. 
The fifth line shows that the attention residual structure uses the redundant-information 
network filter, such as the hair, cheeks, chin, ears, and other regions are ignored, without 
extensive attention to the region that is not important to the semantic recognition of the 
expression. The channel and the spatial attention information fuse so that the network can 
learn the important details of the texture features and the global grayscale information 
heat map focus of attention on the main emotional expression region. The spatial location 
information embedded in the channel location information makes the network locate the 
important feature locations more accurately and comprehensively, and the heat map fo-
cuses on more comprehensive focus areas with increased area coverage and smaller devi-
ation, indicating that the spatial location information introduced by the local global fea-
ture coordination enhancement module assists the network in locating the focus areas. In 
the field of image recognition, the confusion matrix can be used to evaluate the model�s 
performance in recognizing different objects. Figure 8 shows the confusion matrix [52] of 
the CSINet model on the RAF-DB data. 

Figure 7. Visualization of different network models for facial expression recognition.

As shown in Figure 7, the first row is the original image, which contains eight kinds of
multimodal expressions as follows: anger, contempt, disgust, fear, happiness, neutrality,
sadness, and surprise (left to right). The second row is the visualization of the baseline
model ResNet50. The third row is the visualization of the spatially localized feature ex-
pression recognition network FER-VT. The fourth row is the visualization of the expression
recognition network AMP-Net that fuses the channel–spatial information. Finally, the fifth
row is the visualization of the CSINet network proposed in this paper. It can be seen that
the spatial location of the face concerned by the baseline ResNet50 network in the second
row is not in the key feature expression region, the focus range is diffuse and unfocused,
and the occluded and offset part of the face is unfocused, which results in the phenomenon
of recognition difficulties. The third row of spatial local features expression recognition
network FER-VT considers local detail features, the heat map focus begins to focus on the
eyes, eyebrows, mouth, and other key local areas, but the focus is small and there is a large
offset situation. The fourth line AMP-Net network fuses channel information with spatial
information, which enhances the network’s focus on the important areas of the face and
semantic expression ability. From the heat map, it can be seen that the focus on the eyes,
eyebrows, and mouth focus areas have been focused on learning by the network, the focus
on the region is more complete, and the area is significantly larger. The fifth line shows that
the attention residual structure uses the redundant-information network filter, such as the
hair, cheeks, chin, ears, and other regions are ignored, without extensive attention to the
region that is not important to the semantic recognition of the expression. The channel and
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the spatial attention information fuse so that the network can learn the important details
of the texture features and the global grayscale information heat map focus of attention
on the main emotional expression region. The spatial location information embedded in
the channel location information makes the network locate the important feature locations
more accurately and comprehensively, and the heat map focuses on more comprehensive
focus areas with increased area coverage and smaller deviation, indicating that the spatial
location information introduced by the local global feature coordination enhancement
module assists the network in locating the focus areas. In the field of image recognition, the
confusion matrix can be used to evaluate the model’s performance in recognizing different
objects. Figure 8 shows the confusion matrix [52] of the CSINet model on the RAF-DB data.
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Figure 8. CSINet confusion matrix on the RAF-DB data.

The diagonal lines of the matrix indicate the number of correctly categorized categories,
and the off-diagonal points are cases of incorrect categorization. Figure 8 shows that the
vast majority of categories have darker diagonal lattice colors and lighter off-diagonal
lattice colors, indicating that the CSINet model has good performance on the multicategory
classification task and that the “disgusted” and “contested” categories have relatively
lighter main diagonal lattice colors, which can be explained by the fact that these two
expressions vary in appearance performance. Categories with relatively lighter main
diagonal lattice colors can be interpreted as these two expressions do not show significant
changes in appearance, and thus are easily misclassified.

4.4. Performance Experiments under Occlusion Environment

To verify that the algorithm model in this paper can still maintain good performance
in real-life scenes where the face is under occlusion, this paper randomly selects images of
real people’s faces taken in random scenes and performs artificial occlusion of the face at
different positions to simulate the occlusion that may exist in a natural scene. As shown in
Figure 9, this paper adopts four masking methods as follows: masking the upper region
of the image, masking the middle region of the image, masking the lower region of the
image, and random masking. The AMP-Net network, which performs better in the above
experiments, is selected as a comparison, and the recognition accuracy of the proposed
model under different occlusion methods is recorded in Table 5.
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Table 5. Comparison of recognition accuracy between the models AMP-Net and CSINet under
different occlusion methods.

Mould Mask Method Accuracy (%)

AMP-Net

Upper Mask 83.54

84.82 (average)Middle block 85.19
Lower block 84.62

Random Mask 85.91
No Mask 88.75

CSINet

Upper Mask 86.37

87.69 (average)Middle block 88.19
Lower block 87.53

Random Mask 88.68
No Mask 90.83

The selected photographs originally had occlusion and posed change problems, and
when the occlusion region is artificially added again, it reduces the effective information in
the image for recognizing that the expression is greatly reduced, thus creating a greater
recognition challenge for the network model. As seen in Table 4, it is found that when there
is no occlusion, both the CSINet network and the AMP-Net network in this paper have
better performance realizations, but the model in this paper is still a little better. Comparing
the occlusion situation again, the average decrease of the AMP-Net network is 3.93%, the
average decrease of the CSINet network is 3.14%, and the decrease of AMP-Net recognition
accuracy is significantly larger than that of CSINet, which indicates that the algorithm of this
paper still has a better robustness and generalization ability under the condition of extreme
effective information incompleteness. From another perspective, among different masking
methods, the recognition accuracy decreases the most when masking part of the human
face, because the upper part contains important regions such as eyes and eyebrows, which
have more key information and are very important for expression recognition. However,
comparing from the dimension of upper part masking, this paper’s model is 2.83% higher
than AMP-Net’s recognition accuracy, reaching 86.37%, which indicates that this paper’s
network still has good expression recognition accuracy under extremely difficult occlusion
environments, and the performance is more stable compared to other model algorithms,
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and more accurately recognizes the semantic information of the occluded regions with
long-distance correlation.

To further verify the recognition performance on nonpublic data sets, facial expression
images in real natural environments were collected for testing the recognition effect of the
CSINet network and AMP-Net network in this paper, and some of the test facial expressions
are shown in Figure 10.
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The real-time real natural environment facial expression test images are partly from
the network, and partly taken by an iPhone12. There are 40 test images for each kind
of expression, and the test data set has a total of 320 images. Forty images of the same
kind of expression are inputted into the converged CSINet and AMP-Net networks for
prediction, respectively, and the number of correctly predicted images is divided by the
total number of images (40 images) and then the percentage (%) is calculated, which is the
recognition accuracy of each expression. All test images are independent of the RAF-DB
and FERPlus public data sets, so that the algorithm can be verified in real-time real natural
environment expression recognition performance. Observing the test results in Figure 11,
the accuracy of this paper’s algorithm CSINet in all types of expression recognition is
higher than the comparison algorithm AMP-Net, which indicates that the algorithm still
has better robustness and generalization ability in real test images of nonpublic data sets.
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natural environment.

The above experimental results show that the method in this paper proves its good
performance on the RAF-DB and FERPlus public data sets, as well as on real-time real
natural environment test image sets, and further research in the future will combine the
software and hardware, which is of practical significance in the fields of human–computer
interaction, safe driving, or mental health counseling. The method of this paper has a higher
recognition accuracy compared with other methods in this field. It cannot be deployed
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in edge computing devices for underlying tasks such as sentiment analysis in practical
engineering applications.

5. Statement of Conclusions and Limitations

In this paper, we focus on the task of facial expression recognition, especially the
problems of recognition difficulty and low accuracy when the difficulty of expression
recognition increases when the face is occluded or the posture changes, and construct a
channel–spatial fusion network (CSINet) for facial expression recognition. Starting from the
basic ResNet50 network model, the network designs the attention residual module for the
extraction of important detail features and the filtering of redundant information; proposes
the channel–spatial feature fusion algorithm for the fusion learning of detailed texture and
color location information of facial expressions and enhances the generalization ability of
occlusion and posture change facial expressions; and establishes the local global feature
coordination and enhancement mechanism and embeds spatial location information into
the channel information to enhance the generalization ability of occlusion and posture
change facial expressions. The local global feature coordination enhancement mechanism
is established to embed the spatial location information into the channel information to
improve the model’s ability to express long-range dependency relations, thus improving
the recognition performance of facial expression semantics in occlusion and posture change
regions. After the experimental validation of the facial expression data sets RAF-DB and
FERPlus obtained from natural scenes and the real-time test image set of real natural scenes,
compared with the AMP-Net algorithm, which has the best performance, the recognition
accuracy of this paper’s algorithm is improved by 0.42% and 0.87%, and in the real test
samples, the recognition accuracy of this paper’s algorithm is improved by 2.35%, which
shows that this paper’s algorithm is more accurate in the public data set and the real-life
scene facial expression. The public data set as well as the real-life scenarios have better gen-
eralization performance and robustness on the task of facial expression recognition, which
provides a new network architecture design reference for asymmetric facial expression
recognition in natural scenarios. The research of facial expression recognition is the basis of
engineering applications in many fields such as human–computer interaction, safe driving,
medical diagnosis, etc. The CSINet model can provide certain theoretical and technical
references for future development and engineering applications in this field.

In this paper, the network model is not deployed in edge computing devices for
testing the actual performance. In addition, it should be emphasized that the eight types of
facial expression features (surprise, fear, disgust, happiness, sadness, anger, contempt, and
neutrality) are sufficiently different, even if the characteristics of the distinctive expression
of the current method of recognition accuracy still does not reach a sufficiently high level,
which has a lot of room for improvement. In addition, facial expression recognition is a
complex and difficult visual recognition task. This paper, as well as many academic articles,
does not fully consider the impact of different races, countries, regions, ages, skin color,
and other factors, so the actual generalization performance is still to be proved. The next
stage of the task will be to self-construct the facial expression data set and train the network
model proposed in this paper, taking into account the adaptability of human–computer
interaction as well as the inference efficiency.
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