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Abstract: Correlation, functioning as a symmetric relation, is very powerful indicator of the mutual
association between two attributes. The problem of weak correlation indicates a lack of linearity in the
observed range. This paper presents the precise piecewise correlation method, which overcomes the
problem by determining the segments where the linear association will be present. The determination
was achieved using the histogram segmentation method. The conditions of the application and analy-
sis of the method are presented, as well as the application of the method to the representative datasets.
The obtained results confirm the existence of stronger linear associations on the segments. Detected
correlations reveal the strength and nature of the symmetric association between two attributes on
each of the separated segments.

Keywords: correlation; histogram segmentation; gain ratio; kernel density estimation

1. Introduction

This paper emphasizes the importance of piecewise correlation and presents a new
method for determining correlation based on histogram segmentation. It happens that
two considered attributes are weakly correlated in the whole range but there exist notably
stronger correlation if observing subranges. Subranges are predefined if there exists some
classification within one of the attributes. But, if there is lack of any classification, the novel
method imposes piecewise correlation determined via histogram segmentation produced
by the intersections of kernel density estimations [1]. Piecewise correlation is feasible if at
least one of the attributes has a multimodal histogram.

Behind the development of the method is an idea that was first applied in [2], where
the analyzed data had a low correlation on the entire dataset. By applying the histogram
segmentation design [3], correlation by segments was achieved, and noticeably higher
values were obtained. A connection between the choice of multimodal histogram and gain
ratio was observed. It is important to emphasize that correlation is a completely symmetric
and mutual feature of two attributes.

For the initial promotion of the novel method, a representative Iris dataset was used [4].
It contains four attributes to be compared and correlated. Each considered attribute has a
finite set of values and, furthermore, has a corresponding empirical distribution and his-
togram, with an associated random variable. The initial correlation between the attributes
will be computed and used for comparison with piecewise correlations obtained by the
proposed method.

Additionally, the proposed PPC method was applied to three more datasets. The
Dryad dataset [5] has been segmented by histograms of real distances for horizontal and
vertical nodes, which enabled significant correlations between attributes. The Pima Indians
Diabetes Database [6] is an example of one of the weaker achievements of the PPC method,
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with appropriate explanation. The Glass dataset [7] represents a case where the PPC
method cannot be applied.

The method implies determination of gain ratio and segmented histogram for each
attribute. The segmentation of the attribute with the highest gain ratio will be extended to
the entire data, i.e., on all the attributes. After the global segmentation, the attributes will
be correlated again, separately within each segment. The final correlation will be observed
piecewise and, therefore, more accurate than the initial correlation. The proposed procedure
justifies the name of the method that will be exposed, Precise Piecewise Correlation (PPC),
after histogram segmentation.

The structure of the paper is as follows: The Section 2 presents the used related
methods. It emphasizes correlation as the main subject of research. Next, the segmentation
histogram and the related kernel density estimation function are presented. The last method
used concerns entropy and its reduction measured by the term gain ratio. The Section 3
details the new PPC method, precise piecewise correlation, after histogram segmentation.
In Section 4, the method is applied to the Iris dataset, Dryad dataset and Diabetes Database.
In addition, the Glass dataset, where the method is not applicable, is considered.

The Section 5 contains a discussion of the results obtained by the PPC method applied
to the Iris dataset and a comparison with the initial correlation, but also with the correlation
based on the flower-type clustering. At the end of the discussion, the case where the
method is not applicable is considered. The conclusion ends this paper.

2. Related Methods
2.1. Correlation

Correlation is a widely used statistical measure expressing the linear dependency
of two variables. It does not inform on cause and effect, but only on the intensity of the
connection. The Pearson correlation coefficient [8] is a relative quantity of the correlation
that ranges between −1 and +1. The coefficient close to zero reflects a lack of correlation,
while its closeness to ±1 means strong linear dependency. A positive correlation indicates
that values of both variables tend to increase together, while the negative one specifies
that two variables have opposite tendencies. The Pearson correlation coefficient of the two
variables X and Y can be determined using the following formula:

corr(X, Y) =
E((X − E(X))(Y − E(Y)))

σXσY
(1)

where E is the expectation operator and σ is the standard deviation. A comprehensive
overview of various types of correlation and their interpretations can be found in [9,10].
Due to the symmetry of correlation, variables can be arbitrarily designated as independent
or dependent. Correlation is visualized on scatterplots by interpolating a straight line
between the points. Often a line is not a good enough model for points, e.g., if the points
are placed near to a parabolic curve. By splitting the points into two or more regions,
the correlation can be observed separately within each region, and the corresponding
correlation coefficients will be noticeably higher. We will develop this type of correlation
and call it the precise piecewise correlation. It should be emphasized that a segmented
correlation, although the term sounds similar to the piecewise correlation, is a type of
autocorrelation and a common tool in algorithms that extract a target signal in seismic
communication [11].

In this research correlation will be determined for attributes from the database.

2.2. Histogram Segmentation and Kernel Density Estimation

Histogram segmentation was initially conducted for needs within image processing,
but it was later used in any data analysis [12]. Investigations concerned with image
segmentation based on segmentation of the histogram had a major influence on this
research. In [13], an analysis of the blood image was carried out, with the histogram having
two thresholds: Figure 1 shows a blood image (a), a histogram (b), a smooth curve obtained
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by a histogram (c), and images obtained on the basis of histogram segmentation. Based
on the first part of the segmentation, a blood cell image (d) was obtained, based on the
second part of the segmentation, a blood plasma image (e) was obtained and based on
the third part of the segmentation, and image of membrane cells (f) was obtained. The
used sample has multimodal distribution with only three clusters, but it well reflects the
multilevel thresholding technic presented in [13], where each cluster is analyzed by its
deterministic parameters (mean, variance and probability). Based on the parameters, the
thresholds are extracted.

Figure 1. (a) Original image of blood; (b) gray-level histogram of the image; (c) smoothed histogram
with threshold values; (d) the blood cells; (e) blood-plasma; (f) the cell membrane (overtaken
from [13]).

If the segmentation of image histograms can extract clusters (see Figure 1d–f), then
what kind of connection exists between the segmentation of the data histogram and data
clusters? The basic concept of this paper will be generalized to any data.

On the other side, investigations of image segmentations have confirmed that image
segmentation thresholds are located in the valleys between histogram peaks. Thus, his-
togram thresholding is the segmentation technique that looks for the peaks and valleys
of the histogram [14]. The threshold selection of image histogram deals with cluster-
ing [15,16], hierarchical clustering (image segmentation by histogram thresholding using
hierarchical cluster analysis) [17], classical rough sets [18], rough sets combined with other
techniques [19], and deep learning [20].

In the threshold selection analysis, unimodal and multimodal histograms are of the
interest for statistical and practical reasons [21].

Kernel density estimation (KDE) is a technique for the estimation of the probability
density function that is a must-have enabling the user to better analyze the studied prob-
ability distribution than when using a traditional histogram. Unlike the histogram, the
kernel technique produces a smooth estimate of the probability density function (pdf),
using all sample points’ locations and more convincingly suggesting multimodality [22].

The KDE function has two determining parameters. The kernel function is the first
one, and it is commonly chosen to be Gaussian normal distribution. The second one is
bandwidth, a real positive number that defines the smoothness of the density plot. The pa-
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rameters must be carefully chosen; otherwise, they may lead to undesired transformations
in the density plot [23].

An example of a histogram and associated kernel density estimation function are
presented in Figure 2.

Figure 2. Example of histogram and KDE.

2.3. Entropy, Information Gain, and Gain Ratio

Entropy and Information Gain are closely related and both have similar purposes: to
assess the quality of statistical models and determine the best approach in data analysis pro-
cesses. Entropy is associated with a random variable as a measure of the uncertainty, while
Information Gain is a measure of the decrease in uncertainty resulting by the collection of
additional information from data [24,25].

Entropy is the measure of disorder [26], and it is calculated by measuring the amount
of uncertainty in a given set of data. It is determined by the probability distribution of the
data. If a set of data is uniformly distributed, the Entropy will be high, meaning that the
data points are highly uncertain, and if the data points are clustered, the Entropy will be
low, meaning that the data points are more certain. So, as Entropy is uncertainty in the
data, the more “randomness”, the higher the Entropy will be. By adding new data, the
Entropy is reduced because the uncertainty associated with data decreases.

On the other hand, Information Gain measures how well a dataset can be modeled
and how accurately the data can be predicted. Information Gain uses Entropy to make
decisions. If the Entropy is less, information will be more. Information Gain is used in
decision trees and random forest to decide the best split. These concepts are obviously
connected because the more the Entropy is removed, the greater the Information Gain, and
the higher the Information Gain, the better the split. Information Gain can also be seen as
the difference between the Entropy before and after the decision. Entropy is minimal (0)
when all examples are positive or negative, and maximal (1) when half of the examples are
positive and half of the examples are negative.

The Shenon Entropy of an attribute (variable) A is determined by its distribution law
(ak, pk), k = 1, . . ., n, in the following way:

H(A) = −∑n
k=1 pk · log2pk (2)

where ak represents the values or value intervals of the attribute A and pk represents their
relative frequencies. Thus, the Entropy H(A) reflects the disorder among the data on the
attribute A. Further, a metric is needed to measure the reduction in this disorder in the
considered attribute after obtaining additional information, usually about some clustering
within the attribute. This is where Information Gain comes in. Information gain IG(A)
quantifies the reduction in Entropy (uncertainty) through the acquisition of knowledge about
the attribute achieved by MDL algorithm discretization [27]. Information Gain is used in
decision tree learning algorithms in order to measure the relative Entropy of an attribute
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with respect to the target class. When building a decision tree, it is used to identify the most
important attribute and decide which attribute should be placed at the root of the tree.

Gain Ratio is an alternative complement to Information Gain, and it is also used to
select the attribute for splitting in a decision tree. Gain Ratio use Information Gain, so they
have the following formulas:

InfoGain(class, A) = H(class)− H(class|A) (3)

GainRatio(class, A) = (H(class)− H(class|A))/H(A) (4)

where H is Entropy and A is attribute.
The Gain Ratio can also be used to identify which attributes should be used at each

level of the decision tree. It helps to create more accurate predictions or decisions. If two
attributes with different numbers of possible values have the same Entropy, Information
Gain cannot differentiate them. In the same situation, the Gain Ratio will favor attribute
with less possible values. The Gain Ratio is a relative measure of the Entropy (it is a number
in the interval [0, 1]) which facilitates the comparation of various attributes.

In this research the Gain Ratio will be used to distinguish the most valuable attribute.

3. Method PPC

This method enables piecewise correlation within a dataset without imposed cluster-
ing, based on the segmentation of the multimodal histogram of an attribute. Only datasets
containing measured values at all attributes are suitable for this method.

The method is intended for working with tabular data that are organized by attributes.
Histogram segmentation and Gain Ratio must be determined for each attribute. The first
criterion checks whether the attribute has a multimodal histogram. In case where there are
no attributes with a multimodal histogram, the method terminates. The highest gain ratio
is the criterion for one attribute extraction. The histogram segmentation thresholds of the
extracted attribute become the thresholds of the entire dataset and produce clusters for the
piecewise correlation.

The individual steps of implementing the method are as follows (see Figure 3):

• Histograms of attributes-At the very beginning, a histogram for each of the attributes
must be created. These histograms are necessary inputs for the KDE technique.

• KDE function-By using the Gaussian normal distribution as the kernel and selecting
a sufficiently small positive bandwidth to produce a minimum, the KDE technique
establishes histogram thresholds for each of the attributes. Furthermore, it veri-
fies the multimodality property of the attributes, according to the number of class
attribute values.

• Gain Ratio-To ascertain the attribute with the highest Gain Ratio, it is essential to
calculate the Gain Ratio of each attribute by using (4).

• Histogram segmentation-Only the segmentation of the attribute with the highest gain
ratio will be retained. The segmentations of the other attributes are discarded.

• Segmentation of the entire dataset-The segmentation of the attribute with the highest
gain ratio determines the thresholds that will be used to segment the database. The
entire dataset is then divided based on the instances highlighted by these thresholds.

• Correlations by segments-The correlations for all pairs of attributes are computed
separately within each segment of the database.
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Figure 3. PPC method.

4. PPC Method Application

The PPC method was applied to two selected datasets chosen to have different his-
togram distributions. Specifically, the Iris, the Dryad, the Pima Indian Diabetes, and Glass
datasets were considered.

4.1. Application on the Iris Dataset

The PPC method was applied to the representative iris dataset [4]. The dataset contains
3 classes of 50 instances each, where each class referred to a type of iris plant. The attribute
information was as follows:

• a1. sepal length in cm
• a2. sepal width in cm
• a3. petal length in cm
• a4. petal width in cm
• class:

-- Iris Setosa
-- Iris Versicolor
-- Iris Virginica

Histograms of the first four attributes are generated and shown with associated KDE
functions in Figures 4–7. The default parameter bandwidth of the KDE function does
not produce all multimodal attributes. There are no local minimum of the KDE function
in Figures 4 and 5, while in Figures 6 and 7 each have one local minimum. To achieve
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more precise determination of segmentation thresholds, the selection of the bandwidth
parameter, aimed at providing more accurate minimums, was reconsidered.

Figure 4. Histogram and KDE of a1. sepal length.

Figure 5. Histogram and KDE of a2. sepal width.

Figure 6. Histogram and KDE of a3. petal length.
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Figure 7. Histogram and KDE of a4. petal width.

By applying the KDE technique for various bandwidth values, different segments
were emphasized, and different thresholds were extracted (see Figures 8–11). The optimal
value for the bandwidth parameter is bw = 0.1, as it produces enough thresholds. After
global segmentation, the Iris dataset had three classes produced by the two thresholds.

Figure 8. KDE of a1. sepal length for various parameters bw.

Figure 9. KDE of a2. sepal width for various parameters bw.
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Figure 10. KDE of a3. petal length for various parameters bw.

Figure 11. KDE of a4. petal width for various parameters bw.

The attributes of sepal length, petal length and petal width had multimodal histograms.
Their Gain Ratios are shown in Table 1.

Table 1. Gain ratios of the attributes-Iris dataset.

Attribute Gain Ratio

a1. sepal length 0.381
a2. sepal width 0.242
a3. petal length 0.734
a4. petal width 0.871

As expected, the Gain Ratio of the attribute that has an unimodal histogram (sepal
width) was the lowest. The further procedure of the PPC method was based on the histogram
segmentation of the attribute (a4) petal width, whose thresholds were 0.8 and 1.7.

Therefore, they produced three segments within the dataset. The arrangement of
flowers is as follows:

• first segment: 50 setose flowers;
• second segment: 49 versicolor flowers and 5 virginica flowers;
• third segment: 1 versicolor flower and 45 virginica flowers.

The piecewise correlations were achieved on the three segments. The precise piecewise
correlations on the segments are presented in Tables 2–4.
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Table 2. Correlations on the first segment, produced by PPC method.

a1 a2 a3 a4

a1 1
a2 0.74678 1
a3 0.263874 0.176695 1
a4 0.279092 0.279973 0.306308 1

Table 3. Correlations on the second segment, produced by PPC method.

a1 a2 a3 a4

a1 1
a2 0.525412 1
a3 0.708887 0.39976 1
a4 0.498757 0.532008 0.750193 1

Table 4. Correlations on the third segment, produced by PPC method.

a1 a2 a3 a4

a1 1
a2 0.350889 1
a3 0.865129 0.30595 1
a4 0.226632 0.418871 0.308638 1

4.2. Application on the Dryad Database

In an early stage of this research the segmentation was considered without the Gain Ratio.
The achieved results are presented in [2]. The attributes of the interest [5] are as follows:

• Location-three types of terrain: Road, Grassy, Hills;
• Tag (ft)-the height of UAV in ft;
• Node position-Horizontal (Laid flat, parallel to the ground) or Vertical (Placed on edge

on the ground);
• Velocity;
• Elevation;
• The real distance between the drone and sensor node (m); and
• Received Signal Strength Indicator (RSSI)

The RSSI was chosen for the decision attribute, and the others were influencing
attributes.

The initial correlations among all attributes for horizontally placed nodes were very
low, e.g., −0.091, 0.244, 0.082, 0.167, and 0.008 for location, tag or UAV high (ft), velocity,
elevation, and real distance, respectively. The similar results are for vertically placed nodes:
0.005, 0.349, 0.108, 0.218, and 0.037.

After histogram segmentation, the unimodal parts of the histogram concerning these
attributes are obtained, and the bimodal distribution was detected. The correlations were
calculated within each segment, separately (up to 400 m and between 400 and 500 m) for
both horizontal (Figure 12) and vertical (Figure 13) node placements.

It was confirmed that correlations increased after the segmentation. Significantly
higher correlations of the attribute RSSI with the attributes Tag, Elevation and Real Distance
were observed.
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Figure 12. Data histogram of real distance for horizontal nodes.

Figure 13. Data histogram of real distance for vertical nodes.

4.3. Application on the Pima Indians Diabetes Database

The dataset was based on certain diagnostic measurements included in the dataset,
while the class attribute-Outcome is information whether or not a patient has diabetes [6].

Attribute information:

• a1. Pregnancies (the number of pregnancies the patient has had)
• a2. Glucose
• a3. BloodPressure
• a4. SkinThickness
• a5. Insulin (insulin level)
• a6. BMI
• a7. DiabetesPedigreeFunction
• a8. Age
• class, Outcome: 0-non-diabetes, 1-diabetes

Histograms of the first eight attributes are generated and shown with associated KDE
functions in Figures 14–21.

Figure 14. Histogram and KDE of a1. Pregnancies.
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Figure 15. Histogram and KDE of a2. Glucose.

Figure 16. Histogram and KDE of a3. BloodPressure.

Figure 17. Histogram and KDE of a4. SkinThickness.

Figure 18. Histogram and KDE of a5. Insulin.
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Figure 19. Histogram and KDE of a6. BMI.

Figure 20. Histogram and KDE of a7. DiabetesPedigreeFunction.

Figure 21. Histogram and KDE of a8. Age.

The consideration of the attributes’ Gain Ratios produce very small values, as shown
in Table 5. The Glucose’s Gain Ratio is the highest, but its histogram has no distinguished
unimodal parts. It is a case of more difficult histogram segmentation, but it was produced
with the threshold 125.

Table 5. Gain ratios of the attributes-Pima Indians Diabetes Database.

Attribute Gain Ratio

a1. Pregnancies 0.0515
a2. Glucose 0.0986

a3. Blood Pressure 0.0144
a4. Skin Thickness 0.0224

a5. Insulin 0.0394
a6. BMI 0.0863

a7. Diabetes Pedigree Function 0.0226
a8. Age 0.0726
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Therefore, they produced two segments within the dataset. The deployment of patients
is as follows:

• first segment: 379 non-diabetes patients and 92 diabetes patients;
• second segment: 121 non-diabetes patients and 176 diabetes patients.

The piecewise correlations were achieved on the two segments. The results are pre-
sented in Tables 6 and 7.

Table 6. Diabetes-Correlations on the first segment, produced by PPC method.

a1 a2 a3 a4 a5 a6 a7 a8

a1 1
a2 0.055 1
a3 0.092 0.055 1
a4 −0.095 0.041 0.218 1
a5 −0.108 0.206 0.080 0.441 1
a6 0.014 0.051 0.377 0.440 0.225 1
a7 −0.017 0.023 0.043 0.135 0.189 0.066 1
a8 0.580 0.095 0.226 −0.107 −0.081 0.102 0.102 1

Table 7. Diabetes-Correlations on the second segment, produced by PPC method.

a1 a2 a3 a4 a5 a6 a7 a8

a1 1
a2 0.048 1
a3 0.168 0.053 1
a4 −0.080 0.114 0.182 1
a5 −0.128 0.162 0.029 0.473 1
a6 −0.046 0.114 0.059 0.326 0.099 1
a7 −0.083 0.118 0.001 0.227 0.146 0.192 1
a8 0.486 0.124 0.195 −0.157 −0.156 −0.191 −0.091 1

4.4. Application on the Glass Dataset

In the next iteration, the PPC method has been applied on the Glass dataset [7].
According to the USA Forensic Science Service this dataset contains 6 types of glass defined
in terms of their oxide content. The attribute information is as follows:

• Id number: 1 to 214 (removed from CSV file)
• a1. RI: refractive index
• a2. Na: Sodium (unit measurement: weight percent in corresponding oxide, as are

attributes 4–10)
• a3. Mg: Magnesium
• a4. Al: Aluminum
• a5. Si: Silicon
• a6. K: Potassium
• a7. Ca: Calcium
• a8. Ba: Barium
• a9. Fe: Iron
• Type of glass: (class attribute):

-- 1 building_windows_float_processed
-- 2 building_windows_non_float_processed
-- 3 vehicle_windows_float_processed
-- 4 vehicle_windows_non_float_processed (none in this database)
-- 5 containers
-- 6 tableware
-- 7 headlamps
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All attributes have multimodal histograms but not according to the number of class
attribute values. Their Gain Ratios are shown in Table 8.

Table 8. Gain Ratios of the attributes-Glass dataset.

Attribute Gain Ratio

a1. RI 0.221
a2. Na 0.475
a3. Mg 0.653
a4. Al 0.386
a5. Si 0.0
a6. K 0.356
a7. Ca 0.322
a8. Ba 0.72
a9. Fe 0.121

Attribute a8. Ba has the highest Gain Ratio, but the histogram of Ba (Figure 22) did
not have five thresholds, according to the number of class attribute values.

Figure 22. Histogram and KDE of Ba (Barium).

5. Discussion
5.1. Discussion-Iris Dataset

For the purpose of comparison of the PPC method results, the initial correlation
(see Table 9) and correlations by the flower types (setosa, versicolor and virginica) are
computed (see Tables 10–12).

Table 9. Initial correlation-Iris dataset.

a1 a2 a3 a4

a1 1
a2 −0.10937 1
a3 0.871754 −0.42052 1
a4 0.817954 −0.35654 0.962757 1

Table 10. Correlation within the setosa flower type.

a1 a2 a3 a4

a1 1
a2 0.74678 1
a3 0.263874 0.176695 1
a4 0.279092 0.279973 0.306308 1
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Table 11. Correlation within the versicolor flower type.

a1 a2 a3 a4

a1 1
a2 0.525911 1
a3 0.754049 0.560522 1
a4 0.546461 0.663999 0.786668 1

Table 12. Correlation within the virginica flower type.

a1 a2 a3 a4

a1 1
a2 0.457228 1
a3 0.864225 0.401045 1
a4 0.281108 0.537728 0.322108 1

The overall correlations of the attributes of all flower types are supported by Figure 23,
which contains scatter plots with the three colors that indicate the three classes in the data.
The KDE functions of the attributes are included on the diagonal. The consideration of only
one color in the scatter plots is associated with the correlation by flower type (blue-setosa,
orange-versicolor, green-virginica).

Figure 23. Scatter plots of the attributes of all iris flower types.
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The dots’ positions on the scatter plots a3-a1 (petal length and sepal length), a4-a1
(petal width and sepal length) and a4-a3 (petal width and petal length) indicate noticeable
correlations, while on the other plots the dots are too scattered. On the other hand, if
considering colors of the dots (by flower type), the high correlations of the following
attributes are very noticeable: a1-a2 (sepal length and sepal width) in setose, a1-a3 (sepal
length and petal length) and a3-a4 (petal length and petal width) in versicolor, and a1-a3
(sepal length and petal length) in virginica.

A very interesting matching has to be underlined. Namely, significant thresholds
produced by the a4 histogram segmentation (0.8 and 1.7) do coincide with the intersection of
the KDE functions associated to the histograms considered individually by the flower type.
The intersections (blue-orange and orange-green) are visible in Figure 24. The produced
segmentation of the entire dataset coincided with the natural classification that exists by
flower type. This is another confirmation of the validity of histogram segmentation.

Figure 24. KDE functions of a4. petal width.

The largest match in correlation is obtained in the case when the segmentation of the
dataset is carried out based on the histogram segmentation of the attribute with the highest
Gain Ratio.

To verify the previous statement, the segmentation of the dataset was carried out
according to the histogram segmentation of the first and third attributes. The results are
presented in Sections 5.1.1 and 5.1.2.

5.1.1. Correlation Based on a1. Sepal Length Histogram Segmentation

The KDE of the attribute sepal length has significant thresholds at 5.3 and 6.1
(see Figure 9). Therefore, the piecewise correlation will be achieved on the three segments,
which are presented in Tables 13–15.

Table 13. Correlation within first segment after a1. sepal length histogram segmentation.

a1 a2 a3 a4

a1 1
a2 0.301879 1
a3 0.264377 −0.61853 1
a4 0.237265 −0.58633 0.95083 1

Table 14. Correlation within second segment after a1. sepal length histogram segmentation.

a1 a2 a3 a4

a1 1
a2 −0.26648 1
a3 0.582701 −0.75851 1
a4 0.495901 −0.62714 0.932693 1
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Table 15. Correlation within third segment after a1. sepal length histogram segmentation.

a1 a2 a3 a4

a1 1
a2 0.319041 1
a3 0.713599 0.314832 1
a4 0.267713 0.423937 0.694508 1

The arrangement of the flowers is as follows:

• first segment: 40 setose flowers, 5 versicolor flowers, and 1 virginica flower
• second segment: 10 setose flowers, 29 versicolor flowers, and 10 virginica flowers
• third segment: 16 versicolor flower and 39 virginica flowers.

Tables 13–15 show a noticeable greater deviation from the correlations given in Tables 10–12
with respect to the result of the PPC method.

5.1.2. Correlation Based on a3. Petal Length Histogram Segmentation

The KDE of the attribute sepal length has significant thresholds at 2.1 and 4.8
(see Figure 10). Therefore, the piecewise correlation will be achieved on the three seg-
ments, which are presented in Tables 16–18.

Table 16. Correlation within first segment after a3. petal length histogram segmentation.

a1 a2 a3 a4

a1 1
a2 0.74678 1
a3 0.263874 0.176695 1
a4 0.279092 0.279973 0.306308 1

Table 17. Correlation within second segment after a3. petal length histogram segmentation.

a1 a2 a3 a4

a1 1
a2 0.533064 1
a3 0.681651 0.598278 1
a4 0.378072 0.606714 0.759463 1

Table 18. Correlation within third segment after a3. petal length histogram segmentation.

a1 a2 a3 a4

a1 1
a2 0.437 1
a3 0.81299 0.378817 1
a4 0.220331 0.517164 0.356475 1

The arrangement of flowers is as follows:

• first segment: 50 setose flowers,
• second segment: 46 versicolor flowers and 3 virginica flowers,
• third segment: 4 versicolor flower and 47 virginica flowers.

Tables 16–18 show less deviation from the correlations given in Tables 13–15 with
respect to the result of the PPC method.

It is worth noting that the Gain Ratio and distribution plot by class are evidently
related. Namely, the higher Gain Ratio corresponds to the histogram with less overlapping
of the unimodal parts (see Table 19).
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Table 19. Iris-Gain Ratio and distplot by class, of all attributes.

Gain Ratio Distplot by Class

0.871

0.734

0.381

0.242

5.2. Discussion-Dryad Database

There is a high probability that measured data has histogram with unimodal parts
supported by Gaussian normal distribution [28,29]. Therefore, it is justified to check the
correlation on the histogram segments, even without considering the Gain Ratio.

In relation to the overall correlation of the dataset, which was initially not significant,
after segmentation, the obtained correlations on the separated segments are very useful for
further use.
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5.3. Discussion-Pima Indian Diabetes Database

For the purpose of comparison of the PPC method results, the initial correlation
(see Table 20) and correlations by class (non-diabetes and diabetes) are computed
(see Tables 21 and 22).

Table 20. Initial correlation-Pima Indian Diabetes dataset.

a1 a2 a3 a4 a5 a6 a7 a8

a1 1
a2 0.129 1
a3 0.141 0.153 1
a4 −0.082 0.057 0.207 1
a5 −0.074 0.331 0.089 0.437 1
a6 0.018 0.221 0.282 0.393 0.198 1
a7 −0.034 0.137 0.041 0.184 0.185 0.141 1
a8 0.544 0.264 0.240 −0.114 −0.042 0.036 0.034 1

Table 21. Correlation within the class 0 (non-diabetes).

a1 a2 a3 a4 a5 a6 a7 a8

a1 1
a2 0.099 1
a3 0.133 0.193 1
a4 −0.118 0.016 0.187 1
a5 −0.132 0.353 0.075 0.413 1
a6 0.016 0.132 0.363 0.439 0.254 1
a7 −0.080 0.096 0.027 0.095 0.227 0.071 1
a8 0.573 0.228 0.215 −0.164 −0.149 0.036 0.042 1

Table 22. Correlation within the class 1 (diabetes).

a1 a2 a3 a4 a5 a6 a7 a8

a1 1
a2 −0.055 1
a3 0.127 0.069 1
a4 −0.079 0.038 0.225 1
a5 −0.079 0.261 0.0896 0.457 1
a6 −0.159 0.050 0.134 0.312 0.055 1
a7 −0.069 0.026 0.035 0.274 0.102 0.137 1
a8 0.445 0.099 0.263 −0.092 0.024 −0.188 −0.088 1

The largest matches in correlation are obtained when the segmentation of the dataset
is carried out based on the histogram segmentation of the attribute with the highest Gain
Ratio.

Tables 21 and 22 show less deviation from the correlations given in the result of the
PPC method (Tables 6 and 7).

The overall correlations of the attributes of all diabetes types are supported by Figure 25,
which contains scatter plots with the two colors that indicate the two classes in the data.
The KDE functions of the attributes are included on the diagonal. Consideration of only
one color in the scatter plots is associated with the correlation by patient type (non-diabetes
and diabetes).
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Figure 25. Scatter plots of the attributes of non-diabetes and diabetes.

Again, the Gain Ratio and distribution plot by class are related. The higher Gain Ratio
corresponds to the histogram with less overlapping of the unimodal parts (see Table 23).

Table 23. Gain Ratio and corresponding distplot by class.

Gain Ratio Distplot by Class Gain Ratio Distplot by Class

0.0986 0.0394
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Table 23. Cont.

Gain Ratio Distplot by Class Gain Ratio Distplot by Class

0.0863 0.0226

0.0726 0.0224

0.0515 0.0144

Unlike the Iris dataset, Pima Indian Diabetes does not have an attribute with a suffi-
ciently high Gain Ratio whose histogram has separated unimodal parts.

5.4. Discussion-Glass Dataset

Glass dataset has the attributes with multimodal histogram and high Gain Ratio, but
the PPC method is not applicable: the histograms of attributes with the highest Gain Ratios
have no segmentation according to the number of class attribute values. The Glass dataset
has the class attribute with six types of glass. For seven segmented parts, five thresholds
are required.

For datasets with multiple values of the class attribute, there is often a multiple
overlap of KDF functions corresponding to a particular class. In that case segmentation of
the histogram is not possible.

6. Conclusions

The method for the determination of the precise piecewise correlation after histogram
segmentation has been created. All the used classic tools and methods were briefly pre-
sented with details of their infiltration in the PPC method. The method has been exposed
by the single steps and diagram, and tested by application on the Iris, Dryad, Pima Indian
Diabetes, and Glass datasets. The results were compared with classical correlations pro-
duced on the entire dataset and its existed classes, and they confirm that the classes could
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be neglected. In other words, when Gain Ratio has high value, classes within the dataset
are not crucial for the piecewise correlation. All previous considerations confirm that the
PPC method is suitable for segmentation and piecewise correlation of a dataset in case
any classification is missing. Detected correlations revealed the strength and nature of the
symmetric association between two attributes on each separated segment.

This research reveals connection between the Gain Ratio and similarity of the correla-
tion on segments (after histogram segmentation) with correlation by classes. Further, it is
challenging to detect a threshold of the Gain Ratio that will provide a correlation similar
enough to the correlation by classes.

The possibilities of applying the PPC method are great because histograms are an
integral part of basic data analysis. The PPC method is beneficial for considering the
possibility of effective data division into clusters.

Further work will concern testing the PPC method on more datasets.
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