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Abstract: In this paper, the fractional Benjamin–Ono differential equation with a Riemann–Liouville
fractional derivative is considered using the Lie symmetry analysis method. Two symmetries admit-
ted by the equation are obtained. Then, the equation is reduced to a fractional ordinary differential
equation with an Erdélyi–Kober fractional derivative by one of the symmetries. Finally, conservation
laws for the equations are constructed using the new conservation theorem.
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1. Introduction

The theory of fractional calculus has been developing for over three centuries, with its
first official appearance in 1695 when Leibniz [1] wrote a letter to L‘Hospital discussing the
problem of fractional derivatives of power functions. Since then, many mathematicians
have delved into the study of fractional calculus. However, the rapid development of
fractional calculus has actually occurred in the last thirty years, and it has now become an
important branch of mathematical theory. In addition, fractional partial differential equa-
tions play an important role in describing phenomena in the fields of physics, mechanics,
biology and chemistry [2–4]. The methods of defining fractional differential derivatives are
varied and complex. Currently, there are Grünwald–Letnikov fractional derivatives [4–7],
Riemann–Liouville fractional derivatives [7,8], Caputo fractional derivatives [8] and so on.

The Lie symmetry theory was proposed and developed by the Norwegian mathemati-
cian Sophus Lie [9,10] in the 19th century. Lie symmetry theory has become a powerful tool
for solving integer-order differential equations in the field of mathematics–physics. During
the development of Lie symmetry theory, in addition to Sophus Lie, many researchers
have made contributions, such as Ovsiannikov [11], lbragimov [12], Bluman [13], Cole [14],
Ovler [15], Qu [16], Tian [17], Tian [18] and so on. However, its application in fractional dif-
ferential equations remains insufficient. In recent years, significant progress has been made
by researchers in this field. For instance, Gazizov [19,20] proposed a method to construct
conservation laws for time-fractional differential programs based on symmetry groups
and nonlinear self-adjoints and derived the Lie–Bäcklund transform from the abnormal
linear time-fractional diffusion equation. Singla and Gupta [21–23] further extended the
symmetric group analysis method to fractional differential equations. Zhang [24] provided
the symmetric determining equation and nonlinear method for solving fractional nonlinear
partial differential equations. Feng [25–27] investigated the symmetry and conservation
laws of various classes of time-fractional nonhomogeneous nonlinear diffusion equations.
Chen [28] expanded the coefficients of fractional-order equation from constant coefficients
to variable coefficients while conducting Lie symmetry analysis. Zhang [29] obtained
similar solutions as well as numerical solutions for the time-fractional Burgers system.
Wang [30] performed Lie symmetry analysis, obtained analytical solutions and derived
conservation laws for a class of sixth-order generalized time-fractional Sawada–Kotera
equations. The research content of Zhang [24], Feng [25–27], Chen [28] and others is de-
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veloped on the basis of Riemann–Liouville fractional derivatives. The research content of
Gazizov [19], Iskenderoglu [31] and others is based on Caputo fractional derivatives.

The Benjamin–Ono equation (BO) [32] is a nonlinear partial differential equation that
finds applications across various fields, initially proposed to describe nonlinear effects in
water wave propagation [33]. Its application is found in many fields such as nonlinear
optics, quantum field theory and nonlinear dynamics. The study of this equation holds
immense significance in comprehending nonlinear phenomena and the dynamic behavior
of systems. Notably, the BO equation exhibits characteristics like non-linearity, complete
integrability and harmonic balance approachability, as well as being a form of partial
differential equation and having soliton solutions [34,35]. Liu [36] used the Hirota bilinear
method to obtain the n-order soliton solution of the Benjamin–Ono equation. In recent years,
Fang [37,38] derived the Bäcklund transform and exact solution, integrability, and Darboux
transform solution for the BO equation. Fang [39] obtained a novel symmetry reduction of
the BO equation using the Clarkson–Kruskal direct method. Wang [32] employed the Lie
symmetry method to analyze the integer-order BO equation, obtaining special solutions
and conservation laws for this equation. However, there has been limited exploration by
other scholars on the fractional symmetry aspects of the BO equation.

The fractional-order BO differential equation considered in this paper has the following
form:

The fractional-order BO differential equation considered in this paper has the following
form:

Dα
t u = −β

(
u2

)
xx

− γuxxx, 1 < α < 2, (1)

where β, γ are nonzero constants.
The content of this paper is arranged as follows: In Section 2, the basic knowledge

of fractional derivatives and Lie symmetry are reviewed. In Section 3, the Lie symmetry
analysis of BO equation is given. In Section 4, the symmetry reduction of the BO equation
is discussed. In Section 5, conservation laws of the equation are given.

2. Fractional Derivatives and Lie Symmetry

Definition 1. For a function u(x, t), the Riemann–Liouville fractional derivative is defined [24] as

Dα
t u(x, t) =

{
1

Γ(n−α)
∂n

∂tn

∫ t
0 u(x, s)(t − s)

n−α−1
ds, n − 1 < α < n,

∂n

∂tn u(x, t), α = n,
(2)

where n ∈ N. When u = u(t),

Dα
t u(t) =

{
1

Γ(n−α)
dn

dtn

∫ t
0 u(s)(t − s)

n−α−1
ds, n − 1 < α < n,

dn

dtn u(t), α = n,
(3)

where the gamma function is defined as Γ(z) =
∫ ∞

0 e−ttz−1dt at z > 0.

The Riemann–Liouville fractional derivative of the power function and an arbitrary
constant [40,41] take the following form:

Dα
t C = C

Γ(1−α)
t−α

Dα
t tγ =

{ Γ(γ+1)
Γ(γ+1−α)

tγ−α, γ > α − 1,

0, γ = α − 1,

(4)

where C is an arbitrary constant.
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Definition 2. Assuming u(x, t) and v(x, t) are two continuous functions in the domain of definition,
then the Riemann–Liouville fractional derivative of the product of the two functions is as follows:

Dα
t (u(x, t)v(x, t)) =

∞

∑
n=0

(
α
n

)
Dα−n

t v(x, t)Dn
t u(x, t), (5)

where
(

α
n

)
= (−1)n-1αΓ(n−α)

Γ(1−α)Γ(n+1) ; Formula (5) is also known as the generalized Leibniz [38] Rule.

Definition 3. The Erdélyi–Kober fractional differential operators [24] are defined as follows:

(
Pτ,α

δ g
)
(r) :=

m−1
∏
j=0

(
τ + j − 1

δ r d
dr

)(
Kτ+α,m−α

δ g
)
(r), r > 0, δ > 0, α > 0

m =

{
[α] + 1, α /∈ N,
α, α ∈ N,

(6)

where (
Kτ,α

δ g
)
(r) :=

{
1

Γ(α)

∫ ∞
1 (v − 1)α−1v−(τ+α)g

(
rv

1
δ

)
dv, α > 0,

g(r), α = 0,
(7)

is called the Erdélyi–Kober fractional integration operator.

In order to introduce the main ideas of the Lie symmetry method, consider a time-
fractional partial differential equation with a Riemann–Liouville fractional partial derivative

Dα
t u = f (x, t, u, u1, u2, · · · ul), 1 < α < 2 (8)

where u = u(x, t) and ui = ∂iu/∂xi, i = 1, . . . , l.
Suppose that the one-parameter Lie group is

t∗ = t + ετ(x, t, u) + o(ε2),
x∗ = x + εξ(x, t, u) + o(ε2),
u∗ = u + εη(x, t, u) + o(ε2),

(9)

where ε is the group parameter, and

ξ(x, t, u) =
∂x
∂ε

∣∣∣∣
ε=0

, τ(x, t, u) =
∂t
∂ε

∣∣∣∣
ε=0

, η(x, t, u) =
∂u
∂ε

∣∣∣∣
ε=0

, (10)

The corresponding infinitesimal operator is

X = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
. (11)

If structure of the fractional derivative operator remains invariant under the transfor-
mation group, then τ(x, t, u)|t=0 = 0 (see details in [24]).

Lemma 1. Equation (8) admits the one-parameter Lie group (9) if and only if [42]

Pr(α,l)X(∆)
∣∣∣
∆=0

= 0, (12)

where ∆ = Dα
t u − f (x, t, u, u1, u2, · · · ul) = 0, Pr(α,l)X is (α, l)-order prolongation of X and the

extension expression is as follows:

Pr(α,l)X = X + ηα ∂

∂(∂α
t u)

+
l

∑
i=1

ηi ∂

∂ui
, (13)
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ηi = Di
x(η − ξux − τut) + ξDi

x(ux) + τDi
x(ut), i = 1, 2, . . . , l, (14)

ηα = Dα
t η + [ηu − αDt(τ)]Dα

t u − uDα
t (ηu) + µ

+
∞
∑

k=1

[(
α
k

)
∂k

t (ηu)−
(

α
k + 1

)
Dk+1

t (τ)

]
∂α−k

t u −
∞
∑

k=1

(
α
k

)
Dk

t (ξ)∂
k−α
t (ux),

(15)

where

µ =
∞

∑
n=2

n

∑
m=2

m

∑
k=2

k

∑
r=0

(
α
n

)(
n
m

)(
k
r

)
(−1)r

k!
ur∂α

t uk−r tn−α

Γ(n + 1 − α)

∂n−m+kη

∂n−mt∂ku
, (16)

where Dx as well as Dt below are the total derivative operators of x and t, as follows:

Dx = ∂x + ux∂u + utx∂ut + uxx∂ux + · · · ,
Dt = ∂t + ut∂u + utx∂ux + utt∂ut + · · · .

(17)

Definition 4. A vector field C =
(
Cx, Ct) is called a conserved vector for (8) if the following

equality holds for all solutions of (8):[
DtCt + DxCx]∣∣

(8) = 0, (18)

Equation (18) is called a conservation law for Equation (8).

Definition 5. The Euler–Lagrange operator [43] is defined as follows:

δ

δu
=

∂

∂u
+ (Dα

t )
∗ ∂

∂Dα
t u

− Dx
∂

∂ux
+ Dxx

∂

∂uxx
− Dxxx

∂

∂uxxx
+ Dxxxx

∂

∂uxxxx
, (19)

where (Dα
t )

∗ denotes the conjugate operator of the Dα
t , as follows:

(Dα
t )

∗ = (−1)n In−α
r (Dn

t ) =
CDα

r , (20)

where CDα
r is the Caputo fractional differential operator.

3. Lie Symmetry of BO Equation (1)
3.1. Lie Point Symmetries

By applying the extension Pr(α,l)X to the fractional-order BO Equation (1), one obtains

Pr(α,4)X[Dα
t u + β

(
u2

)
xx

+ γuxxxx] = ηα + γηxxxx + 2βηxxu + 4βηxux + 2βηuxx = 0, (21)

where
ηx = Dx(η)− utDx(τ)− uxDx(ξ),
ηxx = Dx(ηx)− uxtDx(τ)− uxxDx(ξ),
ηxxx = Dx(ηxx)− uxxtDx(τ)− uxxxDx(ξ),
ηxxxx = Dx(ηxxx)− uxxxtDx(τ)− uxxxxDx(ξ).

(22)
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By substituting (15) and (22) into (21), the determining equations of the Lie symmetry
of the BO Equation (1) can be obtained as follows:

ξu = ξt = τu = τx = ηuu = 0,
−3ξxx + 2ηtu = 0,
ατt − 4ξx = 0,
(1 − α)ατtt + 2ηtu = 0,
−γξxxxx + 4βηx + 4γηxxxu = 0
αβτt − 2βξx + βηu = 0,
η + u(2ξx − 2γξxxx + 3γηxxu) = 0
(α − 2)τttt − 3ηttu = 0,
Dα

t η − uDα
t ηu + 2βuηxx + γηxxxx = 0.

(23)

By solving the determining Equation (23), one obtains

τ = 4c1
α t + c3,

ξ = c2 + c1x,
η = −2c1u,

(24)

where c1 and c2 are arbitrary constants, and c3 = 0. Thus, the operators are

X1 = ∂
∂x ,

X2 = 4t
α

∂
∂t + x ∂

∂x − 2u ∂
∂u .

(25)

The generators X1 and X2 form a Lie algebra, because [X1, X2] = X1, [X2, X1] = −X1.

3.2. One-Parameter Lie Transformation Group of BO Equation

In order to obtain the one-parameter Lie transform group, we only need to solve the
following initial value problem:

d(x∗(ε))
dε = ξx(x∗(ε), t∗(ε), u∗(ε)), x∗(0) = x,

d(t∗(ε))
dε = τt(x∗(ε), t∗(ε), u∗(ε)), t∗(0) = t,

d(u∗(ε))
dε = ηu(x∗(ε), t∗(ε), u∗(ε)), u∗(0) = u,

(26)

where |ε| << 1 is an infinitesimal group parameter.
The one-parameter Lie group can be written in the following form:

g : (x, t, u) → (x∗, t∗, u∗), (27)

Using the operator (21) to solve the initial problem (26), the Lie symmetric transforma-
tion of the fractional BO equation is obtained as follows:

g1(ε) : (x, t, u) → (x + ε, t, u),
g2(ε) : (x, t, u) →

(
eεx, e

4
α εt, e−2εu

)
.

(28)

Therefore, through the Lie symmetric transformation group (28), the other two solu-
tions of the Benjamin–Ono equation (1) can be obtained as follows:

u1 = f (x − ε, t),
u2 = e2ε f (e−εx, e−

4
α εt),

(29)

if u = f (x, t) is a solution of (1).
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4. Similar Reduction of the BO Equation

Theorem 3. Under the operator X2, the BO equation is reduced to the following fractional ordinary
differential equation: (

P1− 3α
2 ,α

4
α

g
)
(r) = −β

(
g2(r)

)′′
− γg′′′ ′(r). (30)

Proof. The characteristic equation corresponding to X2 in operator (21) is

dx
x

=
αdt
4t

=
du
−2u

. (31)

The characteristic Equation (31) is solved to obtain the similarity variables r and g(r)

r = xt−( α
4 ), u(x, t) = t−( α

2 )g(r). (32)

When n− 1 < α < n, n = 1, 2, 3, . . ., through the similarity variables (32), the fractional
Riemann–Liouville derivative becomes

Dα
t u =

∂n

∂tn

[
1

Γ(n − α)

∫ t

0
(t − s)

n−α−1
s−

α
2 f

(
xs−

α
4

)
ds

]
. (33)

Letting v = t
s , Equation (33) can be written as

Dα
t u =

∂n

∂tn

[
tn−α− α

2
1

Γ(n − α)

∫ ∞

1
(v − 1)

n−α−1
v−(n−α− α

2 +1) f
(

rv
α
4

)
dv

]
, (34)

According to (7), the above equation is rewritten as follows:

Dα
t u =

∂n

∂tn

[
tn− 3α

2

(
K1− α

2 ,n−α
4
α

g
)
(r)

]
. (35)

Applying the formula t ∂
∂t ϕ(r) = tx

(
− α

4
)
t−

α
4 −1ϕ′(r) = − α

4 r d
dr ϕ(r), the fractional

derivative is rewritten as follows
:

Dα
t u = ∂n

∂tn

[
tn− 3α

2

(
K1− α

2 ,n−α
4
α

g
)
(r)

]
= ∂n−1

∂tn−1

[
∂
∂t

(
tn− 3α

2

(
K1− α

2 ,n−α
4
α

g
)
(r)

)]
= ∂n−1

∂tn−1

[
tn− 3α

2 −1(n − 3α
2
)(

K1− α
2 ,n−α

4
α

g
)
(r) + tn− 3α

2 −1
(
− α

4 r d
dr

(
K1− α

2 ,n−α
4
α

g
)
(r)

)]
= ∂n−1

∂tn−1

[
tn− 3α

2 −1
(

n − 3α
2 − α

4 r d
dr

)(
K1− α

2 ,n−α
4
α

g
)
(r)

]
.

(36)

Repeat the above process n − 1 times to obtain

∂n

∂tn

[
tn− 3α

2

(
K1− α

2 ,n−α
4
α

g
)
(r)

]
= t−

3α
2

n−1

∏
j=0

(
1 − 3α

2
+ j − α

4
r

d
dr

)(
K1− α

2 ,n−α
4
α

g
)
(r). (37)

According to the definition of the Erdélyi–Kober fractional differential operator (6),
Equation (37) becomes

∂n

∂tn

[
tn− 3α

2

(
K1− α

2 ,n−α
4
α

g
)
(r)

]
= t−

3α
2

(
P1− 3α

2 ,n−α
4
α

g
)
(r). (38)
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Equation (33) can be written as

Dα
t u = t−

3α
2

(
P1− 3α

2 ,n−α
4
α

g
)
(r). (39)

where uxx = t−( α
2 )g′′ (r), uxxxx = t−( α

2 )g′′′ ′(r). We can reduce the fractional BO equation to
the fractional ordinary differential in Equation (30). □

5. Conservation Laws of the BO Equation

According to the concept of nonlinear self-conjugation [44], the formal Lagrangian of
the BO Equation (1) can be expressed as

L = v(x, t)
[

Dα
t u + β

(
u2

)
xx

+ γuxxxx

]
, (40)

where v(x, t) is a new dependent variable with x, t.
The conjugate Euler–Lagrange equation of the fractional-order BO equation is

δL
δu

= 0, (41)

The conjugate equation for the fractional BO equation can be written as

(Dα
t )

∗v + 2βvuxx − 2βuvx + 2βuvxx + γvxxxx = 0, (42)

For the operator (25) of fractional B-O equation (1), it satisfies the conservation law
equation DtCt + DxCx = 0, where Cx, Ct are represented by the following equation:

Ct = τL +
n−1

∑
k=0

(−1)kDα−1−k
t (Wi)Dk

t
∂L

∂(Dα
t u)

− (−1)n J
(

Wi, Dn
t

∂L
∂(Dα

t u)

)
, (43)

Cx = Wi

[
∂L
∂ux

− Dx
∂L

∂uxx
+ Dxx

∂L
∂uxxx

− Dxxxx
∂L

∂uxxxx

]
+ Dx(Wi)

⌊
∂L

∂uxx
− Dx

∂L
∂uxxx

+ Dxx
∂L

∂uxxxx

⌋
+ Dxx(Wi)

[
∂L

∂uxxx
− Dx

∂L
∂uxxxx

]
+ Dxxx(Wi)

∂L
∂uxxxx

,

(44)

where

J( f , g) =
1

Γ(n − α)

∫ t

0

∫ T

t

f (τ, x)g(µ, x)

(µ − τ)α+1−n dµdτ, (45)

W = η − τut − ξux. (46)

One can find the components of the conserved vector of the BO equation in the
following two cases

Case 1: For X = ∂
∂x , one obtains W = −ux. Therefore, the conserved vector of (1) can

be obtained as

Ct = −vDα−1
t (ux)− J(ux, vt),

Cx = −ux(4βuv − 2βuvx − γvxxx)− uxx(2βuv + γvxx) + 2γuxxvx − γxuxxxxv.
(47)

Case 2: For X = 4t
α

∂
∂t + x ∂

∂x − 2u ∂
∂u , one obtains W = −2u − 4t

α ut − xux. Therefore,
the conserved vector of (1) can be obtained as

Ct = vDα−1
t

(
−2u − 4t

α ut − xux

)
+ J

(
−2u − 4t

α ut − xux, vt

)
,

Cx = −(2u + 4t
α ut + xux)(4βuv − 2βuvx − γvxxx) + γvx

(
4uxx +

4t
α utxx + xuxxx

)
−

(
3ux +

4t
α utx + xuxx

)
(2βuv + γvxx)− γv

(
5uxxx +

4t
α utxxx + xuxxxx

)
.

(48)
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6. Conclusions

In this paper, Lie symmetry analysis of the BO equation with Riemann–Liouville
derivatives is carried out, and the Lie symmetry structure of the BO equation is obtained.
Using the infinitesimal operator X2 = 4t

α
∂
∂t + x ∂

∂x − 2u ∂
∂u , the BO equation can be reduced

to a fractional ordinary differential equation
(

P1− 3α
2 ,α

4
α

g
)
(r) = −β

(
g2(r)

)′′ − γg′′′ ′(r). So,

one can see that the Lie symmetry analysis method is an efficient method for fractional
differential equations. Similarly, Lie symmetry analysis is also applied to the BO equation
with Caputo fractional derivatives or other type fractional derivatives.

Compared with the results of the literature [34], the fractional BO equation considered
in this paper allows two fewer symmetric infinitesimal operators than the integer BO
equation considered in [34]. It is worth considering whether the same fractional differential
equation allows less or no more symmetry than its integer-order equation.
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