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Abstract: Many complicated dynamical events may be broken down into simpler pieces and efficiently
described by a system that shifts among a variety of conditionally dynamical modes. Building on
switching linear dynamical systems, we develop a new model that extends the switching linear
dynamical systems for better discovering these dynamical modes. In the proposed model, the linear
dynamics of latent variables can be described by a higher-order vector autoregressive process, which
makes it feasible to evaluate the higher-order dependency relationships in the dynamics. In addition,
the transition of switching states is determined by a stick-breaking logistic regression, overcoming
the limitation of a restricted geometric state duration and recovering the symmetric dependency
between the switching states and the latent variables from asymmetric relationships. Furthermore,
logistic regression evidence potentials can appear as conditionally Gaussian potentials by utilizing the
Pólya-gamma augmentation strategy. Filtering and smoothing algorithms and Bayesian inference for
parameter learning in the proposed model are presented. The utility and versatility of the proposed
model are demonstrated on synthetic data and public functional magnetic resonance imaging data.
Our model improves the current methods for learning the switching linear dynamical modes, which
will facilitate the identification and assessment of the dynamics of complex systems.

Keywords: dynamic systems; state space methods; Kalman filter; Bayesian inference

1. Introduction

Complex systems frequently exhibit multiple levels of abstraction in their descrip-
tions [1]. For example, a computer program can be characterized by the collection of
functions it calls, the sequence in which it carries out statements or the assembly instruc-
tions it sends to the CPU. This assertion is true for a multitude of natural systems. Brain
activity can be classified based on either broad psychological states or the activation of indi-
vidual ion channels. The necessary amount of specificity may differ based on the particular
task being performed [2]. Through the identification of these behavioral units and their
interdependence, we can obtain a deeper understanding of the intricate mechanisms that
give rise to complex natural occurrences. Furthermore, modern machine learning offers
powerful tools to help model the dynamics of complex systems. The toolbox has recently
been improved to incorporate more versatile elements, such as Gaussian processes [3] and
neural networks [4], into probabilistic time series models.

Time series analysis encompasses several methodologies and models, such as station-
ary process models, spectral models, state space models, and non-linear models [5]. Among
them, the state space methods are regarded as more versatile and adept at addressing a
broader range of problems compared to the other models. Hidden Markov models (HMM)
and switching linear dynamical systems (SLDS) are two well-known state space models.
In numerous real-world time series situations, the present condition of a dynamic system
is connected to its condition in prior time intervals. Both HMM and SLDS can address
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such problems and have been widely used in several problem fields. Examples include hu-
man motion [6,7], computer vision [8], speech recognition [9], econometrics [10], machine
learning [11] and neuroscience [12,13].

HMM is a discrete Markov process with doubly embedded stochastic models, namely,
(i) an unobservable hidden process characterized by a Markov chain and (ii) an observation
process determined by hidden states. HMM-based models have garnered significant
interest and demonstrated their utility in the signal processing community for accurately
simulating the intricate temporal progression of signals. More precisely, HMM have a
lengthy track record in signal processing, particularly in the field of speech processing
where they have achieved notable success [14]. The SLDS allows for the modeling of
nonlinear time series data by dividing it into subsequences controlled by linear dynamics.
Indeed, the generative model of SLDS is slightly different from HMM, where there is an
additional set of latent variables between the switching states and the observations. In
addition, a SLDS differs from a HMM by choosing from a collection of linear Gaussian
dynamics that evolve continuously, instead of a standard Gaussian mixture density as in
HMM. The SLDS can be viewed as an expansion of the HMM, where each HMM state, or
mode, is linked to a linear dynamical process. One further benefit of SLDS is its ability to
handle time series data with high dimensionality. From a generative model perspective, it
can be claimed that high-dimensional time series can be cheaply represented by a dynamical
process specified on a low-dimensional manifold. This representation benefits from the
model structure of SLDS. Nevertheless, employing HMM directly on time series with high
dimensionality is likely to result in overfitting. [15]. Therefore, SLDS offers the potential
for increased descriptive capability [1].

Although SLDS offers advanced predictive models, the dynamics from the data are
only stated under certain conditions, which poses some shortcomings of the generative
model and may limit its application. First, the continuously evolving linear Gaussian
dynamics of latent variables is essentially equivalent to a first-order switching vector
autoregressive (VAR) process, i.e., VAR(1) process, which may not be suitable for the case
when there are higher-order dependency relationships in the time series. Higher-order
autoregressive interactions are more common in time series data [16,17]. Furthermore,
determining an appropriate autoregressive order must trade off the model likelihood and
complexity, constituting a non-trivial task in the applications [18]. Indeed, a restricted
VAR(1) process involved in the linear dynamics of latent variables limits the ability of SLDS
to recover the higher-order dependency relationships in dynamical phenomena.

Second, the switching state transition in SLDS follows the Markov assumption, which
means that the duration time (i.e., time interval spent in a certain state) is restricted to a
geometric distribution [19]. Thus, more weight is given to shorter consecutive time periods
within a certain state, which means states switch frequently. This may not be appropriate
when the system spends a long time in one state [20]. In addition, the state transitions
are based only on the previous state and are unrelated to the latent variables. If a discrete
switch happens when the system enters a particular area of the state space, the SLDS
cannot recognize this relationship. While hidden semi-Markov model (HSMM) based
on the semi-Markov assumption is an extension of the HMM that alleviates this issue, it
should be noted that state transitions in HSMM still have no associations with the previous
observations [20].

To address the mentioned limitations, an extension of SLDS, the recurrent switching
linear dynamical systems with higher-order dependence (HO-rSLDS), is presented. The
HO-rSLDS provides a new method that improves the modeling of dynamics from complex
systems, by enabling a higher-order dependence in the linear Gaussian dynamics of latent
variables and allowing the switching state transition probabilities to hinge on the preceding
values of the latent variables. Specifically, to address the first limitation, we enhance
the generative process of latent variables by directly making the current latent variable
depend on the state values at the previous several time steps, rather than only the previous
one time step. Therefore, the proposed model is feasible for capturing the higher-order
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autoregressive relationships in the data. To address the second limitation, we utilize
the stick-breaking logistic regression to determine the switching state transition [21]. In
addition, we leverage a Pólya-gamma augmentation approach [22] to improve block inference
updating. This enhancement transforms specific logistic regression evidence potentials into
conditionally Gaussian potentials, facilitating efficient Bayesian inference procedures. In
this way, the transition of switching states is directly associated with the previous switching
state and latent variable. Moreover, since the switching states and the latent variables are
mutually interdependent in HO-rSLDS, the symmetric dependency among them is recovered,
enhancing the generative process of both switching states and latent variables.

Similar to SLDS, the exact inference in an HO-rSLDS is intractable, which impedes
efficient model estimation and parameter learning [8]. In this study, the HO-rSLDS is
learned through variational inference, which is an approximate scheme to maximize the
evidence lower bound, i.e., minimize the Kullback–Leibler divergence between a restricted
family of functions of the model parameters and the actual posterior distribution [23].
Moreover, we propose message-passing algorithms about switching states and latent
variables in HO-rSLDS to evaluate sufficient statistics for further parameter updates.

The primary contributions of the novel approach suggested in this study are out-
lined below:

1. HO-rSLDS assumes the linear dynamics of latent variables can be described by a
higher-order VAR process, which makes it feasible to dig out and evaluate the long-
term dependency relationships from dynamical phenomena;

2. Stick-breaking logistic regression is applied to determine the switching state transition
in HO-rSLDS. By this means, the transition probabilities are time-varying and can be
adjusted according to the previous latent variable, which overcomes the limitation
of restricted geometric state duration time by Markov assumption and recovers the
symmetric dependency between the switching states and the latent variable;

3. The Pólya-gamma augmentation strategy permits efficient Bayesian inference algo-
rithms. In addition, we propose message-passing algorithms, including a forward
Kalman filter and backward Kalman smoother for HO-rSLDS, which facilitates the
parameter update in variational inference.

The rest of this study is organized as follows. In Section 2.3, we discuss the related
models. In Section 3, we present the model learning algorithms in detail. In Section 4, we
demonstrate the performance of the proposed HO-rSLDS on simulated data. Our method
is applied to public functional magnetic resonance imaging (fMRI) data as well, and the
results are described in Section 5. Finally, we wrap up our conclusions in Section 6.

2. Methods
2.1. HMM and HSMM

HMMs are mathematical models that analyze dynamic systems by using random
processes with hidden states. A HMM is constructed using a Markov chain and is composed
of two layers: a layer representing hidden states and a layer representing observations.
The observed sequences are allocated to their respective hidden states according to the
observation probability distribution. In the context of HMM, the observations are solely
influenced by the current state and are not influenced by any preceding states [20]. The
entire state sequence can be presented as z1:T = {zt}T

t=1, which can be viewed as a sequence
over a finite set Z with cardinality |Z|. The state transition probability from state i to j
is defined as πij = p(zt+1 = j|zt = i). The distribution of observations yt ∈ Rn given a
specific state is denoted by p(yt|zt, θj), where θj denotes the emission parameters of state j.
Above all, the HMM can be described as:

zt|zt−1 ∼ πzt−1 , (1)

yt|zt ∼ F(θzt), (2)

where F(·) denotes emission distribution.
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Compared to HMM, the HSMM formalism improves upon the standard HMM by
incorporating a random state length time, chosen from a state-specific distribution, into the
generative process. The state remains constant until the period elapses, at which juncture
there is a Markov transition to a fresh state. By using this approach, the distribution of state
durations is not limited to a geometric form [24,25]. The random variable Dt represents the
length of time that a state is entered at time t. The associated probability mass function is
denoted as p(Dt|zt = j) and the HSMM can be described as

νs|νs−1 ∼ πνs−1 , (3)

Ds ∼ g(ωs), (4)

zt1
s :tDs+1

s
= νs, (5)

yt1
s :tDs+1

s
|zt1

s :tDs+1
s
∼ F(θνs , Ds), (6)

where νs indexes the state shared by state segment s. A graphical illustration of HMM
and HSMM is shown in Figure 1. HMM or HSMM typically uses a Gaussian mixture as
the emission distribution, which fails to capture potential dependencies in observed time
series. An effective approach to tackle this problem is to employ the VAR emission model,
which describes the behavior of time series through linear historical interactions among the
observed time series. In this way, the emission model in HMM or HSMM can be specifically
expressed as:

yt|zt = k ∼ N (
p

∑
l=1

Wk,lyt−l , Σk), (7)

where p denotes the maximum lag order, Wk,l are n× n dimensional matrices representing
the k-th state autoregressive coefficient matrices for lag l and the covariance matrix is Σk.
Subsequently, we refer to the H(S)MM with VAR(p) emission model as the AR(p)-H(S)MM.

(a) HMM (b) HSMM

Figure 1. Graphical model of HMM (a) and HSMM (b). An HMM typically consists of two layers: a
hidden state layer based on a Markov chain and an observation layer dependent on the current state.
An HSMM enhances the generative process of the standard HMM with a random state duration
time, which is drawn from some state-specific distribution when the state is entered. K denotes the
cardinality of the hidden state space, which can be a finite or infinite value.

2.2. SLDS

A SLDS Markov process differs from a hidden Markov model (HMM) by choos-
ing from a collection of linear Gaussian dynamics that evolve continuously, instead of a
standard Gaussian mixture density as in HMM. Therefore, SLDS offers the potential for
increased descriptive capability.
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Similar to HMM, at each time t = 1, 2, . . . , T there is a discrete switching state
zt ∈ {1, 2, . . . , K} that evolves according to Markov dynamics:

zt+1|zt, {πk}K
k=1 ∼ πzt , (8)

{πk}K
k=1 constitutes the Markov transition matrix and πk ∈ [0, 1]K is its k-th row. The z1 is

assumed to be sampled from an initial distribution π0 parameterized by prior parameter
α0, i.e., z1|α0 ∼ π0(α0). Furthermore, a continuous latent variable xt ∈ Rm follows condi-
tionally linear dynamics depend on the state values with at the previous time step, and the
switching state zt determines the linear dynamical system at time t by:

xt+1 = A(0)
zt+1 xt + vt, vt

i.i.d∼ N (0, Q(0)
zt+1), (9)

where A(0)
zt+1 ∈ Rm×m denotes the coefficient matrix and Q(0)

zt+1 ∈ Rm×m is covariance matrix.
At each time t, a linear Gaussian observation yt ∈ Rn is produced from the associated latent
continuous variable:

yt = C(0)xt + wt, wt
i.i.d∼ N (0, S(0)), (10)

where C(0) ∈ Rn×m, S(0) ∈ Rn×n. Usually, n is much larger than m, such that the de-
pendence structure of high-dimensional observation data can be evaluated based on the
low-dimensional latent variable space. A graphical illustration of SLDS is given in Figure 2.

Switching States

Latent variables

Observations

 SLDS

Figure 2. The graphical model of the SLDS, which consists of switching states (zt), latent variables
(xt) and observations (yt). Note that we assume it does not contain a link from zt to yt.

In classical form, however, there are some shortcomings in the generative model of
SLDS, which may limit its application. First, the continuously-evolving linear Gaussian
dynamics of xt is essentially equivalent to a first-order switching vector autoregressive
(VAR) process, i.e., the VAR(1) process, which may not be suitable for the case when
there are higher-order dependency relationships in xt or yt. Substitute Equation (9) into

Equation (10) and assume C(0)⊤C(0) = I and wt approximately zero, one can immediately
obtain the conclusion that SLDS describes the dependency relationships by a VAR(1)

process since yt = C(0)A(0)
zt C(0)⊤yt−1 + C(0)vt. Second, the state transition of zt follows

the Markov assumption, which means that the duration time is restricted to a geometric
distribution [19]. Thus, more weight is given to shorter consecutive time periods within
a certain state, which means states switch frequently. This may not be appropriate when
the system spends a long time in one state [20]. In addition, the state zt+1 transitions
based only on the previous state zt, and zt+1|zt is unrelated to the latent variable xt. If a
discrete switch happens when the system enters a particular area of the state space, the
SLDS will not be able to recognize this relationship. To address these issues, the proposed
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HO-rSLDS enhances the generative process of xt and the switching state transition, which
is demonstrated in the following subsection.

2.3. Recurrent Switching Linear Dynamic System with Higher-Order Dependence

In this section, we describe the proposed HO-rSLDS comprising two main components
that are switching linear dynamic systems with higher-order dependence (HO-SLDS,
without recurrence) and the stick-breaking logistic regression as well as the Pólya-gamma
augmentation for HO-SLDS. Each component is demonstrated below.

2.3.1. HO-SLDS

The switching state transition in HO-SLDS is the same as that in SLDS. However, the
continuous latent variable xt ∈ Rm follows conditionally linear dynamics depending on
the state values at the previous p time steps, rather than only the previous one time step,
and the switching state zt determines the linear dynamical system at time t by:

xt+1 = Azt+1 x̄t + vt, vt
i.i.d∼ N (0, Qzt+1), (11)

where x̄t = [x⊤t−1, . . . , x⊤t−p]
⊤ ∈ Rpm, Azt+1 ∈ Rm×pm and Qzt+1 ∈ Rm×m. Indeed, the

evolution of the latent variable dynamics in xt can be considered as a VAR(p) process. The
initial x̄0 given the initial discrete state z0 is supposed to be normally distributed with
mean µ0 and covariance Σ0, i.e., x̄0 ∼ N (µ0, Σ0). Similarly, at each time t, a linear Gaussian
observation yt ∈ Rn is produced from the associated latent continuous variable:

yt = Czt xt + wt, wt
i.i.d∼ N (0, Szt), (12)

where Czt ∈ Rn×m, Szt ∈ Rn×n. Note that here we assume Czt and Szt are related to zt.
Usually, n is much larger than m, such that the dependence structure of high-dimensional
observation data can be evaluated based on the low-dimensional latent variable space. The
system parameters consist of the discrete Markov transition matrix and the collection of
linear dynamical system matrices, denoted as:

θ = π0 ∪ {µ0, Σ0, πk, Ak, Qk, Ck, Sk}K
k=1. (13)

2.3.2. Stick-Breaking Logistic Regression and Pólya-Gamma Augmentation for HO-SLDS

Another component included in HO-rSLDS is a stick-breaking logistic regression. We
utilize a Pólya-gamma augmentation technique to improve block inference updates [21].
This approach allows certain logistic regression evidence potentials to transform to condi-
tionally Gaussian potentials in an augmented distribution, which facilitates the Bayesian
inference algorithms.

Consider a logistic regression model with regressors x ∈ Rm that maps to a categorical
distribution over the switching state z ∈ {1, 2, . . . , K}, denoted as:

z|x ∼ πSB(ν), ν = Rx + r, (14)

where R ∈ RK−1×M represents a weight matrix and r ∈ RK−1 denotes a bias vector. We
use a stick-breaking link function πSB : RK−1 → [0, 1]K, which transforms a real vector into
a normalized probability vector based on the stick-breaking process:

πSB(ν) =
(

πSB(ν)
(1), . . . , πSB(ν)

(K)
)

, (15)

π
(k)
SB = σ(νk) ∏

j<K
σ(−νj), (16)
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for k = 1, · · · , K− 1 and π
(K)
SB = ∏K−1

k=1 σ(−νk) where νk represents the kth component of
ν and σ(ν) = (1 + e−ν)−1 is the logistic function. The probability mass function p(z|x) is
given by

p(z|x) =
K−1

∏
k=1

σ(νk)
I(z=k)σ(−νk)

I(z>k), (17)

where I(·) is the indicator function.
The posterior density p(x|z) is non-Gaussian and does not allow straightforward

Bayesian inference for this regression model due to the likelihood p(z|x) not aligning with
a Gaussian prior density p(x). To solve this problem, we introduce Pólya-gamma auxiliary
variables ω = {ωk}K

k=1 so that the conditional density p(x|z, ω) becomes Gaussian [22].
Specifically, the conditional density of ωk is distributed according to a Pólya-Gamma
distribution. A random variable X has a Pólya-Gamma distribution with parameters b > 0
and c ∈ R, denoted as X ∼ PG(b, c), if

X D
=

1
2π2

∞

∑
k=1

gk
(k− 1/2)2 + c2/(4π2)

, (18)

where the gk ∼ Gamma(b, 1) are independent Gamma random variables, and where D
=

indicates equality in distribution. In particular, by choosing ωk|x, z ∼ PG(I(z > k), νk),
we have the following:

x|z, ω ∼ N (Ω−1κ, Ω−1), (19)

where the mean vector Ω−1κ and covariance matrix Ω−1 are calculated based on
the following:

Ω = diag(ω), (20)

κk = I(z = k)− 1
2
I(z > k). (21)

Thus allowing efficient block updates while maintaining Gaussian posterior distribution
p(x|z) in Bayesian inference.

The HO-rSLDS splits the latent space into K sections, with each section following its
own linear dynamics by including the recurrence (Equation (17)) in the transition density
of zt, which can be described as follows:

zt+1|zt, xt, Rzt , rzt ∼ πSB(νt), (22)

νt = Rzt xt + rzt . (23)

Moreover, we place Gaussian priors on Rzt and rzt . In this way, the probability mass
function p(zt+1|xt) can be expressed as:

p(zt+1|xt) =
K−1

∏
k=1

σ(νk)
I(zt+1=k)σ(−νk)

I(zt+1>k)

=
K−1

∏
k=1

(eνt,k )I(zt+1=k)

(1 + eνt,k )I(zt+1>k)
. (24)

The Pólya-gamma augmentation focuses on exactly the above densities, utilizing the
following integral identity:

(eν)a

(1 + eν)b = 2−beκν
∫ ∞

0
e−ων2

pPG(ω|b, 0)dω, (25)
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where κ = a− b/2 and pPG(ω|b, 0) refers to the density of the Pólya-gamma distribution,
PG(b, 0), which is independent of ν [22]. Combing Equations (24) and (25), p(zt+1|xt)
can be expressed as the marginalization of a component in the probability distribution
p(zt+1|xt, ωt), where ωt ∈ RK−1 represents a vector of auxiliary variables. Dependent on
νt, there is

p(zt+1, xt, ωt) ∝
K−1

∏
k=1

exp
{
−1

2
ωt,kν2

t,k + κt+1,kνt,k

}
, (26)

where κt+1,k = I(zt+1 = k)− 1
2I(zt+1 > k). Hence,

p(zt+1, xt, ωt) ∝ N (νt|Ω−1
t κt+1, Ω−1

t ), (27)

where Ωt = diag(ωt) and κt+1 = (κt+1,1, . . . , κt+1,K−1). After augmentation, the condi-
tional density on xt becomes virtually Gaussian, simplifying the evaluation of the integrals
needed for message passing during the Bayesian inference. Finally, we summarize the
proposed HO-rSLDS as

z1|θ ∼ π0(α0),

x̄0|θ ∼ N (x̄0|µ0, Σ0),

zt+1|zt, xt, θ ∼ πSB(νt), νt = Rzt xt + rzt ,

xt+1|x̄t, zt+1, θ ∼ N (xt+1|Azt+1 x̄t, Qzt+1), (28)

yt|xt, zt, θ ∼ N (yt|Czt xt, Szt),

θ = {α0, µ0, Σ0} ∪ {Ak, Qk, Ck, Sk, Rk, rk}K
k=1.

To learn the HO-rSLDS utilizing Bayesian inference, we assign conjugate priors to
each component of the model parameters θ, given by

π0|α0 ∼ Dir(α0),

(Ak, Qk)|η ∼ MNIW(η),

(Ck, Sk)|λ ∼ MNIW(λ), (29)

Rk|ζ ∼
K−1

∏
i=1
N (Rk,i|ζi),

rk|ρ ∼ N (rk|ρ),

where Dir and MNIW denote Dirichelet and matrix normal inverse Wishart distribution,
respectively, Rk,i denotes the ith row of Rk. A graphical illustration of HO-rSLDS is given
in Figure 3.

HO-rSLDS

Switching States

Latent variables

Observations

Figure 3. The graphical model of the HO-rSLDS, where there is higher-order dependence involved in
xt (blue) and the recurrent dependence from xt−1 to zt (red).



Symmetry 2024, 16, 474 9 of 27

3. Variational Inference of HO-rSLDS
Now we describe the model learning inference of HO-rSLDS, which is fulfilled by

variational inference. In variational inference, a parameter is inferred by maximizing the
evidence’s lower bound, hence minimizing the Kullback–Leibler divergence as well as the
variational free energy. Specifically, we denote Y := y1:T , Θ := {z1:T , (x̄0, x1:T), ω1:T , θ},
then the following decomposition holds:

ln p(Y) = L(q(Θ)) + KL(q(Θ)||p(Θ|Y)), (30)

where

L(q(Θ)) =
∫

q(Θ) log
p(Y , Θ)

q(Θ)
dΘ, (31)

KL(q(Θ)||p(Θ|Y)) = −
∫

q(Θ) log
p(Θ|Y)

q(Θ)
dΘ. (32)

The exact evaluation of p(z1:T , x0:T , ω1:T |y1:T) where x0:T := x̄0 ∪ x1:T in HO-rSLDS
is intractable. In this study, we leverage an approximate variational inference method
to assess the approximate posterior q(z1:T , x0:T , ω1:T |y1:T) in the proposed HO-rSLDS. In
order to obtain a tractable inference, a structured mean field approximation is adopted on
the generative model, given by

q(z1:T , x0:T , ω1:T , θ|y1:T) = q(z1:T)q(x0:T)q(ω1:T)q(θ). (33)

Moreover, q(ω1:T) further factorizes as:

q(ω1:T) =
T

∏
t=1

K−1

∏
k=1

q(ωt,k). (34)

Given the factorized forms in Equations (33) and (34), we can obtain the optimal
solution of the factorized variational posteriors by maximizing the evidence lower bound
in Equation (31), i.e., q(z1:T), q(x0:T), q(ω1:T) and q(θ), given by

ln q(z1:T) ∝ E−q(z1:T) ln p(z1:T , x0:T , ω1:T , θ, y1:T), (35)

ln q(x0:T) ∝ E−q(x0:T) ln p(z1:T , x0:T , ω1:T , θ, y1:T), (36)

ln q(ω1:T) ∝ E−q(ω1:T) ln p(z1:T , x0:T , ω1:T , θ, y1:T), (37)

ln q(θ) ∝ E−q(θ) ln p(z1:T , x0:T , ω1:T , θ, y1:T), (38)

where E−q(z1:T)
(·) := Eq(x0:T)q(ω1:T)q(θ)(·). Hence the joint log-likelihood is

ln p(z1:T , x0:T , ω1:T , θ, y1:T) = ln p(z1:T , x0:T , ω1:T , y1:T |θ) + ln p(θ). (39)

The conditional log-likelihood ln p(z1:T , x0:T , ω1:T , y1:T |θ) can be written as

ln p(z1:T , x0:T , ω1:T , y1:T |θ) =

ln p(z1|θ) + ln p(x̄0|θ) +
T

∑
t=1

[ln p(zt|xt−1, zt−1, ωt−1, θ)I(t > 1) + ln(xt|x̄t−1, zt, θ)]

+
T

∑
t=1

p(yt|zt, xt, θ) (40)

∝ ln p(z1|θ)−
1
2
(x̄0 − µ0)

⊤(Σ0)
−1(x̄0 − µ0)

− 1
2

T

∑
t=1

[
(νt−1 −Ω−1

t−1κt)
⊤Ωt−1(νt−1 −Ω−1

t−1κt)I(t > 1)

+ (xt − Azt x̄t−1)
⊤Q−1

zt
(xt − Azt x̄t−1)

]
− 1

2

T

∑
t=1

(yt − Czt xt)
⊤S−1

zt
(yt − Czt xt). (41)



Symmetry 2024, 16, 474 10 of 27

The exact optimal solutions for q(z1:T) and q(x0:T) will not be explicitly evaluated;
rather, we use message passing algorithms to obtain the sufficient statistics with respect
to these factors. In the following subsections, we present the involved message passing
algorithms and the detailed derivations of update formula for each factor.

3.1. Update for q(x0:T)

Since E−q(x0:T)
ln p(θ) is not a function of x0:T , Equation (36) can be written as

ln q(x0:T) ∝ E−q(x0:T) ln p(z1:T , x0:T , ω1:T , y1:T |θ),

∝ E−q(x0:T)

[
−1

2
(x̄0 − µ0)

⊤(Σ0)
−1(x̄0 − µ0)

]
+E−q(x0:T)

[
−1

2

T

∑
t=2

(νt−1 −Ω−1
t−1κt)

⊤Ωt−1(νt−1 −Ω−1
t−1κt)

]

+E−q(x0:T)

[
−1

2

T

∑
t=1

(xt − Azt x̄t−1)
⊤Q−1

zt
(xt − Azt x̄t−1)

]

+E−q(x0:T)

[
−1

2

T

∑
t=1

(yt − Czt xt)
⊤S−1

zt
(yt − Czt xt)

]
. (42)

From Equation (42) it can be observed that the structure of the variational posterior
ln q(x0:T) resembles the joint log-likelihood function of a time-varying linear dynamical
system with higher-order dependence (HO-LDS). Thus, the ln q(x0:T) can be re-expressed as

ln q(x0:T) ∝ −1
2
(x̄0 − µ̂0)

⊤(Σ̂0)
−1(x̄0 − µ̂0)

− 1
2

T

∑
t=1

(xt − Ât x̄t−1)
⊤Q̂−1

t (xt − Ât x̄t−1)

− 1
2

T

∑
t=1

(yt − Ĉtxt)
⊤Ŝ−1

t (yt − Ĉtxt), (43)

and the set of variational parameters involved in Equation (43) are defined as

θ̂x0:T :=
{

µ̂0, Σ̂0,
{

Ât
}T

t=1,
{

Q̂t
}T

t=1,
{

Ĉt
}T

t=1,
{

Ŝt
}T

t=1

}
. (44)

Each component in the θ̂x0:T can be precisely determined by matching the coefficients
of each term in Equations (42) and (43). Algorithm 1 outlines an efficient scheme for
this purpose.

Algorithm 1: Obtaining θ̂x0:T

1 for t = T : 1 do
2 Ŝ−1

t ← E−q(x0:T)

[
S−1

zt

]
;

3 Ĉt ← ŜtE−q(x0:T)

[
S−1

zt Czt

]
;

4 Q̂−1
t ←
E−q(x0:T)

[
Q−1

zt + C⊤zt S−1
zt Czt

]
− Ĉ⊤T Ŝ−1

T ĈT , t = T

E−q(x0:T)

[
Q−1

zt + ∑
p
j=1 A⊤zt+j

(j)Q−1
zt+j

Azt+j(j) + C⊤zt S−1
zt Czt + R⊤zt ΩtRzt

]
−∑

p
j=1 Â⊤t+j(j)Q̂−1

t+j Ât+j(j)− Ĉ⊤t Ŝ−1
t Ĉt, t < T

;

5 Ât ← Q̂tE−q(x0:T)

[
Q−1

zt Azt

]
;

6 end
7 Σ̂−1

0 ← E−q(x0:T)

[
Σ0 + A⊤z1

Qz1 Az1

]
− Â⊤1 Q̂1 Â1;

8 µ̂0 ← Σ̂0E−q(x0:T)

[
(Σ0)−1µ0];

Output: θ̂x0:T
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Remark 1. Azt x̄t−1 = ∑
p
j=1 Azt(j)xt−j where Azt(j) is defined as the submatrix of Azt associated

with xt−j in Azt x̄t−1.

Thus, we perform message passing on a time-varing HO-LDS parameterized by θ̂x0:T

to obtain the posterior distribution q(x0:T) and sufficient statistics used in the update for
the other factors. To be concrete, the message passing comprises the generalized Kalman
filter and Kalman smoother for the time-varing HO-LDS, which are demonstrated by
Theorems 1 and 2. To prove the theorems, we need the following lemmas [26]:

Lemma 1. If random variables X and Y follow the Gaussian probability distributions:

X ∼ N (m, P), (45)

Y|X ∼ N (HX + u, R), (46)

then the joint distribution of X and Y, as well as the marginal distribution of Y, are provided by(
X
Y

)
∼ N

((
m

Hm + u

)
,
(

P PH⊤

HP HPH⊤ + R

))
,

Y ∼ N
(

Hm + u, HPH⊤ + R
)

. (47)

Lemma 2. If the random variables X and Y follow the joint Gaussian probability distribution(
X
Y

)
∼ N

((
a
b

)
,
(

A C
C⊤ B

))
, (48)

then the marginal and conditional distributions of X and Y are as follows:

X ∼ N (a, A),

Y ∼ N (b, B),

X|Y ∼ N
(

a + CB−1(Y− b), A− CB−1C⊤
)

,

Y|X ∼ N
(

b + C⊤A−1(X− a), B− C⊤A−1C
)

. (49)

Now we demonstrate Theorems 1 and 2 in turn, which provides the Kalman filter and
smoother equations about q(x0:T) in the time-varying HO-LDS.

Theorem 1. The Kalman filter equations for the time-varing HO-LDS (Equation (43)) parameter-
ized by θ̂x0:T can be evaluated in closed form, which results in Gaussian distributions:

p(xt|y1:t−1) = N (xt|µ(p)
t , Σ(p)

t ), (50)

p(xt|y1:t) = N (xt|µ(u)
t , Σ(u)

t ), (51)

p(x̄t|y1:t) = N (x̄t|µ(m)
t , Σ(m)

t ). (52)

The distribution parameters can be calculated using the following Kalman filter prediction, update
and merging steps detailed in the following proof. The recursion begins with the prior mean µm

0 and
covariance Σm

0 (i.e., µ̂0 and Σ̂0).

Proof. The Gaussian filter distributions (Equations (50)–(52)) can be obtained by the fol-
lowing steps:
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1. Prediction step. By Lemma 1, the joint distribution of xt and x̄t−1 given y1:t−1 is

p(xt, x̄t−1|y1:t−1) = p(xt|x̄t−1)p(x̄t−1|y1:t−1)

= N (xt|Ât x̄t−1, Q̂t)N (x̄t−1|µ
(m)
t−1, Σ(m)

t−1)

= N
((

x̄t−1
xt

)∣∣∣∣µ(1), Σ(1)
)

, (53)

where

µ(1) =

(
µ
(m)
t−1

Âtµ
(m)
t−1

)
, Σ(1) =

(
Σ(m)

t−1 Σ(m)
t−1 Â⊤t

ÂtΣ
(m)
t−1 ÂtΣ

(m)
t−1 Â⊤t + Q̂t

)
, (54)

and by Lemma 2 the marginal distribution of xt is given by

p(xt|y1:t−1) = N (xt|µ(p)
t , Σ(p)

t ), (55)

where

µ
(p)
t = Âtµ

(m)
t−1, Σ(p)

t = ÂtΣ
(m)
t−1 Â⊤t + Q̂t. (56)

2. Update step. By Lemma 1, the joint distribution of yt and xt given y1:t−1 is

p(xt, yt|y1:t−1) = p(yt|xt)p(xt|y1:t−1)

= N (yt|Ĉtxt, Ŝt)N (xt|µ(p)
t , Σ(p)

t )

= N
((

xt
yt

)∣∣∣∣µ(2), Σ(2)
)

, (57)

where

µ(2) =

(
µ
(p)
t

Ĉtµ
(p)
t

)
, Σ(2) =

(
Σ(p)

t Σ(p)
t Ĉ⊤t

ĈtΣ
(p)
t ĈtΣ

p
t Ĉ⊤t + Ŝt

)
. (58)

By Lemma 2 the conditional distribution of xt given y1:t is

p(xt|yt, y1:t−1) = p(xt|y1:t)

= N (xt|µ(u), Σ(u)), (59)

where

µ(u) = µ
(p)
t + Σ(p)

t Ĉ⊤t (ĈtΣ
(p)
t Ĉ⊤t + Ŝt)

−1(yt − Ĉtµ
(p)
t ), (60)

Σ(u) = Σ(p)
t − Σ(p)

t Ĉ⊤t (ĈtΣ
(p)
t Ĉ⊤t + S̄t)

−1ĈtΣ
(p)
t . (61)

3. Merging step. By Lemma 1, the joint distribution of x̄t−1, xt, yt given y1:t−1 is

p(x̄t−1, xt, yt|y1:t−1) = p(yt|xt)p(xt, x̄t−1|y1:t−1)

= N (Ĉtxt, Ŝt)N
((

x̄t−1
xt

)∣∣∣∣µ(1), Σ(1)
)

,

= N

x̄t−1
xt
yt

∣∣∣∣∣∣µ(3), Σ(3)

, (62)
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where

µ(3) =

µ
(3)
1

µ
(3)
2

µ
(3)
3

 =

 µ
(m)
t−1

Âtµ
(m)
t−1

Ĉt Âtµ
(m)
t−1

, (63)

Σ(3) =

Σ(3)
11 Σ(3)

12 Σ(3)
13

Σ(3)
21 Σ(3)

21 Σ(3)
23

Σ(3)
31 Σ(3)

32 Σ(3)
33

,

=

 Σ(m)
t−1 Σ(m)

t−1 Â⊤t Σ(m)
t−1 Â⊤t Ĉ⊤t

ÂtΣ
(m)
t−1 ÂtΣ

(m)
t−1 Â⊤t + Q̂t (ÂtΣ

(m)
t−1 Â⊤t + Q̂t)Ĉ⊤t

Ĉt Âtσ
(m)
t−1 Ĉt(ÂtΣ

(m)
t−1 Â⊤ + Q̂t) Ĉt(ÂtΣ

(m)
t−1 Â⊤t + Q̂t)Ĉ⊤t + Ŝt

. (64)

By Lemma 2, the conditional distribution of x̄t−1 and xt given y1:t is

p(x̄t−1, xt|yt, y1:t−1) = p(x̄t−1, xt|y1:t)

= N (x̄t−1, xt|µ(4), Σ(4)), (65)

where

µ(4) =

(
µ
(3)
1

µ
(3)
2

)
+

(
Σ(3)

13

Σ(3)
23

)
(Σ(3)

33 )−1(yt − µ
(3)
3 ), (66)

Σ(4) = Σ(3)
11 −

(
Σ(3)

13

Σ(3)
23

)
(Σ(3)

33 )−1
(

Σ(3)
13 Σ(3)

23

)
. (67)

Finally, the marginal distribution of x̄t is

p(x̄t|y1:t) = N (x̄t|µ(m)
t , Σ(m)

t )

= N (x̄t|µ(4)(x̄t), Σ(4)(x̄t)), (68)

where µ(4)(x̄t) and Σ(4)(x̄t) are marginal mean vector and covariance matrix of x̄t.

The Kalman filter for the time-varying HO-LDS in Theorem 1 calculates the estimates
based on measurements collected up to and including time step t. After obtaining the
filtering posterior state distributions, Theorem 2 outlines the results for calculating the
marginal posterior distributions for each time step based on all data up to the final time
step T, which is described as the following:

Theorem 2. The Kalman smoother equations for the time-varing HO-LDS (Equation (43)) parame-
terized by θ̂x0:T can be evaluated in closed form, which results Gaussian distributions:

p(xt|y1:T) = N (xt|µ(s1)
t , Σ(s1)

t ), (69)

p(x̄t|y1:T) = N (x̄t|µ(s2)
t , Σ(s2)

t ), (70)

p(x̄t−1, xt|y1:T) = N ((x̄t−1, xt)|µ(s3)
t , Σ(s3)

t ). (71)

The smoothing distribution and filtering distribution of the last time step are identical, allowing for
the recursive computation of the smoothing distribution for all time steps by beginning from the last
step and moving backward.
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Proof. Firstly by Lemma 1, the joint distribution of x̄t−1 and xt given y1:t−1 is

p(xt, x̄t−1|y1:t−1) = p(xt|x̄t−1)p(x̄t−1|y1:t−1)

= N (xt|Ât x̄t−1, Q̂t)N (x̄t−1|µ
(m)
t−1, Σ(m)

t−1)

= N
((

x̄t−1
xt

)∣∣∣∣µ(1), Σ(1)
)

, (72)

where

µ(1) =

(
µ
(m)
t−1

Âtµ
(m)
t−1

)
, Σ(1) =

(
Σ(m)

t−1 Σ(m)
t−1 Â⊤t

ÂtΣ
(m)
t−1 ÂtΣ

(m)
t−1 Â⊤t + Q̂t

)
. (73)

According to the Markov property of the states, we obtain

p(x̄t−1|xt, y1:T) = p(x̄t−1|xt, yt−1). (74)

Therefore, we have the conditional distribution as

p(x̄t−1|xt, y1:T) = p(x̄t−1|xt, yt−1),

= N (x̄t−1|µ̃(2), Σ̃(2)), (75)

where

Gt = Σ(m)
t−1 Â⊤t (ÂtΣ

(m)
t−1 Â⊤t + Q̂t)

−1,

µ̃(2) = µ
(m)
t−1 + Gt(xt − Âtµ

(m)
t−1),

Σ̃(2) = Σ(m)
t−1 − Gt ÂtΣ

(m)
t−1. (76)

Then, the joint distribution of x̄t−1 and xt given all the data is

p(x̄t−1, xt|y1:T) = p(x̄t−1|xt, y1:T)p(xt|y1:T)

= N (x̄t−1|µ̃(2), Σ̃(2))N (xt|µ(s1)
t , Σ(s1)

t )

= N
((

x̄t−1
xt

)∣∣∣∣µ(s3)
t , Σ(s3)

t

)
, (77)

where

µ
(s3)
t =

(
Gtµ

(s1)
t + µ

(m)
t−1 − Gt Âtµ

(m)
t−1

µ
(s1)
t

)
, (78)

Σs3
t =

(
GtΣ

(s1)
t G⊤t + Σ̃(2) Σ(s1)

t G⊤t
GtΣ

(s1)
t Σ(s1)

t

)
. (79)

Thus, the marginal distribution of x̄t−1 is given as

p(x̄t−1|y1:T) = N (x̄t−1|µ
(s2)
t , Σ(s2)

t ), (80)

where

µ
(s2)
t = Gtµ

(s1)
t + µ

(m)
t−1 − Gt Âtµ

(m)
t−1, (81)

Σ(s2)
t = GtΣ

(s1)
t G⊤t + Σ̃(2). (82)
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The p(xt−1|y1:T) will be directly obtained from p(x̄t−1|y1:T). Therefore, we have derived
the concrete expressions of the Gaussian smoother distributions (Equations (69)–(71)).

Thus, we can obtain the posterior distributions of q(x0:T |y1:T) as well as the expecta-
tions involved in the update for the other factors, which are Eq(x0:T)

(xt),Eq(x0:T)
(xtx⊤t ) and

Eq(x0:T)
(x̄tx⊤t+1).

3.2. Update for q(ω1:T)

q(ω1:T) can be updated using a closed-form expression by the Pólya-gamma augmenta-
tion. Equations (37) and (41) results in the following update for q(ω1:T) = ∏T

t=1 ∏K−1
k=1 q(ωt,k):

ln q(ωt,k) ∝ E−q(ω1:T)
ln p(zt+1, ωt|xt)

∝ E−q(ω1:T)
ln p(zt+1|ωt, xt) +E−q(ω1:T)

ln PG(ωt,k|I(zt+1 > k), 0). (83)

Since E−q(ω1:T)
ln p(zt+1|ωt, xt) ∝ − 1

2E−q(ω1:T)
(ν2

t,k)ωt,k, we have

q(ωt,k) = PG(ωt,k|Eq(z1:T)
I(zt+1 > k),E−q(ω1:T)

(ν2
t,k)). (84)

Moreover, the expectation of the posterior Pólya-gamma distribution is available in closed
form [22]:

E(ωt,k) =
Eq(z1:T)

I(zt+1 > k)

2Eq(z1:T)q(x1:T)q(θ)(ν
2
t,k)

tanh
[

1
2
Eq(z1:T)q(x1:T)q(θ)(ν

2
t,k)

]
. (85)

3.3. Update for q(z1:T)

Since E−q(z1:T)
ln p(θ) is not a function of z1:T , Equation (35) can be written as

ln q(z1:T) ∝ E−q(z1:T)
ln p(z1:T , x0:T , ω1:T , y1:T |θ)

∝ E−q(z1:T)

[
ln p(z1|θ) +

T

∑
t=2

ln p(zt|xt−1, zt−1, ωt−1, θ) +
T

∑
t=1

ln p(xt|zt, θ)

]
. (86)

From Equation (86) it is evident that the resulting factor q(z1:T) has the form of an
HMM parameterized by q(x1:T , ω1:T , θ), and the expected sufficient statistics required
for updating the other factors can be obtained by message passing algorithms. We de-
fine ln π̃z1 := E−q(z1:T)

ln p(z1|θ), ln ãztzt+1 := E−q(z1:T)
ln p(zt+1|zt, xt, ωt, θ), ln b̃zt(xt) :=

E−q(z1:T)
ln p(xt|zt, θ) and the set of the HMM parameters is denoted as θ̂z1:T . Thus, we

have

ln q(z1:T) ∝ ln π̃z1 +
T

∑
t=2

ln ãzt−1zt(t− 1) +
T

∑
t=1

ln b̃zt(xt). (87)

Note that the densities p(z1|θ), p(zt+1|zt, xt, ωt, θ), p(xt|zt, θ) belong to the exponential
family, these expectations can be evaluated in closed form. The computation of the HMM
parameters by Equation (86) is summarized in Algorithm 2.

We apply a standard forward-backward algorithm for an HMM where the forward
recursion is:

αt(i) := p(zt = i|x1:t) ∝ b̃i(xt)
K

∑
j=1

αt−1(j), (88)
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where α1(i) ∝ π̃i b̃i(x1) and the backward recursion is:

βt(i) := p(xt+1:T |zt = i) ∝
K

∑
j=1

βt(j)b̃j(xt)ãij(t). (89)

Algorithm 2: Obtaining θ̂z1:T

1 for k = 1 : K do
2 π̃k ∝ exp

{
Eq(z1)

(ln p(z1 = k|θ))
}

3 end
4 for i, j = 1 : K do
5 for t = 1 : T do

6 ãij(t) ∝ exp
{
− 1

2 ∑K
i=1 Eq(ωt) ln ωt,i − 1

2Eq(ωt ,xt ,θ)
(

x⊤t R⊤i ΩtRixt
)
−

7 Eq(ωt ,xt ,θ)
(

x⊤t R⊤i ωtri − x⊤t R⊤i κ(zt+1 = j)
)
−

8 1
2Eq(ωt ,θ)

[
(ri −Ω−1

t κ(zt+1 = j))⊤Ωt(ri −Ω−1
t κ(zt+1 = j))

]}
9 end

10 end
11 for k = 1 : K do
12 for t = 1 : T do

13 b̃k(xt) ∝ exp
{
Eq(x1:T ,θ)

[
− 1

2 ln |Qk| − 1
2 (xt − Ak x̄t−1)

⊤Qk(xt − Ak x̄t−1)
]}

14 end
15 end

Then we can obtain the sufficient statistics used in the update for the other factors
using the following equations:

γt(i) := p(zt = i|x1:T) ∝ αt(i)βt(i), (90)

ξt(i, j) := p(zt = i, zt+1 = j|x1:T) ∝ αt(i)ãij(t)b̃j(xt+1)βt+1(j). (91)

3.4. Update for q(θ)

Given the sufficient statistics of q(z1:T) and q(x1:T) obtained by message passing, the
conjugate posterior distribution of the model parameters can be updated in closed form
by evaluating Equation (38). For each parameter, we present the optimized variational
distribution in the following:

• Update q(π0). Simplifying Equation (38) and extracting the terms related to π0, we
have

ln q(π0) ∝ Eq(−θ) ln p(z1|θ) + ln p(π0), (92)

which results in

q(π0) ∼ Dir(π0|α′0), (93)

where α′0 =
[
α′0,1, . . . , α′0,k, . . . , α′0,K

]
∈ RK and

α′0,k = α0,k + γ1(k), (94)

α0,k are prior parameters of p(π0).
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• Update (µ0, Σ0). The posterior q(µ0, Σ0) can be obtained by the expectations of q(x0:T),
given by

µ0 ← Eq(x0:T)(x̄0), (95)

Σ0 ← Eq(x0:T)

(
x̄0 x̄⊤0

)
− µ0(µ0)

⊤. (96)

• Update q(Ak, Qk). Simplifying Equation (38) and extracting the terms related to
(Ak, Qk), we have

ln q(Ak, Qk) ∝

E−q(θ)

[
−∑T

t=1 γt(k)
2

ln |Qk| −
1
2

T

∑
t=1

γt(k)(xt − Ak x̄t−1)
⊤Q−1

k (xt − Ak x̄t−1)

]
+ ln p(Ak, Qk), (97)

which results in

q(Ak, Qk) ∼ MNIW(Ak, Qk|η′k), (98)

where η′k :=
{

M(η′)
k , Φ(η′)

k , ι
(η′)
k , ∆(η′)

k

}
,

q(Ak, Qk) ∝ |Qk|−
ι
(η′)
k +(p+1)m+1

2 exp
{
− 1

2
Tr(∆(η′)

k Q−1
k )

− 1
2

Tr
[
(Φ(η′)

k )−1(Ak −M(η′)
k )⊤Q−1

k (Ak −M(η′)
k )

]}
. (99)

The variational posterior parameters can be optimized as

Φ(η′)
k =

(
(Φ(η)

k )−1 +
T

∑
t=1

Eq(x0:T)(γt(k)x̄t−1 x̄⊤t−1)

)−1

,

M(η′)
k =

(
M(η)

k (Φ(η)
k )−1 +

T

∑
t=1

Eq(x0:T)(γt(k)xt x̄⊤t−1)

)
Φ(η′)

k ,

∆(η′)
k = ∆(η)

k +
T

∑
t=1

Eq(x0:T)(γt(k)xtx⊤t ) + M(η)
k (Φ(η)

k )−1(M(η)
k )⊤ −M(η′)

k (Φ(η′)
k )−1(M(η′)

k )⊤,

ι
(η′)
k = ι

(η)
k +

T

∑
t=1

γt(k), (100)

where M(η)
k , Φ(η)

k , ι
(η)
k , ∆(η)

k are prior parameters of p(Ak, Qk).
• Update q(Ck, Sk). Simplifying Equation (38) and extracting the terms related to (Ck, Sk),

we have

ln q(Ck, Sk) ∝

E−q(θ)

[
−∑T

t=1 γt(k)
2

ln |Sk| −
1
2

T

∑
t=1

(yt − Ckxt)
⊤S−1

k (yt − Ckxt)

]
+ ln p(Ck, Sk), (101)

which results in

q(Ck, Sk) ∼ MNIW(Ck, Sk|λ′k), (102)
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where λ′k :=
{

M(λ′)
k , Φ(λ′)

k , ι
(λ′)
k , ∆(λ′)

k

}
,

q(Ck, Sk) ∝ |Sk|−
ι
(λ′)
k +(p+1)m+1

2 exp
{
− 1

2
Tr(∆(λ′)

k S−1
k )

− 1
2

Tr
[
(Φ(λ′)

k )−1(Ck −M(λ′)
k )⊤Q−1

k (Ck −M(λ′)
k )

]}
. (103)

The variational posterior parameters can be optimized as

Φ(λ′)
k =

(
(Φ(λ)

k )−1 +
T

∑
t=1

Eq(x0:T)(γt(k)xtx⊤t )

)−1

,

M(λ′)
k =

(
M(λ)

k (Φ(λ)
k )−1 +

T

∑
t=1

Eq(x0:T)(γt(k)ytx⊤t )

)
Φ(λ′)

k ,

∆(λ′)
k = ∆(λ)

k +
T

∑
t=1

γt(k)yty⊤t + M(λ)
k (Φ(λ)

k )−1(M(λ)
k )⊤ −M(λ′)

k (Φ(λ′)
k )−1(M(λ′)

k )⊤,

ι
(λ′)
k = ι

(λ)
k +

T

∑
t=1

γt(k), (104)

where M(λ)
k , Φ(λ)

k , ι
(λ)
k , ∆(λ)

k are prior parameters of p(Ck, Sk).
• Update q(Rk). Simplifying Equation (38) and extracting the terms related to Rk,

we have

ln q(Rk) ∝

E−q(θ)

[
−1

2

T−1

∑
t=1

γt(k)(Rkxt + rk −Ω−1
t κt+1)

⊤Ωt(Rkxt + rk −Ω−1
t κt+1)

]

+
K−1

∑
i=1

ln p(Rk,i), (105)

which results in

q(Rk) ∼
K−1

∏
i=1
N (Rk,i|ζ ′k,i), (106)

where ζ ′k,i :=
{

µ
(ζ ′)
k,i , Σ(ζ ′)

k,i

}
, which can be optimized as

Σ(ζ ′)
k,i =

[(
Σ(ζ)

k,i

)−1
+

T

∑
t=1

Eq(ω1:T ,x0:T)

(
xtγt(k)Ωt,ix⊤t

)]−1

, (107)

µ
(ζ ′)
k,i = Σ(ζ ′)

k,i

[
T−1

∑
t=1

Eq(ω1:T)q(x0:T)

(
γt(k)Ωt,i Ht,k,ixt

)
+
(

Σ(ζ)
k,i

)−1
µ
(ζ)
k,i

]
, (108)

Ht,k = [Ht,k,1, · · · , Ht,k,i, · · · , Ht,k,K−1]
⊤ = Eq(rk)q(ω1:T)

(
rk −Ω−1

t κt+1

)
, (109)

and µ
(ζ)
k,i , Σ(ζ)

k,i are prior parameters of p(Rk,i). To derive Equation (107), just note that
R⊤k ΩtRk = ∑K−1

i=1 Rk,iΩk,iR⊤k,i and use the matrix trace.
• Update q(rk). Simplifying Equation (38) and extracting the terms related to rk, we

have

ln q(rk) ∝

E−q(θ)

[
−1

2

T−1

∑
t=1

γt(k)(Rkxt + rk −Ω−1
t κt+1)

⊤Ωt(Rkxt + rk −Ω−1
t κt+1)

]
+ ln p(rk), (110)
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which results in

q(rk) ∼ N (rk|ρ′k), (111)

where ρ′k :=
{

µ
(ρ′)
k , Σ(ρ′)

k

}
, which can be optimized as

Σ(ρ′)
k =

[(
Σ(ρ)

k

)−1
+

T−1

∑
t=1

Eq(ω1:T)(γt(k)Ωt)

]−1

, (112)

µ
(ρ′)
k = Σ(ρ′)

k

[(
Σ(ρ)

k

)−1
µ
(ρ)
k +

T−1

∑
t=1

Eq(Rk)q(x0:T)q(ω1:T)

(
γt(k)Ωt

(
Rkxt −Ω−1

t κt+1

))]
, (113)

where µ
(ρ)
k , Σ(ρ)

k are prior parameters of p(rk).

3.5. Initialization

To obtain a reliable variational inference, we initialized the model parameters and
latent states with reasonable values by using the following initialization procedure:

1. Probabilistic Principal Component Analysis (PPCA) [27] is conducted on the data, to
initialize the continuous latent variables, x0:T and the parameters C;

2. Fit an AR(p)-HMM to initialize the switching states, z1:T and the parameters, {Ak, Qk}.
The autoregressive order, p, is determined by AIC, BIC, and HQ criterion;

3. To alleviate the possible and undesirable dependence on ordering that arises from the
stick-breaking formulation during the inference, we adopt a strategy of greedily fitting
a decision list [21] to identify the most suitable permutation of the switching states for
the stick-breaking process. Specifically, we start by performing a greedy search on
permutations by creating a decision list based on (xt, zt), zt+1 pairs, given by

zt+1 =


o1 if p1

o2 if¬p1 ∩ p2
...
oK if∩K−1

i=1 (¬pi)

, (114)

where (o1, . . . , oK) is a permutation of (1, . . . , K), and p1, . . . , pk are predicates that
rely on (xt, zt) and provide a true or false. In our framework, these predicates are
defined by logistic functions:

pj = σ
(

R⊤0,jxt

)
> ε, (115)

where ε ∈ (0, 1) should be predetermined. To determine o1 and r1, we used the
maximum a posteriori estimate of the model for each of the K potential states. For
the kth logistic regression, the inputs are x0:T and the outputs are yt = I(zt+1 = k).
We chose the logistic regression model with the largest likelihood as the first output.
Then we excluded time points where zt+1 = o1 from the data and proceeded to K− 1
logistic regressions to predict the subsequent output, o2, and so on. After cycling
through all K results, we obtained the permutation of z1:T . In addition, the

{
R0,j
}K−1

j=1
served as an initialization of the recurrence weights (R).

4. Numerical Experiments

To investigate the performance of the proposed HO-rSLDS, we generated synthetic
datasets through the following steps:
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1. Benchmark model settings.We take AR-HSMM as a benchmark model to generate
synthetic time series. Specifically, the dimensionality of the synthetic time series
is n = 5, and the total length is T = 1000. The state number is K = 3, and the
autoregressive order p takes values {1, 2, 3}.

2. Generating (Ak, Qk). (Ak, Qk) corresponds to the emission parameters involved in
the VAR process of latent variables xt (Equation (11)). The autoregressive coefficient
matrices Ak are generated with 50% sparsity (defined as the proportion of the zero
elements), i.e., 50% of the elements in Ak are 0. The non-zero elements of Ak are
generated to be positive or negative with equal probability, and their absolute value is
sampled uniformly between 0.2 and 0.5. The covariance matrices Qk are generated
as Qk = P⊤k diag(σ1, . . . , σd)Pk, with Pk being an orthogonal matrix and σi assumed
positive. The matrix Pk is constructed by orthogonalizing a random matrix whose
entries are simulated from a standard Normal, while each σi is uniformly sampled
in the interval [1, 3]. Additionally, a rejection step is done to check that the sampled
(Ak, Qk) constituted a stable VAR process.

3. Generating switching state sequence z1:T . To generate z1:T , we set the state transition
probabilities πjk to 0.5, for j ̸= k = 1, 2, 3. Note that in an HSMM, the self-transition
probability is 0. Furthermore, we simulate the state duration time in two cases.
In the first case, the state duration time is sampled from a geometric distribution
(the between-state transition probabilities are set to 0.1). In the second case, the
state duration time is directly sampled from {1, . . . , 10} with specified sampling
probabilities. Since the second case does not correspond to a parametric distribution,
we denote these two cases as geometric and nonparametric, respectively. In addition,
the initial state is uniformly sampled from {1, . . . , 10}.

4. Generating (Ck, Sk). (Ck, Sk) corresponds to the emission parameters generating the
Gaussian observations yt (Equation (12)). We generate (Ck, Sk) in the same manner as
(Ak, Qk).

5. Repeat the above procedure 100 times to obtain 100 synthetic data by setting different
random seeds when generating (Ak, Qk, Ck, Sk).

Figure 4 displays all dimensions and the true state sequence of one synthetic dataset.

−4
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2

4

0 50 100 150 200
Time 
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lu

e

Figure 4. Simulated time series with dimension d = 5 and total time points T = 1000 (the last
200 time points are exhibited). The five dimensions are displayed in different colors. The color
intervals indicate the state sequence.
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We investigated the performance of HO-rSLDS by comparing with the competing
models, while the estimation accuracy is evaluated by the normalized mean squared error
(NMSE) between the true and estimated emission model parameters and the signal-to-noise
ratio (SNR) of the inferred optimized switching state sequence (ẑ1:T), given by

NMSE =
1
K

K

∑
k=1

∥Ĉk − Ck∥F

∥Ck∥F
, (116)

SNR =
∑T

t=1 I(zt = ẑt)

T
, (117)

where ∥ · ∥F denotes Frobenius norm, Ĉk and ẑ1:T are estimated values. For AR-HMM, the
NMSE is evaluated based on the true and estimated VAR emission parameters. To obtain
ẑ1:T , we set ẑt = arg max

k
γt(k). In addition, we avoid the optimization about discrete state

number (K) and the dependence order (p) in HO-rSLDS by directly setting them to the
true value.

The results of estimated NMSE and SNR for the three models are summarized in
Tables 1 and 2, respectively. It is observed that HO-rSLDS outperforms AR-HMM and
SLDS with lower average NMSE and higher average SNR for all the autoregressive orders
and state duration distribution combinations. In addition, when p = 1, for both geometric
and nonparametric state duration, SLDS outperforms AR-HMM slightly, which may be
because the synthetic data are generated by a simulated extensive SLDS structure. However,
when p > 1 and there is long-term dependence involved in the latent variables or observa-
tion data, it is just the opposite, since AR-HMM with higher p can capture the temporal
relationships in the observation data while SLDS cannot. Moreover, when the transition of
the underlying discrete states is characterized by a nonparametric duration distribution,
the estimation accuracy of AR-HMM and SLDS is reduced, while HO-rSLDS remains stable
with good estimation accuracy. This is because state transitions in both AR-HMM and
SLDS are characterized by a Markov assumption and restricted to geometric duration
distribution. Thus, more weight is given to shorter consecutive time periods within a
certain state, which means the regimes switch frequently, which may not be appropriate in
cases without sufficient prior information about a geometric state duration. By comparison,
HO-rSLDS exhibits robustness to the state duration distributions since it improves the
state transition by leveraging the stick-breaking logistic regression. The current state zt
no longer depends on only the preceding state zt−1, but also the latent variable xt−1, and,
furthermore, the previous observations.

A more exhaustive comparison is illustrated in Figure 5 where HO-rSLDS outperforms
the competing models with better estimation accuracy and statistical significance in all the
cases (t-test, ** p < 0.01).

Table 1. NMSE derived from AR-HMM, SLDS, and HO-rSLDS based on the synthetic time series
with different state duration distribution and autoregressive order in the generative model. All the
results are the average of the 100 experiments (mean ± std).

NMSE p = 1 p = 2 p = 3

AR-HMM 0.25 ± 0.06 0.33 ± 0.07 0.37 ± 0.09
Geometric SLDS 0.23 ± 0.05 0.39 ± 0.09 0.44 ± 0.11

HO-rSLDS 0.16 ± 0.04 0.17 ± 0.05 0.20 ± 0.06

AR-HMM 0.32 ± 0.07 0.41 ± 0.09 0.48 ± 0.11
Nonparametric SLDS 0.31 ± 0.09 0.44 ± 0.11 0.49 ± 0.13

HO-rSLDS 0.18 ± 0.06 0.20 ± 0.05 0.21 ± 0.06
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Table 2. SNR derived from AR-HMM, SLDS, and HO-rSLDS based on the synthetic time series with
different state duration distribution and autoregressive order in the generative model. All the results
are the average of the 100 experiments (mean ± std).

SNR p = 1 p = 2 p = 3

AR-HMM 0.79 ± 0.08 0.76 ± 0.07 0.69 ± 0.08
Geometric SLDS 0.85 ± 0.06 0.68 ± 0.09 0.64 ± 0.09

HO-rSLDS 0.93 ± 0.04 0.92 ± 0.05 0.90 ± 0.05

AR-HMM 0.73 ± 0.08 0.65 ± 0.07 0.59 ± 0.10
Nonparametric SLDS 0.80 ± 0.06 0.60 ± 0.09 0.54 ± 0.11

HO-rSLDS 0.91 ± 0.04 0.87 ± 0.05 0.86 ± 0.05
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(a) NMSE derived from the three models

(b) SNR derived from the three models

Figure 5. Box-plot of NMSE and SNR derived from AR-HMM, SLDS and HO-rSLDS based on the
100 numerical experiments. HO-rSLDS outperforms the competing models with significant lower
NMSE and higher SNR on average for all the autoregressive order and state duration distribution
combination. (t-test, ** p < 0.01).

5. Dynamic Functional Connectivity Analysis in fMRI Data

To show that HO-rSLDS can also work well with real-world data, we evaluate the
performance of HO-rSLDS by comparing it with standard SLDS based on public functional
magnetic resonance imaging (fMRI) data. The data are collected in the Human Connectome
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Project (HCP) 1200 Parcellation Timeseries Netmats (HCP1200-TPN) dataset (Available
at https://www.humanconnectome.org, (accessed on 6 March 2024)). Please see [28] for
a detailed explanation of the entire acquisition protocol. In this study, we apply HO-
rSLDS to data from 20 unrelated subjects with dimension d = 15 and times series length
T0 = 4800 for each subject included in the HCP1200-PTN release to perform dynamic
functional connectivity (DFC) analysis, which can be used to analysis the dynamical
temporal coherence among endogenous fluctuations in distributed brain regions [29,30]. In
general, HO-rSLDS and SLDS assume that there are metastable states with characteristic
connectivity pattern in the brain, while the connectivity pattern can be represented by the
statistical correlations directly. Specifically, by Lemma 1, the functional connectivity pattern
of state k in HO-rSLDS and SLDS can be obtained as

DFCk =
∑T

t=1 γt(k)
[
ECk

(
Extx⊤t −ExtEx⊤t

)
EC⊤k +ESk

]
∑T

t=1 γt(k)
. (118)

In addition, there are two unknown parameters: the state number K and the depen-
dence order p. We use the mixture minimum description length (MMDL) considering
optimal code lengths for each state in a mixed model [31], given by

MMDL(K) := − lnL(K) + 1
2

ln(T)K(K− 1) +
K

∑
k=1

1
2

ln(Tγ̄k)d2, (119)

where L(K) is the variational lower bound evaluated during the model inference and
γ̄k := ∑T

t=1 γt(k). The concept of MMDL may be elucidated by the minimal description
length principle in [32]. The state number K is determined by minimizing the MMDL on a
specified list of K. In addition, we fit VAR model on the fMRI time series and the optimal
dependence order p will be determined by AIC, BIC and HQ criteria [33], given by

AIC := ln
(
det(Σ̂)

)
+

2pd2

T
, (120)

BIC := ln
(
det(Σ̂)

)
+

ln(T)pd2

T
, (121)

HQ := ln(det(Σ)) +
2 ln(ln T)pd2

T
, (122)

where Σ̂ is the estimated covariance matrix of noise in VAR model. To avoid the model order
too large to permit feasible computation, we choose the lag order on the condition when
AIC/BIC/HQ show no further substantial decreases at higher orders [34]. As illustrated in
Figure 6, we set K = 4 according to the minimal MMDL and p = 4 since the downward
trend of AIC, BIC and HQ tends to be flat with higher order.

In Figure 7, we present the DFC patterns derived from the proposed HO-rSLDS and
the standard SLDS. The 15 brain regions producing the fMRI time series are indexed by
numbers 1 to 15. The states are ordered by their fractional occupancy (defined as the
percentage of time allocated to that specific state); it is evident that the 4 states from SLDS
have a more average fractional occupancy distribution. Moreover, it is observed that DFC
patterns derived from SLDS are more similar than those from HO-rSLDS, where there is
only a slight difference in DFC patterns between State4 and the other three states from
SLDS. We use cosine similarity to measure the difference of the DFC patterns characterized
by each state, given by

cos(F1, F2) =
Tr(F1F2)

∥F1∥F∥F2∥F
, (123)

where F1 and F2 are square matrices. By this means, the averaged cosine similarity for
SLDS is 0.9189 while that for HO-rSLDS is 0.6731. Although the real DFC patterns of

https://www.humanconnectome.org
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this fMRI data are unknown, compared to standard SLDS, HO-rSLDS can indeed dig out
more information about the DFC patterns by the model superiority. For example, the
State4 in HO-rSLDS, with the lowest fractional occupancy, can be considered as a strongly
connected state where the absolute functional connectivity is significantly larger than that
of the other three states. Moreover, compared with standard SLDS, there is significantly
positive or negative functional connectivity in the four states derived from HO-rSLDS.
In addition, there is similar functional connectivity between State1 and State2, which
results in a higher cosine similarity than the averaged value for HO-rSLDS (0.7776). The
similar functional connectivity is not exhibited obviously in State3 (such as the negative
connectivity between region 8 and regions 11, 12, 13). However, these findings cannot be
obtained by standard SLDS.
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Figure 6. (a) State number (K) determined by MMDL. The best K = 4 is chosen with respect to the
minimal MMDL. The y-axis has been logarithmically scaled to highlight the variation. (b) Dependence
order p is determined by AIC, BIC, and HQ criteria. The ideal p is set to 4 since there is no further
substantial decrease with higher order.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

−0
.3
5

−0
.2
0

00.
12

0.
28

State1 (41%)

(a) DFC patterns obtained by LT-rSLDS

(b) DFC patterns obtained by SLDS

State2 (26%) State3 (20%) State4 (13%)

State1 (32%) State2 (28%) State3 (24%) State4 (16%)

Figure 7. DFC patterns derived from HO-rSLDS (a) and standard SLDS (b). The 15 brain regions are
indexed by the numbers 1 to 15, and the states are ordered by their fractional occupancy (number in
the brackets). The color bar is shared by the two group heatmaps.
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6. Conclusions

In this study, we have established a new method named HO-rSLDS as an extension of
SLDS that improves the statistical modeling of dynamics from complex systems. First, HO-
rSLDS addresses the problem of discovering a higher-order temporal dependence involved
in the latent variables or observation data by allowing the current latent variable to be
associated with the measurements of several previous time steps as in AR-HMM. Second,
HO-rSLDS improves the switching state transition by utilizing stick-breaking logistic
regression and Pólya-gamma augmentation, making the transition dependent on the latent
variable and thus overcoming the limitations of the Markov assumption, leading to a
geometric distribution of state durations. Moreover, the symmetric dependency between
the switching states and the latent variable is recovered from the asymmetric relationships
as in standard SLDS. We have presented the detailed inference algorithms of the HO-rSLDS
for message passing and parameter learning. In numerical experiments, we concluded
that HO-rSLDS outperforms the competing models with higher estimation accuracy and
robustness. The utility and versatility of the developed HO-rSLDS have been demonstrated
on real-world data as well. The application of fMRI data for DFC analyses indicates the
superiority of the method in discovering abundant information about DFC patterns. A
potential limitation of the proposed HO-rSLDS is that the state number and dependency
order need to be predetermined in applications, while the hyperparameter optimization is
always a non-trivial task. Future research will improve the proposed model by utilizing
Bayesian nonparametric methods so that the complicated hyperparameter optimization
can be efficiently avoided [35]. The proposed model improves the current methods for
learning the switching linear dynamical modes, which will facilitate the identification and
assessment of the dynamics of complex systems.
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