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Abstract: Due to the operation of live-line working robots at elevated heights for precision tasks, a
suitable visual assistance system is essential to determine the position and distance of the robotic arm
or gripper relative to the target object. In this study, we propose a method for distance measurement
in live-line working robots by integrating the YOLOv5 algorithm with binocular stereo vision. The
camera’s intrinsic and extrinsic parameters, as well as distortion coefficients, are obtained using the
Zhang Zhengyou calibration method. Subsequently, stereo rectification is performed on the images to
establish a standardized binocular stereovision model. The Census and Sum of Absolute Differences
(SAD) fused stereo matching algorithm is applied to compute the disparity map. We train a dataset
of transmission line bolts within the YOLO framework to derive the optimal model. The identified
bolts are framed, and the depth distance of the target is ultimately calculated. And through the
experimental verification of the bolt positioning, the results show that the method can achieve a
relative error of 1% in the proximity of positioning. This approach provides real-time and accurate
environmental perception for symmetrical structural live-line working robots, enhancing the stability
of these robots.

Keywords: live-line working robot; binocular stereo vision; target ranging; Census algorithm

1. Introduction

By employing live-line working robots, high-voltage transmission line inspection
and maintenance can see a substantial improvement in efficiency and a reduction in the
labor intensity of workers, compared to traditional inspection methods [1,2]. Robots in
operation often employ sensors to detect components and obstacles in the surroundings.
However, the accuracy of obstacle recognition by sensors can be affected by factors such as
lighting and weather, leading to robot misjudgments and accidents. Therefore, achieving
the precise outdoor positioning of targets is a major challenge in the application of live-line
working robots.

Common methods for target localization in live-line working robots include the use of
laser radar, millimeter-wave radar, and visual cameras. Laser radar can accurately identify
obstacles ahead and measure their distance but is costly and involves complex laser signal
processing [3]. Millimeter-wave radar is insensitive to target shapes and cannot distinguish
information about the type of target. On the other hand, visual cameras, with mature
hardware technology and lower costs, can use software algorithms to obtain information
about target types and distances.

Currently, inspection robots mainly employ monocular ranging systems for their
simplicity, low cost, and ease of development. Cao et al. [4] proposed a monocular ranging
algorithm for de-icing robots, deriving a distance expression based on the pinhole imaging
model combined with the robot’s pitch angle, although it involves multiple parameters
and complex calculations. Zhang et al. [5] introduced a method for obstacle recognition
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and ranging positioning based on monocular vision, determining obstacle types from
captured images, establishing a ranging geometric model based on recognized obstacle
feature points and the camera’s position, but this method is significantly influenced by the
environment. Ye et al. [6] presented a texture-based ground line positioning method suitable
for outdoor complex lighting environments, but it has real-time algorithm limitations.
Cheng et al. [7] and others proposed a monocular ranging algorithm for visual navigation
of line-following robots, utilizing the imaging characteristics of the robot-walked wire in
the lens to calculate the distance to obstacles based on the known distance and coordinate
difference at the near-critical point, but the algorithm is cumbersome and lacks real-time
performance. Relying on monocular cameras for ranging no longer meets the actual
operational needs of live-line working robots. Feng et al. [8] utilized a binocular intelligent
inspection robot, combined with image processing and analysis techniques, to realize the
detection of insulation defects on the surface of cable lines and diameter measurement, but
the method could not realize automatic measurement. Xie et al. [9] proposed a transmission
line dance reconstruction method based on binocular vision. The transmission line itself is
used as a feature to realize the three-dimensional dance reconstruction of the transmission
line. This method is not applicable to measurement and localization in close range. Zhou
et al. [10] proposed a binocular 3D scanning measurement system, which collects the
position information through binocular cameras and performs noise reduction, filtering,
and integral measurement through the program to achieve high measurement accuracy,
but the preliminary work involved in this method is too cumbersome.

Therefore, this paper proposes a target ranging method based on binocular vision
for electric power operation robots. Firstly, the YOLOv5 algorithm is used to realize the
recognition and selection of the target, and the binocular camera is calibrated to obtain
the internal and external parameters of the camera using Zhang’s calibration method,
and the aberration correction is completed. Binocular stereo vision is used to complete
the target localization, and the Census transform is improved and combined with the
SAD algorithm to improve the effect of image matching and target localization accuracy.
After experimental verification, the measurement accuracy of this method meets the actual
demand, and the cost is low.

2. Binocular Stereo Vision Ranging
2.1. Camera Calibration

Camera calibration involves establishing the relationship between image pixel points
and real scene location points. Its objective is to determine the internal, external, and
distortion parameters of the camera. This process serves as the foundation for the stereo
correction module and subsequent 3D scene applications, making it a crucial step in
binocular vision [11,12]. The calibration incorporates four main coordinate systems: the
world coordinate system, the camera coordinate system, the image coordinate system,
and the pixel coordinate system [13–15]. Real-world 3D coordinates are transformed
into 2D coordinates, as illustrated in Figure 1, depicting the relationships within the
coordinate systems.

The world coordinate system defines the positions of actual objects in the real world,
using Xw, Yw, and Zw. Its origin varies based on the scene. The camera coordinate system
has its origin at the optical center of the camera, with Xc and Yc axes parallel to the x axis
and y axis, respectively. The Zc axis aligns with the optical center, forming the camera
coordinate system. In the image coordinate system, the origin (O) is where the main optical
axis intersects the image plane. For the pixel coordinate system, the origin is typically at
the image vertex. Figure 2 illustrates the directions of the coordinate axes for both systems.
The first three coordinate systems use length units, while the pixel coordinate system uses
pixels [16]. If the world coordinates of a point P are (Xw, Yw, Zw) and its imaging point in
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the pixel coordinate system is p(u, v), the transformation relationship from world to pixel
coordinates is as follows:
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where R is the orthogonal rotation matrix and t is the translation matrix: these two matrices
are the external parameters of the camera. They describe the relationship between the
world coordinate system and the camera coordinate system, as well as the binocular
camera’s position; f is the focal length of the camera, with the origin (O) of the image
coordinate system as the principal point. The point (u0, v0) on the pixel coordinate system
has different physical dimensions on the horizontal and vertical axes, represented by dx
and dy, respectively. λx = f /dx, λy = f /dy. The projection matrix (M) combines these
parameters. M1 is the internal parameter, associated with the camera’s internal structure,
while M2 is the external parameter, indicating the camera’s relative position in physical
space. Internal parameters often include distortion functions, which account for distortions
and variations in capturing image data within a limited view. These typically encompass
radial and tangential distortion.
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where R is the orthogonal rotation matrix and t is the translation matrix: these two matri-
ces are the external parameters of the camera. They describe the relationship between the 
world coordinate system and the camera coordinate system, as well as the binocular cam-
era’s position; f is the focal length of the camera, with the origin (O) of the image coordi-
nate system as the principal point. The point 0 0( , )u v  on the pixel coordinate system has 

Figure 1. Coordinate relationship diagram.
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Camera calibration is categorized into traditional and automatic methods. Zhengyou
Zhang’s approach strikes a balance, offering simple yet mature technology. Utilizing a fixed
checkerboard grid during image acquisition at various angles and positions, the calibration
process establishes equations based on key points, with parameter values determined
through maximum likelihood estimation [17–19]. In this paper, Zhengyou Zhang’s method,
implemented with MATLAB calibration toolbox, is employed for offline calibration to find
the camera’s internal reference, external reference, and distortion parameters.

In this paper, a 9 × 6 checkerboard grid, featuring 8 × 5 corner points and a size
of 30 mm × 30 mm, is used for calibration. Twenty sets of photographs with diverse
poses are captured using a binocular camera and segmented (see Figure 2). Employing
MATLAB R2022a’s Stereo Camera Calibrator toolbox, we import photos, extract corner
points, compute world coordinates, and determine the internal reference matrix and dis-
tortion coefficients. The left camera serves as the world coordinate system, facilitating the
calibration of the right camera’s external parameters relative to the left camera, as detailed
in Table 1.

Table 1. Internal and external parameters and distortion coefficients of the camera.

Left Camera Right Camera

Internal reference matrix
321.18 0 320.83

0 322.99 259.71
0 0 1

 322.18 0 329.83
0 321.99 248.71
0 0 1


External reference matrix R =

 0.99999 0.00141 0.00214
−0.00139 0.99999 0.01178
−0.00213 −0.01182 0.99996

 T =
[
−118.284 · · · 0.319982 −0.843788

]
Distortion coefficients

[
−0.0549 0.1909 −0.0012 0.0023 −0.3401

] [
−0.0527 0.2163 0.0013 0.0036 −0.2206

]
Following camera calibration, the spatial position of each calibration plate in relation

to the camera can be back-calculated using the calibrated camera parameters, as illustrated
in Figure 3:
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2.2. Stereoscopic Correction

Stereo correction starts with image correction, which is the use of camera distortion
parameters to de-distort the image. Then, polar line correction is performed on the image
with the aim of making the corresponding pixel points in the left and right images of a
horizontally placed binocular camera strictly on the same horizontal line [20]. In stereo
correction, the most commonly used method is Bouguet’s stereo correction algorithm.

The algorithm’s principle involves a polar line correction, depicted in Figure 4. Here,
P represents a point in space, with its projection points in the left and right cameras as
Pl and Pr, respectively. Binocular stereo correction entails rotating and translating the
two small-aperture imaging camera models for calibration, ensuring a single horizontal
directional offset post-correction [21]. Since corresponding pixel points in binocular images
adhere to a pair of polar geometries, the polar line constraint dictates that a feature point
on the imaging plane must have its matching point on the corresponding pair of polar lines
in the other imaging plane. Calculating image parallax to find the corresponding point of a
pixel point only necessitates a linear search on that line, thereby expediting the calculation
and reducing false match rates.
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To align the optical axes of the binocular camera in parallel, two methods are employed:
one involves fixing one camera while adjusting the position of the other, and the second
method adjusts both cameras simultaneously. The Bouguet correction algorithm adopts the
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latter approach, rotating each camera plane by half, minimizing left–right ghosting errors
and maximizing the common field of view. The correction effect is illustrated in Figure 5.
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2.3. Stereo Matching

Stereo matching is a technique for extracting depth information from a flat 2D image
and is a key part of binocular stereo vision ranging technology. By matching the corre-
sponding pixel points in the stereo-corrected binocular image, a parallax map is formed
by calculating the difference between the left and right images of these corresponding
points in the pixel coordinate system. According to the principle of binocular stereo vision
ranging, the most important thing is the acquisition of parallax, and different methods
of parallax acquisition correspond to different matching strategies. Stereo matching algo-
rithms are complex and diverse, mainly divided into global matching, local matching, and
semi-global matching algorithms. The commonly used ones are the BM algorithm [22],
SGBM algorithm [23], GC algorithm [24], etc.

The Census transform is a stereo matching algorithm based on local regions, defining
a window in the image and traversing the entire image [25]. The reference pixel is the
center of the window, and the gray value of each pixel in the window is compared with the
reference pixel’s gray value. If the region’s gray value is less than or equal to the reference
pixel’s gray value, it is recorded as 0; if greater, it is recorded as 1. The original neighboring
gray value relationships are converted into binary characters, forming a binary string. The
comparison of Hamming distance between the reference pixel and the matching pixel
yields the matching generation value.

C(p, q) =
{

0, · · · f (p) ≤ f (q)
1, · · · f (p) > f (q)

(2)

The algorithm incorporates the concept of nonparametric transformation [26]. The
Census cost calculation process is straightforward in principle, operationally swift, and
resilient to illumination changes. However, it exhibits high dependence on the grayscale
value of the central pixel point, leading to significant noise in the results [27].

Among local algorithms, the absolute Sum of Absolute Differences (SAD) is a fre-
quently employed similarity measure function due to its efficiency. Nevertheless, it is more
sensitive to illumination changes. The expression for SAD is as follows:

CSAD = ∑
(i,j)∈w

|IL(x + i, y + j)− IR(x + i + d, y + j + d)| (3)

where IL(x, y) and IR(x, y) are the pixel grayscale values of (x, y) in the left and right
views, respectively, w is the template window size, and all pixel points are traversed by
incrementing i,j. After calculating the corresponding CSAD, the value of d is added by 1,
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and the same operation steps are performed. At the end of the traversal, the point with the
smallest CSAD is selected as the matching point, and the d is the corresponding parallax
value of that point.

A pixel reference point (x0, y0) is chosen in the left view. Subsequently, the matching
window in the right view is systematically moved for right-to-left pixel matching, com-
mencing at row y0 under the polar line constraint. This search step is iterated until reaching
the predefined maximum parallax search range [28]. As depicted in Figure 6, the SAD
function of the matching window is locally optimal when its value is minimal, and this
point is the best matching point B(x1,y0); then, the parallax of stereo matching is d = x1 − x0.
After matching a sufficient number of points, the parallax map can be derived.
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To improve the efficiency and robustness of matching, a weighted fusion of the two
algorithms is performed, as in Figure 7:
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1. Matching cost calculation. The left view is used as the reference image, and a central
pixel point is selected to create a rectangular window. The right view is taken as
the matching image and searched along the polar lines, and the Census and SAD
algorithms are fused by a weighted approach with the expression:
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C(x, y, d) = α ∑
(i,j)∈w

SAD(x + i, y + i, d)+

(1 − α) ∑
(i,j)∈w

C(x + i, y + i, d)
(4)

The algorithm combines the weights of the Census algorithm and the SAD algorithm,
adjusting the weight of the Census algorithm (i.e., reducing the value) in the presence of
significant lighting changes. For real-time requirements, the weight of the SAD algorithm
can be increased.

2. Parallax calculation. When the cost function is determined, the minimum value is
taken as the parallax.

3. Parallax optimization. The computed parallax is a discrete value, which can be pixel-
accurate by pixel interpolation, and the filled parallax map is processed by weighted
median filtering to eliminate the transverse noise in the map and generate the final
parallax map.

Figure 8 illustrates the parallax map resulting from the traditional Census algorithm,
while Figure 9 displays the parallax map achieved through the improved stereo match-
ing algorithm.
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The traditional Census algorithm exhibits robustness in scenarios with luminance
differences between the left and right views. However, it tends to produce noisier parallax
maps in weakly textured or repeated scenes. Conversely, the SAD algorithm boasts higher
matching efficiency but is more susceptible to luminance differences and illumination
variations. Combining both algorithms through fusion allows for the leveraging of their
respective strengths, enhancing the efficiency and reliability of image matching.

We experimentally validate the bolts for ranging using the traditional Census algo-
rithm, the SAD algorithm, and the improved SAD–Census algorithm, mainly comparing
them in terms of parallax effect and algorithm running time. In order to quantify the
parallax effect, the mis-match rate of the non-obscured region (Nocc) and the error rate of
the overall region (All) are calculated, and the average mis-match rate is compared. The
experimental results are shown in Table 2. For the weakly textured scene with non-occluded
regions, the improved SAD–Census algorithm shows a significant improvement over the



Symmetry 2024, 16, 487 9 of 15

traditional Census algorithm, with the overall matching error rate reduced to 8.3% and
the non-occluded mis-matching rate reduced to 6.7%. On the other hand, the timeliness
of the image matching algorithm is also verified. The image matching time of the Census
algorithm is 3.5 s, and the image matching time of the improved SAD–Census algorithm is
reduced to 2.7 s, which improves the efficiency of the algorithm.

Table 2. Comparison of algorithm performance.

All% Nocc% Runtime (s)

SAD 54.1 48.6 1.8
Census 28.8 26.3 3.5

SAD–Census 8.3 6.7 2.7

2.4. Binocular Parallax Ranging

Two laterally parallel cameras synchronously capture images controlled by a computer,
with identical parameters and quality for both cameras. A common target point results
in corresponding imaging points on the imaging surfaces of the left and right cameras.
The positional difference (baseline) between the cameras introduces pixel disparities in the
image plane, referred to as parallax. The target distance is then calculated from similar
triangles using the parallax information.

Binocular stereo vision is a technique for computing the real distance between a camera
and an object using the principle of parallax. Depth information between the camera and
the object in the real-world scenario is derived from two-dimensional images captured
by two cameras in the same scene at different orientations. Illustrated in Figure 10, the
binocular stereo vision ranging system comprises two monocular cameras with parallel
Z and Y axes. The optical axis is perpendicular to the image plane, and theoretically, the
X-axis extensions of the two cameras coincide.
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Figure 10. Diagram of binocular camera.

In Figure 11, the optical centers of the two cameras are denoted as Ol and Or, and the
distance between the two cameras is referred to as the baseline, represented by the length
‘b’. The left and right cameras are labeled as l and r, respectively, where O signifies the
op-tical center, I represents the imaging plane, P is any point on the object in space, and Pl
and Pr are the projection points of the point onto the imaging surfaces of the left and right
cameras. The camera’s focal length is denoted as ‘f ’, and ‘z’ represents the depth distance
of the target point, which is the desired result to be calculated.
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According to the triangle similarity principle, △POlOr ∼ △PPl Pr to obtain the follow-
ing:

z − f
z

=
PlPr

b
(5)

Since PlPr = b − (Xl + Xr), (Xl + Xr) = d, and d is the parallax of the binocular
camera, substituting the above equation, the following can be obtained:

z − f
z

=
b − d

b
(6)

After transforming the equation, we obtain z:

z =
f b
d

(7)

where d is the parallax of the two cameras; the acquisition of parallax is a complex process
that requires the stereo matching of binocular images to obtain it. The specific parameters
of f and b of the cameras can be obtained through calibration, and the depth distance z can
be calculated by combining the d derived from the stereo matching parallax map, whose
accuracy is related to the focal length of the camera, the baseline length, and the distance of
the object.

As depicted in Figure 12, the parallax increases as the object gets closer and decreases
as the object moves farther away. There exists an inverse proportional and nonlinear
relationship between distance and parallax. When the parallax is close to 0, a small change
in parallax results in a large change in distance, whereas for larger parallax values, a change
in parallax induces only a small change in distance. In binocular distance measurement,
larger distances are associated with greater errors, while smaller distances exhibit smaller
errors. Therefore, the method is well suited for measuring objects at close distances.
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3. Target Recognition Based on YOLOv5

In recent years, with the advancements in convolutional neural networks and the en-
hancement of hardware computing power, deep learning algorithms have found extensive
applications across the entire spectrum of computer vision. YOLOv5, a single-stage target
detection algorithm, has made substantial improvements based on YOLOv4, resulting in
significant enhancements in both speed and accuracy. YOLOv5 consists mainly of Input,
Backbone, Neck, and Output components. The network structure is illustrated in Figure 13,
with particular emphasis on the Backbone and Neck. For this study, YOLOv5s, featuring
the smallest network width and depth, is selected as the network model.
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Initially, the original image undergoes adaptive scaling to a 640 × 640 three-channel
image. Mosaic data enhancement is applied, involving random scaling, random cropping,
and random scheduling, enriching the dataset and accelerating network training. Post-
slicing operations in the Focus network compress the height and width while expanding
the channels by four times, resulting in a feature layer of (320, 320, 12). Subsequently, three
convolutional normalization and feature extraction operations yield feature layers of (80,
80, 256), (40, 40, 512), and (20, 20, 1024). The Neck performs convolution, upsampling,
downsampling, and feature extraction to ultimately generate enhanced feature layers.
YoloHead is employed for classification and regression predictions based on these features.

In this paper, we use the original dataset of 600 pieces of bolts of various kinds of gages
collected from different scenes and angles, and then the dataset is expanded to 1500 pieces
by Mosaic, manually labeled, and converted to the data input format of the Yolo network,
with 80% of the data used as the training set of the model and 20% of the data used as
the test set. After 300 iterations, the Loss value is stabilized at around 0.03, and the model
converges well. In order to verify the accuracy of YOLO v5 on the transmission line fixture
bolt recognition model, 300 images in the test set are used for testing, and the test results are
shown in Figure 14. After several sets of experiments, the average image recognition rate is
95.89%, and the average recognition time is 17.63 ms, which means that the recognition
model can meet the real-time operation requirements of the power line operation robot.
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4. Experimental Verification

In this paper, a novel transmission line bolt fastening live-line working robot is de-
signed, depicted in Figure 15. In order to ensure the balance of the robot, we have adopted
a symmetrical structural design. The robot comprises a drive motor, wire rollers, guided
compression wheels, a lifting and lowering sliding table, a base, a multi-degree-of-freedom
robotic arm, and an electric screw gun and is equipped with a wide-angle camera and binoc-
ular ranging module for visual recognition and localization. The industrial control machine
runs on the Windows system, and the PyTorch deep learning framework is configured in
Python 3.7, accelerated with CUDNN. The HBV-2V11 binocular camera, manufactured
by Huibo Vision Network Technology Co., Ltd., Baoding, China, was chosen to capture
the original images. As shown in Figure 16, the binocular camera module’s sensor chip
is OV4689, featuring a 3.0 mm focal length, a 60 mm baseline, and a resolution set at
1280 × 480.
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The robot employs a binocular ranging module to recognize and detect bolts, followed
by binocular ranging and positioning. Using the position information, the robotic arm of
the robot is controlled to adjust to the suitable operating area. The camera connects to the
industrial control machine via the USB port, and the measured position information is
communicated by the industrial control machine through the USB serial port. Advanced
RISC machine (ARM) real-time communication is utilized, allowing the ARM to control
the robot’s actions based on the received position information, thus accomplishing the bolt
fastening operation task.

The real-time ranging output effects collected by the binocular camera module at
different distances during the robot’s movement are illustrated in Figure 17.
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The distance measurement information of the robot at various positions is presented
in Table 3. The actual distance ranges from 0.6 to 1.0 m, and the measured distance exhibits
variation from the actual values. Notably, when the actual distance is 0.5 m or less, the
robot’s measured bolt distance aligns more closely with the actual distance, with a relative
error within 1%. Through experimental verification, the binocular-vision-based localization
method integrated with YOLOv5, as proposed in this paper, proves capable of meeting the
operational requirements of the live-line working robot, thereby enhancing the reliability
of its operations.

Table 3. Bolt ranging information.

Serial Number Practical Distance/m Measuring Distance/m Relative Error/%

1 1.000 0.970 3.00
2 0.900 0.876 2.67
3 0.800 0.780 2.50
4 0.700 0.684 2.29
5 0.600 0.611 1.83
6 0.500 0.495 1.00
7 0.400 0.402 0.50
8 0.300 0.298 0.67
9 0.200 0.199 0.50

10 0.150 0.149 0.67

The experimental results clearly indicate that the measurement error increases as the
target moves farther away from the camera, while the error decreases when the target is
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closer. Given that the live-line working robot in this study is employed for bolt fastening,
which involves operations in close proximity to the target, a binocular camera with a smaller
baseline is deliberately chosen. This selection aligns with the suitability of measuring and
localizing in close-proximity scenarios.

5. Conclusions

In this paper, a method of target recognition and localization for live-line robots based
on binocular vision is proposed, which combines binocular vision with the YOLOv5 target
recognition algorithm and improves the image matching algorithm, improves the effect of
parallax map, and identifies the bolts by combining with the YOLOv5 algorithm, so as to
complete the real-time target recognition and localization of live-line robots.

The main work is as follows: (1) the Census algorithm is improved by replacing the
center value with the pixel mean value and the fixed window with the adaptive window
to improve the effect of image matching and enhance the real-time performance of the
algorithm; (2) then, weighted fusion with the SAD algorithm is used to overcome the
shortcomings of the SAD algorithm which is easily affected by light and noise, and at the
same time, the advantages of its simplicity and high efficiency are retained. The bolt is
identified and localized by live-line robots. After experimental verification, the method
proposed in this paper can efficiently identify the target and complete the localization, and
it has a good effect on the localization of the target at a close distance, and the relative error
of the localization is less than 1%, which can satisfy the practical application requirements
of live-line robots.

The method combines binocular vision technology and deep learning for bolt recog-
nition and localization of live-line robots, which can efficiently and accurately locate the
target, improve the intelligent level of bandwidth operation, lay the foundation for the
refined operation of live-line robots on transmission lines, and provide assistance for the
promotion of the application of the bandwidth operation robot.
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