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Abstract: In the recent literature, various aspects of the transfer of quantum states by spin chains
have been thoroughly investigated. Part of the existing study is devoted to the problem of optimal
control, with the goal of achieving a highly reliable information/state transfer for a given time T.
In general, achieving this goal is not an easy task in the case of (open) quantum systems. Various
approaches have been developed and applied, including Krotov’s method to study the problem. It
is a gradient-based method used here to study the problem of state transfer control in central spin
models. Our results show that with Krotov’s method, it is possible to find an optimal control form
that allows for very-high-fidelity state transfer in the central spin models we have developed. Our
results will be of interest for a better understanding of the non-trivial effects of the classical world
on the quantum world, which have been discussed in the form of various new effects, including the
Epstein effect, in the recent literature.
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1. Introduction

In recent years, the scientific community has made significant advances in computa-
tional and experimental science that have dramatically changed our understanding of the
quantum world and its interaction with the classical world. The evolution of a quantum
system is directly related to the influence of the environment. The coupling with the reser-
voir, which can be either a bath or an environment, plays a significant role in the properties
of a quantum system, which significantly influences quantum technology and its progress.
The (optimal) control of quantum systems is an important research topic as it is applied in
the development of new technologies. One of the directions in modern science in which
it plays a crucial role is quantum information processing tasks, where quantum informa-
tion must be sent through a quantum network. It is obvious that the goal is to develop
complex systems capable of processing and solving complex information and problems.
It is already known that spin chain systems have great potential for practical application
in quantum technology, including quantum information, quantum communication and
quantum computation [1–24] (and references therein), to name but a few.

In this paper, we have taken a step towards understanding state transfer in central spin
models by treating it as an optimal control problem. Our goal is to obtain the optimal control
for the systems considered in this work at a particular time T. The analysis performed has
shown that the gradient-based Krotov’s method is a robust approach to achieve the goal for
central spin models and can solve the problem very efficiently. Furthermore, by utilizing
this method, we have established a specific type of coupling between the last spin and the
bath of the central spin models. This has greatly enhanced the robustness of the control,
allowing for high-fidelity state transfer to be achieved. Our interest in studying central spin
models is related to their specific structure (a single spin-half particle interacting with a spin
environment/spin bath) and the fact that they can be used to describe various processes,
e.g., the decoherence of the system over time. On the other hand, various studies have
shown that the central spin extends the available degrees of freedom and makes the bath a
useful resource. In these models, the central spin typically interacts with the bath spins
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through anisotropic Heisenberg interactions. The fully isotropic XXX model is generally
accepted to model systems with spherical symmetry, and the quantum dot is one of these
models (see for example [25–41] and the references therein for further discussion of central
spin models and their applications). Given the above discussion, state transfer in central
spin models was one of the first problems to be studied and understood. In this paper, we
will consider state transfer in two models, Type I and Type II. The difference between the
models lies in the form of the interaction between the central spin particle and the bath
particles, which we have taken into account. In the case of the Type I model, which is
based on the standard central spin model, a high-fidelity state transfer for a predetermined
time T has been achieved due to the symmetry used to develop the interaction between
the last spin and the bath of the central spin model. On the contrary, the Type II model
is a new model where next-nearest-neighbour interactions between the bath spins have
been introduced. By developing an interaction between the last spin in the chain and the
bath based on the idea of next-nearest-neighbour interactions, we have again achieved a
high-fidelity state transfer for a predetermined time T. It is important to stress that the
developed interactions between the spins in both models have turned the control of the
bath into a source to achieve high fidelity and robust state transfer. This highlights the
importance of the bath in achieving these results. In conclusion, we want to emphasize that
by examining three scenarios, we were able to determine which components of the models
require control to achieve high-fidelity state transfer. One of our findings clearly showed
that controlling the final spin for the state transfer may not be the most optimal decision.
This also implies that systems such as these can offer a high degree of information transfer
protection if the other parts of the system are adequately safeguarded. Our results are of
great interest for a better understanding of a non-trivial influence of the classical world on
the quantum world, as it is the case of the Epstein effect. It seems that vibrations modulated
from the classical world affect the quantum world, playing a central role in the Epstein
effect. Broadly defined, the Epstein effect consists of modulating the effect of vibration from
one fluid to other fluid regions or distinct fluids. Moreover, experimental studies revealing
the Epstein effect indicate, for instance, that information from the initial high-density
regime can be transferred to the low-density regime without significant changes [42] (see
also [43]).

The present work is structured as follows: Section 2 discusses the mathematical
formalism used to model the quantum systems under consideration, allowing us to follow
the results obtained. On the other hand, in Section 3, we will describe the central spin
models that we have been developed. In Sections 4 and 5, we present and discuss in
detail the results of our study based on numerical simulations. Section 6 then presents the
conclusion from our analysis.

2. Optimal Control and Krotov’s Method

Closed quantum systems are only an idealization of the real world, and in almost all
cases, it is not possible to avoid/neglect the external effects. On the other hand, the whole
system can be divided on the basis of certain assumptions and represented as a system
of interest and the environment. However, the representation should be a reasonable one
that allows the full dynamics of the system to be solved. Considering the nature of the
problem in this paper, we assume that the above problem can be solved efficiently, and the
Hamiltonian of our systems can be represented in the following way,

H(t) = H0 + ∑
l

ϵl(t)Hl , (1)

which allows us to represent the main problem as a control problem, where H0 is the time-
independent uncontrolled part of the Hamiltonian, Hl is the time-independent Hamiltonian
describing the control strategy, and ϵl(t) is the corresponding time-dependent control
function. In the following, we present only the most important aspects of the applied
approach to perform the simulations and follow the discussion in Section 4 and Section 5,
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respectively. In particular, we will discuss the Krotov’s method, which requires a trial
solution of the control function ϵ(t). This reduces the task to an iterative optimization of
the shape of the control function by minimizing a function J

J
[
s, ϵ

(i)
l (t)

]
= JT(s) + ∑

l

∫ T

0
g(ϵ(i)l (t)), (2)

where s = |ϕi(t)⟩ is the set of wave functions at the i-th iteration, while ϵ
(i)
l (t) is the set

of control functions. In the above equation, the function g tracks the running costs of the
control fields and has the following form:

g =
λa,l

Sl(t)

(
∆ϵ

(i)
l (t)

)2
. (3)

Here, λa,l is an inverse step size, Sl(t) ∈ [0, 1] is an update shape function, while the
difference of the control function between the current and the last iteration is given by
∆ϵ

(i)
l (t)

∆ϵ
(i)
l (t) =

Sl(t)
λa,l

Im

(
⟨ξ(i−1)(t)|∂H(i)(t)

∂ϵ
(i)
l (t)

|ϕ(i)(t)⟩
)

, (4)

with |ξ(i−1)(t)⟩ to be back-propagated using the Hamiltonian under the previous iteration’s
control fields with the following boundary condition |ξ(i−1)(T) ∝ ϕ f ⟩, while H(i)(t) is the
total Hamiltonian of the i-th iteration. On the other hand, we consider JT in Equation (2) as
the infidelity of the evolved state or the target state,

JT(s) = 1 − |⟨ϕ f |ϕi(T)⟩|2, (5)

with |ϕ f ⟩ as the target state.
To conclude this section, we would like to remind the reader that the state of an open

quantum system is a mixed state represented by a density matrix (density operator)

ρ = ∑
i

pi|ϕi⟩⟨ϕi|, (6)

where |ϕi⟩ is the pure state in the ensemble, while pi is the corresponding probability of
occurrence. The time evolution of a mixed state can be calculated simply by combining
Equation (6) and the time-dependent Schrodinger equation

ih̄
d
dt
|ϕ(t)⟩ = Ĥ|ϕ(t)⟩, (7)

giving us the well-known Lindblad master equation (Markovian approximation)

dρ

dt
= Lρ = −i[Ĥ, ρ] + ∑

i
γi

(
ciρc+i − 1

2
c+i ciρ − 1

2
ρc+i ci

)
, (8)

where Ĥ is the Hamiltonian of the system under consideration, while γi and ci are the dis-
sipation rate and the jump operator, respectively. In the above equation, [Ĥ, ρ] = Ĥρ − ρĤ.
Finally, we must remember that the fidelity should be calculated according to the follow-
ing equation:

F(ρ1, ρ2) =
[

Tr(
√

ρ1ρ2
√

ρ1)
1/2
]2

, (9)

where ρ1 is the density matrix of the state to be transferred, while ρ2 is the density matrix
of the final state. Our results, which we discuss in Sections 4 and 5, are based on the Python
implementation of Krotov’s method [44], which is based on QuTiP [45,46]. We recommend
the reader to refer to the excellent tutorial of both tools for more information about the
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methods, how they have been implemented, how they are connected to each other, and to
gain practical experience by following the provided examples therein.

3. Models

The Type I model that we study here is a hybrid model described by the following
Hamiltonian (h̄ = 1)

Ĥ I = Ĥ I
cs + Ĥ I

tail , (10)

with the central spin system (1/2 spin central particle)

Ĥ I
cs = ω0Sz

0 +
L−1

∑
i

ωiSz
i + Ĥ I

cs−bath, (11)

and

Ĥ I
cs−bath =

L−1

∑
i

gi

(
Sx

0 Sx
i + Sy

0Sy
i + αSz

0Sz
i

)
, (12)

representing the interaction between the central spin particle and the bath. In the above
equations, {Sx, Sy, Sz} are Pauli matrices, gi is the (in)homogeneous strength of the interac-
tion between the central qubit and the i-th bath spin, ω0 is considered as a local external
field on the central qubit, while ωi is a field on the bath spins. In general, the qubit–bath
interaction is not isotropic and the parameter α in Equation (11) determines the anisotropy
(XXZ model). Moreover, ω0, ωi and gi can be a function of time. On the other hand, we
have assumed that Ĥ I

tail in Equation (10),

Ĥ I
tail ∝ Sx

L−1Sx
L + Sy

L−1Sy
L + αSz

L−1Sz
L, (13)

represents an interaction between the last spin of the bath of the central spin model with the
1/2 spin particle, to which the state of the first (central) spin of the chain under consideration
must be transferred.

The Type II model that we are studying is also a hybrid model described by the
following Hamiltonian,

Ĥ I I = Ĥ I I
cs + Ĥ I I

tail , (14)

but here, we have modified the bath part as follows (next-nearest-neighbour interactions)

Ĥ I I
cs−bath =

L−1

∑
i

gi

(
Sx

0 Sx
i Sx

i+1 + Sy
0Sy

i Sy
i+1 + αSz

0Sz
i Sz

i+1

)
, (15)

with

Ĥ I I
cs = ω0Sz

0 +
L−1

∑
i

ωiSz
i + Ĥ I I

cs−bath. (16)

In addition, the interaction between the bath of the considered central spin model and
the 1/2 spin particle, to which the state of the first (central) spin of the considered chain
must be transferred, was assumed as follows:

Ĥ I I
tail ∝ Sx

L−2Sx
L−1Sx

L + Sy
L−2Sy

L−1Sy
L + αSz

L−2Sz
L−1Sz

L. (17)

In the above equations, L represents the total number of spins used to create the model.
In the next two sections, we will discuss how to reduce the state transfer problem for the
considered spin models to an optimal control problem and treat it with Krotov’s method.
Given the many possibilities that can be realized with numerical analysis, we must limit
ourselves to the most interesting results. In our analysis, we used the Python implementa-
tion of Krotov’s method built on QuTiP, which allowed us to reduce the complexity of the
analysis. In our opinion, the structure of the previous two sections is relatively simple to
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follow, and interested readers can reproduce our results with some effort by uncovering
other aspects of the models that were not covered in this study.

4. State Transfer in Model Type I

In this particular study, we are interested in the optimal control of an external drive
pulse that allows us to achieve a very high fidelity state transfer. At this moment, we are
not so much interested in modeling the source that generates the pulse. Instead, we treat
the pulse as an influence of the classical world on the quantum world. After the presented
clarification, we must first formulate the problem of state transfer as an optimal control
problem that allows us to apply Krotov’s method. To achieve this goal, in a first step, we
have rewritten the model given by Equations (10)–(13) in the following way:

H0 =
L−1

∑
i

ωiSz
i +

L−1

∑
i

gi

(
Sx

0 Sx
i + Sy

0Sy
i + αSz

0Sz
i

)
+ gL

(
Sx

L−1Sx
L + Sy

L−1Sy
L + αSz

L−1Sz
L

)
, (18)

and
Hl = ϵ(t)Sz

0, (19)

which indicate the time-independent uncontrolled and the time-independent controlled
strategies of the model. The particular case presented above is an optimal control problem,
where the goal is to find the form of the ϵ(t) pulse applied to the first (central) spin in order
to transfer its state to the final spin of the chain. Using numerical tools, we were able to
study the state transfer problem for a variety of model parameters and concluded that
Krotov’s method is indeed a very robust method. One of the results of our analysis can be
seen in Figure 1. The plot on the left side of Figure 1 represents the population dynamics
for the assumed and optimized signals, respectively. The black dashed (guessed pulse)
and solid curves (optimized pulse) represent the case in which the model evolves from
the initial |↑↓↓↓⟩ state to the |↓↓↓↑⟩ state. On the other hand, the blue curves similarly
represent the case where the initial state of the system was |↑↑↑↓⟩, while the final state was
assumed to be |↓↑↑↑⟩. We can clearly see that with Krotov’s method, the shape of the pulse
was indeed optimized, and the goal was achieved. In addition, the fidelity in this case was
estimated to be F ≈ 0.98.

The plot on the right-hand side of Figure 1 shows the population dynamics for the
optimized pulse. In both cases, ϵ(t) ∝ sin(ωdt) and L = 4 (the values of the parameters can
be found in the caption of Figure 1). The results shown in Figure 2 show the guessed and
optimized shapes of two pulses for 4 and 6 spin models, respectively. Having in mind the
practical applications of the state transfer problem, we have analyzed the case where the
controlling Hamiltonian is the bath part of the model given by Equation (12). Furthermore,
in this case, we were able to obtain a very accurate state transfer (F ≈ 0.98) using Krotov’s
method, even for the cases where T is much smaller than T that we have shown in the plots.

One of the results corresponding to this case can be found in Figure 3 when the initial
pulse shape is a Gaussian. On the other hand, the analysis of the cases in which the
external pulse is applied to the last spin of the chain to which the initial spin state should be
transferred revealed interesting deviations from the previous two cases. In particular, we
found that it is still possible to optimize the pulse shape to achieve a very-high-fidelity state
transfer, as in the case of the two previous scenarios. However, in this scenario, more time
is usually needed to achieve the goal. Actually, this is an expected result with a positive
consequence that points to opportunities for developing algorithms to protect spin-chain
networks from external attacks. The plot on the right side of Figure 3 shows one of the
results for this case. To conclude this section, we can emphasize that the transfer of states
using a central spin model is possible with high accuracy and that Krotov’s method can be
applied to achieve the goal. The different possibilities that can be analyzed numerically
provide a great opportunity to develop more complex systems to transfer even more
complex states, which will be discussed in the upcoming papers. Some of the possibilities
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and tasks are discussed in the last section of this paper and indicate the direction in which
our recent study can be extended.

Figure 1. The population transfer dynamics for the model given by Equations (10)–(13) when the
pulse has been applied on the central 1/2 spin particle. The left hand side plot clearly demonstrates
that with Krotov’s method, the optimal control has been achieved. The black dashed (guessed pulse)
and solid curves (optimized pulse) represent the case when the model evolves from the initial |↑↓↓↓⟩
state to the |↓↓↓↑⟩ state. The blue curves in a similar way represent the case when the initial state of
the system was |↑↑↑↓⟩, while the final state has been taken to be |↓↑↑↑⟩. The right hand side plots
show the dynamics of population transfer after Krotov’s optimization when ϵ(t) ∝ sin(ωdt). The
results were obtained with α = 1.5, ωi = 3.5 and gi = 2.5 with i = {1, 2, 3, 4}.

Figure 2. The optimized pulse profiles in the case of the model given by Equations (10)–(13) when
the guess pulse has been applied to the central 1/2 spin particle. The dashed black curve represents
the guess pulse. The solid red curve represents the optimized pulse profile for the model when L = 4
and when the model evolves from the initial |↑↓↓↓⟩ state to the |↓↓↓↑⟩ state. The dashed red curves
represent the case with L = 4 when the model evolves from the initial |↑↑↑↓⟩ state to the final |↓↑↑↑⟩
state. The blue curves represent the pulse profile when L = 6.
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Figure 3. The optimized pulse profiles in the case of the model given by Equations (10)–(13). The left
hand side plot represents the pulse profile when the guess pulse has been applied to the bath of the
central spin model. The optimized pulse profile when the guess pulse has been applied to the last
spin particle of the chain to which the state should be transferred can be found on the right hand side
plot. The dashed black curve represents the guess pulse. The solid red curve represents the optimized
pulse profile for the model when L = 4 and when the model evolves from the initial |↑↓↓↓⟩ state
to the |↓↓↓↑⟩ state. The dashed red curves represent the case with L = 4 when the model evolves
from the initial |↑↑↑↓⟩ state to the final |↓↑↑↑⟩ state. The blue curves represent the pulse profile when
L = 6.

5. State Transfer in Model Type II

The analysis of model Type II has also shown that the state transfer by the modified
central spin model given by Equations (14)–(17) can be achieved with F ≈ 0.98. In Figure 4,
we can find the population transfer for the model given by

Ĥ I I
cs−bath = g1

(
Sx

0 Sx
1 Sx

2 + Sy
0Sy

1Sy
2 + αSz

0Sz
1Sz

2

)
+

g2

(
Sx

0 Sx
2 Sx

3 + Sy
0Sy

2Sy
3 + αSz

0Sz
2Sz

3

)
, (20)

and
Ĥ I I

tail = g3

(
Sx

2 Sx
3 Sx

4 + Sy
2Sy

3Sy
4 + αSz

2Sz
3Sz

4

)
. (21)

In this particular case, the model evolves from the initial |↑↓↓↓⟩ state to the |↓↓↓↑⟩
state. A Gaussian pulse was assumed as the initial pulse, which is applied to the first spin
in the chain whose state is to be transferred. The results in terms of population transfer,
shown on the left side of Figure 4, and the optimized shapes of the guess pulse, shown on
the right side of the same figure, clearly show that Krotov’s method provides a solution.
Moreover, the optimized shape of the guess pulse in the case of the model with L = 6
can also be found on the right side of Figure 4. The results corresponding to the guess
pulse ϵ(t) ∝ sin(ωdt) can be seen in Figure 5. It should be emphasized that the external
pulse applied to the bath part of the model allowed us to obtain a very-high-fidelity state
transfer even for relatively small times T, which we used in the discussed results. However,
we found that more time than the considered time T is required to achieve reliable state
transfer when the pulse was applied to the last spin to drive state transfer in the considered
model. Since the qualitative results are the same for both models to save space, we have
not presented them explicitly here.
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Figure 4. The population transfer dynamics for the model given by Equations (14)–(17) when a
Gaussian pulse has been applied on the central 1/2 spin particle can be found on the left hand side of
the plot. The model evolves from the initial |↑↓↓↓⟩ state to the |↓↓↓↑⟩ state. On the other hand, the
right hand side plot represents the pulse profiles. In particular, the dashed black curve represents the
guess pulse. The solid red curve represents the optimised pulse profile for the model when L = 4 and
the when the model evolves from the initial |↑↓↓↓⟩ state to the |↓↓↓↑⟩ state. The dashed red curve
represent the case with L = 4 when the model evolves from the initial |↑↑↑↓⟩ state to the final |↓↑↑↑⟩
state. The blue curves represents the pulse profile when L = 6. The results have been obtained with
α = 1.5, ωi = 3.5 and gi = 2.5 in both L = 4 and L = 6 cases, respectively.

Figure 5. The population transfer dynamics for the model given by Equations (14)–(17) when the
ϵ(t) ∝ sin(ωdt) pulse has been applied on the central 1/2 spin particle can be found on the left hand
side of the plot. The model evolves from the initial |↑↓↓↓⟩ state to the |↓↓↓↑⟩ state. On the other
hand, the right hand side plot represents the pulse profiles. In particular, the dashed black curve
represents the guess pulse. The solid red curve represents the optimized pulse profile for the model
when L = 4 and the when the model evolves from the initial |↑↓↓↓⟩ state to the |↓↓↓↑⟩ state. The
dashed red curve represents the case with L = 4 when the model evolves from the initial |↑↑↑↓⟩ state
to the final |↓↑↑↑⟩ state. The blue curves represent the pulse profile when L = 6. The results have
been obtained with α = 1.5, ωi = 3.5 and gi = 2.5 in both L = 4 and L = 6 cases, respectively.

6. Conclusions

Achieving high-fidelity state transfer is one of the most important problems that
must be solved in order to develop high-quality complex quantum systems used, for
example, in quantum technology. Therefore, understanding how this can be realized
theoretically and experimentally and how it can be controlled has already attracted much
attention in the recent literature. On the other hand, the study of various complex systems
would not be possible at all without numerical simulations. Spin-chain systems hold
great potential for practical applications in quantum technology in the broadest sense.
Therefore, enormous efforts have been made in recent years to understand the mechanism
that enables reliable state transfer in different spin models. In this work, we have taken a
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step towards understanding the problem of state transfer in central spin models, with the
aim of improving our understanding of such models given their specific properties.

In our analysis, we consider the problem from the perspective of optimal quantum
control with the main goal of achieving state transfer at a given time T. Our interest in
studying central spin models is related to their specific structure (a single 1/2 spin particle
interacting with a spin environment/bath) and to the fact that they can be used to describe
a variety of processes that have been extensively discussed in the recent literature. One
of the models we consider is based on the modified interaction with the bath part of the
original central spin model (Type II model). In this case, we specifically considered next-
nearest-neighbor interactions to develop the model. By applying Krotov’s method, we
were able to establish proper coupling between the last spin and the central spin bath,
resulting in achieving high-fidelity state transfer. The analysis conducted clearly showed
that the gradient-based Krotov method is a reliable approach for reaching the objective with
central spin models and efficiently solving the problem. Exploring the state transfer issue
provides insight into the intricate influence of the classical world on the quantum realm.
Consequently, our discoveries will be highly valuable to the research community focused
on this matter, similar to the relevance of the Epstein effect discussed in the recent literature.
Experimental studies on the Epstein effect demonstrate that information from the initial
high-density state can be transferred to the low-density state with minimal alterations. This
state transfer problem still requires further understanding.

Given the wide range of possibilities that allow us to craft theoretical models, we had
to impose several restrictions. In particular, given the nature of the problem, we put some
restrictions on the guess pulse by considering only two of them. However, in reality, other
pulses with more complicated profiles will be possible to craft and apply, which can be
interesting for particle physics, astrophysics, and cosmology (see for instance [47]). There-
fore, one direction in which our work can be extended to provide a better understanding
of the state transfer is to craft more complex guess pulse profiles. Another possibility to
improve our knowledge of the problem at hand is to consider longer spin chains containing
several central spin models and see whether they can be used to craft highly efficient long
networks for quantum networks, among other applications. Eventually, our work can
be extended to take into account various machine learning tools designed for quantum
optimal control problems to choose the best strategy to achieve high-fidelity state transfer.
To conclude our discussion, we want to emphasize that the question of which real physical
system should be used to test the practical applicability of our theoretical results still needs
to be investigated. The nature and novelty of the Type II model necessitate close collabora-
tion with experimentalists to find a suitable answer. On the other hand, we believe that
quantum dots can be used for Type Model I. In other words, we have taken only a few
steps to understand the quantum state transfer problem and to fill the gap existing in the
recent literature about central spin models. We hope that in the forthcoming papers, we
will be able to answer the questions we raised here.
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