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Abstract: A long-standing conjecture due to R. Fox states that the coefficients of the Alexander
polynomial of an alternating knot exhibit a trapezoidal pattern. In other words, these coefficients
increase, stabilize, then decrease in a symmetric way. A stronger version of this conjecture states
that these coefficients form a log-concave sequence. This conjecture has been recently highlighted
by J. Huh as one of the most interesting problems on log-concavity of sequences. In this expository
paper, we shall review the various versions of the conjecture, highlight settled cases and outline some
future directions.
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1. Introduction

Let n be a positive integer. An n-component link is defined as the embedding of n
disjoint circles ⨿ S1 within the three-dimensional sphere S3. A one-component link is called
a knot. Links are represented by their projections on S2 (equivalently in the Euclidean
plane R2). A link diagram is a regular planar projection of the link, augmented with height
information indicating the overpass and the underpass of each double point where two
strands intersect. A classical result in knot theory asserts that the study of links up to
natural deformations (isotopies) is equivalent to the study of link diagrams up to local
transformations known as Reidemeister moves [1]. The main purpose of knot theory is the
classification of these objects up to isotopy. Indeed, the central question in knot theory is to
decide whether two given knots or links are isotopic. While no simple algorithm solving
this problem exists, the study and the classification of certain particular classes of links is
an important step towards this primary goal of classification. This paper is concerned with
one of the most important classes of links.

An alternating link is defined as a link which can be represented by an alternating
diagram, a diagram where the overpass and the underpass alternate as one follows any
strand. Extensive research has been dedicated to studying alternating links. In particular,
it was shown that certain of their polynomial invariants exhibit the alternating character of
the diagram in a remarkable way. Investigating the Jones polynomials of these links has
resulted in the resolution of important conjectures in classical knot theory [2–4]. A topo-
logical characterization of alternating links is obtained in [5,6]. It can be easily verified
that all knots with at most seven crossings are alternating. The first non-alternating knot
in Rolfsen’s knot table [7] is 819, which is indeed the (3, 4)-torus knot. Diagrams of an
alternating knot and a non-alternating one are displayed in Figure 1 below.

The Alexander polynomial [8] is a topological invariant of oriented links which assigns
to each link L a Laurent polynomial with integral coefficients ∆L(t) ∈ Z[t±1/2]. Conway in-
troduced a simple recursive way to define this polynomial [9]. Additionally, the Alexander
polynomial can be derived from the reduced Burau representation of the braid group [10].
More recently, Ozsváth and Szabó [11] showed that this polynomial, up to the multiplica-
tion by some factor, can be defined as the Euler characteristic of the link Floer homology.
The Alexander polynomial of a knot K is symmetric. More precisely, for any knot K, we
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have ∆K(t) = ∆K(t−1). Hence, it is always possible to write ∆K(t) =
g

∑
i=−g

aiti with ag ̸= 0

and ai = a−i for all −g ≤ i ≤ g. We will refer to the integer g as the degree of ∆K(t).
It is worth mentioning that since ∆K(t) is defined up to the multiplication by a unit of
Z[t1/2, t−1/2], we find it sometimes more convenient to write the polynomial in the form

∆K(t) =
2g

∑
i=0

αiti.

Figure 1. An alternating diagram of the knot 12a146 (left) and a non-alternating knot digram of the
knot 12n146 (right).

Murasugi [12,13] proved that the coefficients of the Alexander polynomial of an alter-
nating knot satisfy the condition aiai+1 < 0 for all −g ≤ i < g. Consequently, the Alexander

polynomial of an alternating knot can be represented in the form ∆K(t) = ±
g

∑
i=−g

ai(−t)i,

with ai > 0. Furthermore, Murasugi showed that if K is alternating, then the degree of
∆K(t) is equal to the genus of the knot [12,13]. Fox [14] posed the question of whether
it is possible to characterize polynomials that appear as the Alexander polynomial of an
alternating knot, and conjectured that the coefficients of the Alexander polynomial of such
a knot form a trapezoidal pattern. This means that these coefficients increase, stabilize, and
then decrease symmetrically.

Conjecture 1 ([14]). Let K be an alternating knot and ∆K(t) = ±
g

∑
i=−g

ai(−t)i, with ai > 0, its

Alexander polynomial. Then there exists an integer 0 ≤ l ≤ g such that:

a−g < · · · < a−l/2 = · · · = al/2 > · · · > ag.

Over the past fifty years, Conjecture 1 has been confirmed for various families of
alternating knots. Notably, Hartley confirmed the conjecture for the class of two-bridge
knots [15]. Murasugi proved that the conjecture holds for a large family of alternating
algebraic knots [16]. Using knot Floer homology, Ozsváth and Szabó [11] confirmed the
validity of the conjecture for alternating knots of genus 2, a result independently proved by
Jong using combinatorial methods [17,18]. Hirasawa and Murasugi [19] confirmed that the
conjecture holds for stable alternating knots. Furthermore, they proposed a refinement of
Conjecture 1, suggesting that the length of the stable part should not exceed |σ(K)|, where
σ(K) denotes the knot’s signature. This refined version of the conjecture was confirmed for
two-bridge knots [20] and for certain classes of closed alternating 3-braids and 4-braids [21–23].

On the other hand, Stoimenow [24] proposed a strong version of the conjecture. Indeed,
he conjectured that the coefficients of the Alexander polynomial of an alternating knot are
logarithmically concave. In other words, they satisfy the condition a2

i ≥ |ai+1||ai−1| for
0 < i < 2g. In [25], Huh highlighted this conjecture as one of the most interesting open
problems about log-concavity of sequences. The strong Fox conjecture was proved for
two-bridge knots [26] and for special alternating knots [27].
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Let us consider the alternaing knots 12a146 in Figure 1 (left) and the weaving knot
W(3, 5) in Figure 2. Recall that these knots have signatures 6 and 0, respectively. According
to [28], their Alexander polynomials are given by:

∆12a146(t) = 1 − 3t + 6t2 − 7t3 + 7t4 − 7t5 + 7t6 − 7t7 + 6t8 − 3t9 + t10.
∆W(3,5)(t) = 1 − 6t + 15t2 − 24t3 + 29t4 − 24t5 + 15t6 − 6t7 + t8.

These polynomials are trapezoidal and the lengths of the stable parts are 4 and 0,
respectively.

Figure 2. The weaving knot W(3, 5) which is the knot 10123 in Rolfsen’s Table.

Here is an outline of this paper. In Section 2, we shall define the Alexander polynomial
and recall its properties, which are relevant to our context. In Section 3, we shall survey the
literature on the progress made toward solving the Fox trapezoidal conjecture. In Section 4,
we consider the case of closed alternating braids. Finally, in Section 5, we shall discuss the
generalization of the conjecture to other classes of links.

2. The Alexander Polynomial

The Alexander polynomial [8] is an invariant of oriented links which plays a funda-
mental role in classical knot theory. This topological invariant is a one-variable Laurent
polynomial with integral coefficients ∆L(t). Several distinct yet equivalent methods exist
for defining this polynomial. Notably, it can be defined recursively using Conway skein
relations [9]:

∆U(t) = 1,

∆L+(t)− ∆L−(t) = (
√

t − 1√
t
)∆L0(t),

where U denotes the unknot and L+, L− and L0 depict three oriented link diagrams that
are identical except in a small region where they are as displayed in Figure 3.

Figure 3. The three oriented links L+, L− and L0, respectively.

It is worth noting that this polynomial is symmetric, in the sense that it satisfies
∆L(t) = ±∆L(t−1) for any link L.

For n ≥ 2, let Bn denote the group of braids on n strands. This group is generated by
the elementary braids σ1, σ2, . . . , σn−1, see Figure 4 subject to the following relations:

σiσj = σjσi if |i − j| ≥ 2

σiσi+1σi = σi+1σiσi+1, ∀ 1 ≤ i ≤ n − 2.
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Figure 4. The 3 generators σ1, σ2 and σ3 of the braid group B4.

By Alexander’s theorem [29], we know that any link L can be represented as the closure
of a braid b ∈ Bn; L = cl(b). The Alexander polynomial can be defined via the reduced
Burau representation of the braid group [10]. This representation is defined as follows.
Let b be a given n-braid and eb the exponent sum of b as a word in the elementary braids
σ1 . . . σn−1. Let ψn,t : Bn −→ GL(n − 1,Z[t, t−1]) be the reduced Burau representation
defined on the generators of Bn by:

ψn,t(σ1) =

 −t 1 0
0 1 0

ine0 0 In−3

,

ψn,t(σi) =


In−2 0 0 0 0
ine0 1 0 0 0

0 t −t 1 0
0 0 0 1 0

ine0 0 0 0 In−i+2

 for 2 ≤ i ≤ n − 2,

ψn,t(σn−1) =

 In−3 0 0
ine0 1 0

0 t −t


where Ik denotes the k × k-identity matrix. The Alexander polynomial, up to the mul-
tiplication by a unit of Z[t1/2, t−1/2] of the link L = cl(b) is obtained from the Burau
representation by the following formula:

∆L(t) = (
−1√

t
)eb−n+1 1 − t

det(1 − ψn,t(σ1 . . . σn−1))
det(In−1 − ψn,t(b)).

A categorification of the Alexander polynomial has been introduced by Ozsváth
and Szabó in [30] and independently by Rasmussen in [31], who defined a bi-graded
link homology theory ĤFK

∗,∗
called link Floer homology. This categorification provides

an alternative view on the Alexander polynomial. Indeed, for any l-component link L,
the graded Euler characteristic of ĤFK

∗,∗
(L) is, up to the multiplication by a factor, the

Alexander–Conway polynomial of L. More precisely, we have

(t−1/2 − t1/2)l−1∆L(t) = ∑
j∈Z,i∈Z+ l−1

2

(−1)i+ l−1
2 tjrank(ĤFK

i,j
(L)).

It is well-known that for any Laurent polynomial f (t) satisfying the conditions
f (t) = f (t−1) and f (1) = 1, there exists a knot K whose Alexander polynomial is f (t).
Given an oriented knot K, the genus of K, denoted hereafter g(K), is the minimal genus of
a Seifert surface of K. Recall that g(K) is an upper bound for the degree of the Alexander
polynomial of K. Moreover, for alternating knots, we have:

Theorem 1 ([12,13]). Suppose that K is an alternating knot, then:

1. The genus of the knot g(K) is equal to the degree of ∆K(t).
2. For all i, ai ̸= 0 and aiai+1 < 0, for all −g ≤ i ≤ g − 1.
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Similar results for alternating links can be found in [32]. Notice that the coefficients
of the Alexander polynomial of an alternating knot alternate in sign with no internal zero
coefficients, as stated in the theorem above. Given an oriented link L, the signature of L
denoted here as σ(L) is a numerical topological invariant of links which is derived from the
Seifert matrix of L. It is well-known that the signature of a knot is always an even integer.
The determinant of a link L, denoted hereafter as det(L), is another link invariant obtained
from the Seifert matrix of the link and is expressed as det(L) = |∆L(−1)|.

An interesting subclass of alternating links that will appear in our discussions in the
following sections is the class of special alternating links. Recall that a link is said to be
positive if it can be represented by a diagram in which all crossings are positive. A link is
said to be special alternating if it is both positive and alternating.

3. Fox Trapezoidal Conjecture

A polynomial with real positive coefficients f (x) = ∑n
k=0 αkxk is said to be loga-

rithmically concave , or log-concave for short, if the sequence (αk) satisfies the condition
α2

k ≥ αk−1αk+1 for all 0 < k < n. On the other hand, f is said to be unimodal if for some
0 ≤ j ≤ n, we have α0 ≤ α1 ≤ · · · ≤ αj ≥ αj+1 ≥ · · · ≥ αn. If there exist integers j and
l such that α0 < α1 < · · · < αj = · · · = αj+l > · · · > αn−1 > αn, then f is said to be
trapezoidal. Obviously, every trapezoidal polynomial is unimodal. It can also be checked
easily that every log-concave polynomial with no internal zero coefficients is trapezoidal.
Sequences and polynomilas with such properties have been subject to extensive studies.
We refer the reader to [25,33] and the references therein for examples of sequences with
such properties and their important applications in combinatorics, algebra and geometry.

Example 1. The polynomial f (t) = 1 + 2t + 4t2 + 4t3 + 4t4 + 2t5 + t6 is log-concave with no
internal zero coefficients, hence trapezoidal and unimodal, while the polynomial g(t) = 1 + 2t +
3t2 + 5t3 + 3t4 + 2t5 + t6 is trapezoidal but not log-concave.

3.1. Original Fox Conjecture

In 1962, Fox published a list of open problems in knot theory [14]. Problem 12 in Fox’s
list reads as follows:

Problem 1 ([14]). Characterize, among the knot polynomials, those that are polynomials of alter-
nating knots, of special alternating knots.

In addition to the conditions in Theorem 1, Fox conjectured that the coefficients of the
Alexander polynomial of alternating knots are trapezoidal. Fox checked this property for
alternating knots with fewer than 12 crossings. The first cases where the conjecture has
been settled appeared no earlier than 15 years later. Indeed, in 1979, Hartley confirmed
the conjecture for the class of two-bridge knots [15]. Around the same time, Parris [34]
showed that the conjecture is true for alternating pretzel knots. In 1985, Murasugi [16]
proved the conjecture for a large class of alternating algebraic (arborescent) knots. This
class includes in particular two-bridge knots. It is worth mentioning here that Murasugi’s
proof is inductive and is based on the study of the Conway polynomial.

In 2003, Ozsváth and Szabó proved that the knot Floer homology of an alternating knot
is determined by the Alexander polynomial and the signature of the knot. As a byproduct,
they obtained that Conjecture 1 is true for alternating knots of genus 2. Let us recall the
following results from [11].

Let K be a knot and r an integer. We denote by tr(K) the torsion coefficients defined by

tr(K) =
∞

∑
j=1

ja|r|+j,
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where here the ar are the coefficients of the symmetrized Alexander polynomial of K. For
σ ∈ 2Z, we let δ(σ, r) be the rth torsion coefficient of the torus knot of type (2, |σ|+ 1). This
integer is defined by the following formula:

δ(σ, r) = max(0, ⌈ |σ| − 2|r|
4

⌉).

In [11], Ozsváth and Szabó proved the following result.

Theorem 2. Let K be an alternating knot. Then, for all r ∈ Z, we have that (−1)r+ σ
2 (tr(K)−

δ(σ, r)) ≤ 0.

Conjecture 1 holds for knots of genus 2 as a consequence of Theorem 2; see [11]. The
trapezoidal property of the Alexander polynomial of alternating knots of genus 2 has also
been obtained by Jong using combinatorial methods; see [17,18].

The study of the roots of the Alexander polynomial is closely related to the trapezoidal
structure of its coefficients. For instance, we know that if the roots of the polynomial are
all real or are all in the sector {z ∈ C; 2π

3 ≤ arg(z) ≤ 4π
3 }, then the polynomial is log-

concave, hence trapezoidal [33]. A knot is said to be real stable (respectively, circular stable)
if the roots of its Alexander polynomial are real (respectively, unit complex). Hirasawa
and Murasugi [19] studied the distribution of the roots of the Alexander polynomial
of alternating knots and showed that the trapezoidal conjecture holds for alternating
stable knots.

3.2. A Refined Version of Fox Trapezoidal Conjecture

The study of the Alexander polynomial of stable alternating knots [19] led to the
following refined version of Fox’s trapezoidal conjecture.

Conjecture 2 ([19]). Let K be an alternating knot and ∆K(t) = ±
g

∑
i=−g

ai(−t)i, with ai > 0 be

its Alexander polynomial. Then there exists an integer 0 ≤ l ≤ g such that:

a−g < · · · < a−l/2 = · · · = al/2 > · · · > ag.

Moreover, l ≤ |σ(K)|.

Conjecture 2 has been verified for two-bridge knots [20]. It has been also checked
for some classes of alternating knots which admit an alternating 3-braid or an alternating
4-braid representation [21–23]. These results will be discussed in the next section. We shall
now verify that Conjecture 2 holds for alternating knots of genus 1 and genus 2.

Remark 1. Let K be an alternating knot and write ∆K(t) = a0 +
g

∑
i=1

ai(ti + t−i), where g is the

genus of the knot. In [11], Ozsváth and Szabó proved that the last two coefficients of the Alexander
polynomial of an alternating knot satisfy the following relation:

|ag−1| ≥ 2|ag|+


−1 if |σ(K)| = 2g
1 if |σ(K)| = 2g − 2
0 otherwise

This result was used by Ni [35] to prove that if, for an alternating knot K, we have |ag| = |ag−1|,
then K is the torus knot of type T(2g + 1,±2). Consequently, the equality l = 2g(K) holds only in
the case of the torus knot T(2g + 1, 2) or its mirror image.

Let us check that Conjecture 2 holds for alternating knots of genus less than or equal
to 2. We shall first normalize the Alexander polynomial such that ∆K(1) = 1, [1]. The result
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is obvious for alternating knots of genus one. Indeed, since ∆K(t) = a0 + a1(t + t−1) and
∆K(1) = a0 + 2a1 = 1, then a0 = −2a1 + 1. Hence, |a0| ≥ |a1| with equality holds only if
a0 = a1 = 1 which corresponds to the case of the trefoil knot or its mirror image [35]. In
both cases, the length of the stable part is less than |σ(K)| and the refined version of the
conjecture is satisfied.

If the knot K is alternating and has genus 2, then ∆K(t) = a0 + a1(t+ t−1) + a2(t2 + t−2).
Note that in this case, the possible values of |σ(K)| are 0, 2 and 4. This a consequence

of the fact that the signature of a knot K is always even and that |σ(K)| ≤ 2g; see ([1],
[Chapter 6]). Assume that |σ(K)| = 0, then we have δ(σ, r) = δ(0, r) = 0 and Theorem 2
gives that t0(K) = a1 + 2a2 ≤ 0 and (−1)1t1(K) = −a2 ≤ 0. Since the coefficients a0, a1
and a2 are nonzero and alternate in sign, we conclude that |a1| > |a2|. Using that for a knot
we have always ∆K(1) = 1, we obtain a0 + 2a1 + 2a2 = 1. Thus,

a0 = −2a1 − 2a2 + 1 = −a1 − (a1 + 2a2) + 1 = −a1 + (1 − (a1 + 2a1)).

Since a1 + 2a2 ≤ 0, we obtain that 1 − (a1 + 2a1) > 0 and a0 > −a1. Using the fact
that a0 and a1 have opposite signs, we have |a0| > |a1|. Hence, |a0| > |a1| > |a2|. Therefore,
l = 0 = σ(K) and Conjecture 2 holds.

If |σ(K)| = 2, then we have δ(σ, 0) = δ(2, 0) = 1 and δ(σ, r) = 0 otherwise. Theorem 2
implies that a1 + 2a2 − 1 ≥ 0 and a2 ≤ 0, and so a1 ≥ −2a2 + 1 > |a2|. Using the fact
that a0 + 2a1 + 2a2 = 1, it follows that |a0| ≥ |a1|. In conclusion, |a0| ≥ |a1| > |a2| and
Conjecture 2 is verified as the length of the stable part is at most 2, so it is less than or equal
to |σ(K)|.

Let us now examine the case |σ(K)| = 4. In this case, we have δ(σ, 0) = δ(4, 0) = 1,
δ(σ, 1) = δ(4, 1) = 1 and δ(σ, 2) = δ(4, 0) = 0.

By Theorem 2, we obtain the following:

(−1)0+ σ
2 (t0(K)− δ(σ, 0)) = a1 + 2a2 − 1 ≤ 0

(−1)1+ σ
2 (t1(K)− δ(σ, 1)) = −(a2 − 1) ≤ 0.

Thus, a1 ≤ 1 − 2a2 and a2 ≥ 1. Since a2 > 0 then a1 ≤ 0 and a0 ≥ 0. The inequality
a1 ≤ 1 − 2a2 implies that |a1| = −a1 ≥ 2a2 − 1 > a2 = |a2|. The identity a0 + 2a1 + 2a2 = 1
implies that |a0| − |a1| = a0 + a1 = 1 − a1 − 2a2 ≥ 0. In conclusion, we proved that
|a0| ≥ |a1| ≥ |a2|. Notice that if |σ(K)| = 4, then the condition on the length of the stable
part is satisfied by default.

Remark 2. The inequality l ≤ |σ(K)| in Conjecture 2 is sharp. Indeed, given any g > 1 and
0 ≤ l ≤ g, then there exists an alternating knot of genus g whose polynomial is trapezoidal and the
length of the stable part is l = |σ(K)|. For l = g, we may consider the torus knot T(2g + 1,±2).
Otherwise, the knot K = cl(σp−1

1 σ−1
2 σ1σ

−q+1
2 ), where p = g−l+2

2 and q = g+l+2
2 has genus g

and signature l. The Alexander polynomial of K is given by the following formula:

∆K(t) = − s−q

(1 − s)2 (s(1 − sp−1)(1 − sq−1) + (1 − sp)(1 − sq)).

According to [21], this polynomial is trapezoidal and the length of its stable part is l.

3.3. The Strong Fox Conjecture

Stoimenow studied the roots of the Conway polynomial of special alternating links
and proved that the coefficients of the Conway polynomial of such links satisfy certain
interesting inequalities [24]. In light of these results, he suggested the following natural
strengthening of Fox’s trapezoidal conjecture.

Conjecture 3 ([24]). If K is an alternating knot, then ∆K(t) is log-concave.
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It is worth mentioning here that Conjecture 3 implies Conjecture 1. However, Con-
jecture 3 and Conjecture 2 are a priori independent because Conjecture 3 does not include
information about the length of the stable part. In [26], Banfield proved Conjecture 3 for
2-bridge knots. In [27], Hafner, Mészáros, and Vidinas applied the theory of Lorentzian
polynomials developed in [36] to certain multivariate generalization of the Alexander poly-
nomial. Consequently, they confirmed that Conjecture 3 holds for special alternating links.

We shall here check that Conjecture 3 holds for alternating links of genus 2. Recall that
if σ(K) = 0, then t0(K) = a1 + 2a2 ≤ 0, a2 ≥ 0 and a0 ≥ 0. Moreover, a0 + 2a1 + 2a2 = 1.
To prove the log-concavity, we need only to check that a2

1 ≥ |a0||a1|. Notice that:

4a2
1 = (1 − a0 − 2a2)

2 = 1 + a2
0 + 4a2

2 − 2a0 − 4a2 + 4a0a2.

Thus,
4a2

1 − 4a0a2 = (1 − a0 − 2a2)
2 − 4a0a2

= 1 + a2
0 + 4a2

2 − 2a0 − 4a2
= (1 + a2

0 − 2a0) + 4(a2
2 − a2) ≥ 0.

The proof in the cases σ(K) = ±2 and σ(K) = ±4 is similar.
Recall that the log-concavity of the Alexander polynomial of knots of genus 2 has also

been verified in [17]. Moreover, Stoimenow [37] proved Conjecture 3 for alternating knots
of genus at most 4.

Remark 3. In [17], Jong gave examples of Alexander polynomials which are log-concave but cannot
be realized by alternating knots.

4. Closed Alternating Braids

In this section, we shall restrict our study to knots which can be obtained as the closures
of alternating braids. Recall that any link with braid index 2 is alternating. Alternating
links with braid index 3 are also classified [38,39].

Theorem 3 ([38]). Let L be an alternating link of braid index 3. Then L is either:

1. the connected sum of two (2, k)-torus links (with parallel orientation);
2. the closure of an alternating 3-braid, including split unions of a (2, k)-torus link and an

unknot and the 3 component unlink;
3. a pretzel link P(1, c1, c2, c3) with all ci ≥ 1 (oriented so that the twists corresponding to p, q, r

are parallel).

For n ≥ 3, consider the alternating n-braid on m blocks

βn,m((pi,j)) = Πm
j=1

(
σ

p1,j
1 σ

−p2,j
2 σ

p3,j
3 . . . σ

(−1)n−2 pn−1,j
n−1

)
,

where all pi,j > 0 or pi,j < 0 for all i, j. Obviously, the closure of βn,m((pi,j)) is an alternating
link. The signatures of these type of links have been computed in [23,40]. It is worth
mentioning here that this family of links contains the classes of weaving links and the
so-called generalized hybrid weaving links whose colored quantum invariants have been
studied in [41,42].

One approach that can be followed in the case of alternating braids is to use the Burau
representation defined in Section 2. For small values of n and m, it was possible to obtain
explicit formulas for the Alexander polynomial of alternating closed braids and check that
Conjecture 2 holds.

More precisely, the conjecture has been verified for closed alternating 3-braids cl(β3,m((pi,j)))
with m ≤ 3 and for 4-braids cl(β4,m((pi,j))) with m ≤ 2. In the particular case of weaving
knots of type W(3, m), it was proved that the coefficients of the Alexander polynomial are
related to Whitney numbers of Lucas lattices [22]. Thus, they are trapezoidal [43].
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For n ≥ 4, the Burau representation can be used to compute the first coefficients of the

Alexander polynomial. Assume that ∆K(t) = ±
2g

∑
i=0

αi(−t)i. In [23], it was proved that for

large values of pi the first four coefficients of the Alexander polynomial of the closure of
βn,m((pi,j)) are given by:

α0 = 1,
α1 = (n − 2)m + 1,

α2 =
(n − 2)2m2 + (3(n − 2) + 2)m

2
,

α3 =
(n − 2)3m3 + 6(n − 1)(n − 2)m2 + (5(n − 1) + 1)m

6
.

It can be easily checked that we have α2
1 ≥ |α0||α2| and α2

2 ≥ |α1||α3|. Thus, the
sequence made up of these four terms (α0, α1, α2, α3) is log-concave [23].

Remark 4. It is worth mentioning that given an alternating link which has an alternating n-braid
representation as described above, we can in certain cases determine the values of n and m from the
coefficients α1 and α2. First, notice that we have

2α2 − α2
1 − α1 = ((n − 2)2m2 + (3n − 4)m)− ((n − 2)m + 1)2 − (n − 2)m − 1

= (n − 2)2m2 + 3nm − 4m − (n − 2)2m2 − 2(n − 1)m − 1 − nm + 2m − 1
= 2m − 2,

which implies that m =
2α2 − α2

1 − α1 + 2
2

. Once we obtain the value of m, we can find the value
of n. Let us consider the knot 1079 whose Alexander polynomial is:

1 − 3t + 7t2 − 12t3 + 15t4 − 12t5 + 7t6 − 3t7 + t8.

Here, α1 = 3 and α2 = 7, and hence, 2α2 − α2
1 − α1 + 2 = 14 − 9 − 3 + 2 = 4, which means

that m = 2. Consequently, we obtain n = 3 and a braid representation of the knot is of the
form σ

p1,1
1 σ

−p2,1
2 σ

p1,2
1 σ

−p2,2
2 . According to [40], the signature of the closure of such a braid is

p2,1 + p2,2 − p1,1 − p1,2. By using the fact that the signature of the knot 1079 is zero, we conclude
that p1,1 + p1,2 = p2,1 + p2,2. Checking different possible values of pi,j, we obtain that 1079 is the
closure of σ3

1 σ−2
2 σ2

1 σ−3
2 ; see Figure 5.

These formulas for the coefficients of the Alexander polynomial can also be applied to the pretzel
knot P(1, c1, c2, c3), see Figure 6, which is alternating but has first coefficient α0 = 2. Hence, it
is not a fibered knot. We conclude then that it cannot be represented as an alternating braid since
the closure of an alternating braid is fibered [44]. Similar discussion for the Jones polynomials of
3-braid links can be found in [45].

Figure 5. An alternating 3-braid representation of the knot 1079.
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CC1 C
2 3

.
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.
.
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.

.

Figure 6. The pretzel link P(1, c1, c2, c3).

5. Quasi-Alternating Links

The class of alternating links has been generalized into several directions. For instance,
a link is said to be almost alternating if it is non-alternating and it admits a diagram which
can be turned into an alternating diagram by performing only one crossing change [46].
Another interesting generalization appeared through the study of the Heegaard Floer
homology of branched double-covers of alternating links [11]. This new class of links,
called quasi-alternating, has been defined recursively on planar diagrams. One of the basic
feature of these links is that they have the same homological properties as alternating
links [47].

Definition 1. The set Q of quasi-alternating links is the smallest set satisfying the following properties:

1. The unknot belongs to Q;
2. If L is a link with a diagram D containing a crossing c such that:

(a) both smoothings of the diagram D at the crossing c, L0 and L∞ as in Figure 7 belong
to Q;

(b) det(L0), det(L∞) ≥ 1;
(c) det(L) = det(L0) + det(L∞);

then L is in Q. In this case, we say that L is quasi-alternating with quasi-alternating diagram D at
the crossing c.

L L0 L∞

Figure 7. The diagram of the link L at the crossing c and its smoothing L0 and L∞, respectively.

It is noteworthy to highlight that many properties of the polynomial invariants of
alternating links extend naturally to quasi-alternating links, as discussed in [48–50], for
instance. On the other hand, Manolescu and Ozsváth proved that quasi-alternating links
are thin in link Floer homology. By considering the Alexander polynomial as the graded
Euler Characteristic of the link Floer homology, we conclude that the coefficients of the
Alexander polynomial of a quasi-alternating knot alternate in sign; they satisfy aiai+1 ≤ 0.
Moreover, the degree of the Alexander polynomial of such a knot K is equal to its genus
g(K) [11]. For quasi-alternating knots, it is not known whether the coefficients of ∆K(t)
have internal zeros. On the other hand, Fox Trapezoidal Conjecture does not extend to
quasi-alternating knots. For instance, the knot 10125 is a quasi-alternating non-alternating
knot [51]. Its Alexander polynomial is ∆10125(t) = 1 − 2t + 2t2 − t3 + 2t4 − 2t5 + t6, hence
not trapezoidal. The same knot is also known to be almost alternating and Fox’s Conjecture
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also does not hold for this class of knots. The conjecture does not hold for special quasi-
alternating knots (knots which are positive and quasi-alternating) either, as can be seen
from the knot 10142, which is positive and quasi-alternating. However, we have ∆10142(t) =
2 − 3t + 2t2 − t3 + 2t4 − 3t5 + 2t6, which is not trapezoidal. A natural question to ask is
whether the Trapezoidal conjecture can be modified into a relaxed version that extends
to quasi-alternating knots. This question is clearly related to the problem of internal
zero coefficients mentioned above. Figure 8 displays the coefficients of the Alexander
polynomials of the non-alternating knots 943, 947, 10125 and 12n235. These knots are proven
to be quasi-alternating: 943 and 947 in [47], 10125 in [51], and 12n235 in [52]. We can easily
observe that for each of these knots, the coefficients of the Alexander polynomial form a
bimodal sequence. This observation needs to be further investigated.

1 2 3 4 5 6 7

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7

1

2

3

4

5

1 2 3 4 5 6 7

0.5

1.0

1.5

2.0

2 4 6 8

0.5

1.0

1.5

2.0

Figure 8. The coefficients of the Alexander polynomials of the quasi-alternating non-alternating knots
943, 947, 10125 and 12n235, respectively.

Funding: This research was funded by United Arab Emirates University, UPAR grant #G00004167.

Data Availability Statement: No data was used for the research described in the article.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Murasugi, K. Knot Theory and Its Applications, Translated from the 1993 Japanese Original by Bohdan Kupita; Birkhauser: Boston, MA,

USA, 1996.
2. Kauffman, L.H. State models and the Jones polynomial. Topology 1987, 26, 395–407. [CrossRef]
3. Murasugi, K. Jones polynomials and classical conjectures. Topology 1987, 26, 187–194. [CrossRef]
4. Thistlethwaite, M. A spanning tree expansion of the Jones polynomial. Topology 1988, 26, 297–309. [CrossRef]
5. Greene, J.E. Alternating links and definite surfaces. Duke Math. J. 2017, 166, 2133–2151. [CrossRef]
6. Howie, J.A. A characterisation of alternating knot exteriors. Geom. Topol. 2017, 21, 2353–2371. [CrossRef]
7. Rolfsen, D. Knots and Links; American Mathematical Society: Providence, RI, USA, 2003.
8. Alexander, J.W. Topological invariants of knots and links. Trans. Amer. Math. Soc. 1928, 30, 275–306. [CrossRef]
9. Conway, J.H. An enumeration of knots and links and some of their algebraic properties. In Computational Problems in Abstract

Algebra; Pergamon Press: New York, NY, USA, 1970; pp. 329–358.
10. Burau, W. Über Zopfgruppen und gleichsinnig verdrillte Verkettungen. Abh. Aus Dem Math. Semin. Der Univ. Hambg. 1935, 11,

179–186. [CrossRef]
11. Ozsváth, P.; Szabó, Z. Heegaard Floer homology and alternating knots. Geom. Topol. 2003, 7, 225–254.
12. Murasugi, K. On the genus of the alternating knots I. J. Math. Soc. Jpn. 1958, 10, 94–105.

http://doi.org/10.1016/0040-9383(87)90009-7
http://dx.doi.org/10.1016/0040-9383(87)90058-9
http://dx.doi.org/10.1016/0040-9383(87)90003-6
http://dx.doi.org/10.1215/00127094-2017-0004
http://dx.doi.org/10.2140/gt.2017.21.2353
http://dx.doi.org/10.1090/S0002-9947-1928-1501429-1
http://dx.doi.org/10.1007/BF02940722


Symmetry 2024, 16, 495 12 of 12

13. Murasugi, K. On the Alexander polynomial of the alternating knot. Osaka Math. J. 1958, 10, 181–189.
14. Fox, R.H. Some problems in knot theory. In Topology of 3-Manifolds and Related Topics, Proceedings The University of Georgia Institute,

1961; Prentice-Hall: Englewood Cliffs, NJ, USA, 1962; pp. 168–176.
15. Hartley, R.I. On two-bridged knot polynomials. J. Austral. Math. Soc. Ser. A 1979, 28, 241–249. [CrossRef]
16. Murasugi, K. On the Alexander polynomial of alternating algebraic knots. J. Austral. Math. Soc. Ser. A 1985, 39, 317–333.

[CrossRef]
17. Jong, I.D. Alexander polynomials of alternating knots of genus two. Osaka J. Math. 2009, 46, 353–371.
18. Jong, I.D. Alexander polynomials of alternating knots of genus two II. J. Knot Theory Ramifications 2010, 19, 1075–1092. [CrossRef]
19. Hirasawa, M.; Murasugi, K. Various stabilities of the Alexander polynomials of knots and links. arXiv 2013, arXiv:1307.1578.
20. Chen, W. On two-bridge knots and a conjecture of Hirasawa–Murasugi. J. Knot Theory Its Ramifications 2021, 30, 2150007.

[CrossRef]
21. Alrefai, M.; Chbili, N. On Fox’s Trapezoidal Conjecture for Closed 3-braids. Int. J. Math. 2021, 32, 2150002. [CrossRef]
22. Sukaiti, M.A.; Chbili, N. Alexander and Jones Polynomials of weaving 3-braid links and Whitney rank polynomials of Lucas

lattice. arXiv 2023, arXiv:2303.11398.
23. Sukaiti, M.A.; Chbili, N. Alexander polynomials of closed alternating braids. arXiv 2023, arXiv:2310.14539.
24. Stoimenow, A. Newton-like polynomials of links. Enseign. Math. 2005, 51, 211–230.
25. Huh, J. Combinatorial applications of the Hodge–Riemann relations. Proc. Int. Congr. Math. 2018, 3, 3079–3098.
26. Banfield, I. Christoffel words and the strong Fox conjecture for two-bridge knots. arXiv 2022, arXiv:2212.04561.
27. Hafner, E.; Eszáros, K.M.; Vidinas, A. Log-concavity of the Alexander polynomial. arXiv 2023, arXiv:2303.04733.
28. Livingston, C.; Moore, A.H. KnotInfo: Table of Knot Invariants. Available online: https://knotinfo.math.indiana.edu/homelinks/

cite_info.html (accessed on 2 January 2024).
29. Alexander, J.W. A lemma on a system of knotted curves. Proc. Nat. Acad. Sci. USA 1923, 9, 93–95. [CrossRef] [PubMed]
30. Ozsváth, P.; Szabó, Z. Holomorphic disks and knot invariants. Adv. Math. 2004, 186, 58–116.
31. Rasmussen, J. Floer Homology and Knot Complements. Ph.D. Thesis, Harvard University, Cambridge, MA, USA , 2003.
32. Crowell, R.H. Genus of alternating link types. Ann. Math. 1959, 69, 258–275. [CrossRef]
33. Stanley, R.P. Log-Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry. Ann. N. Y. Acad. Sci. 1989, 576,

500–535. [CrossRef]
34. Parris, R.L. Pretzel Knots. Ph.D. Thesis, Princeton University, Princeton, NJ, USA , 1978.
35. Ni, Y.A. Characterization of T2g+1,2 among Alternating Knots. Acta. Math. Sin. Engl. Ser. 2021, 37, 1841–1846. [CrossRef]
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