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Abstract: For radially extended Bessel modes, the helicity density distributions of magnetic fields
associated with relativistic electron vortex beams are investigated for first time in the literature. The
form of the distribution is defined by the electron beam’s cylindrically symmetric density flux, which
varies with the winding number ℓ and the electron spin. Different helicity distributions are obtained
for different signs of the winding number ±ℓ, confirming the chiral nature of the magnetic fields
associated with the electron vortex beam. The total current helicity for the spin-down state is smaller
than that of the spin-up state. The different fields and helicities associated with opposite winding
numbers and/or spin values will play an important role in the investigation of the interaction of
relativistic electron vortices with matter and especially chiral matter. A comparison of the calculated
quantities with the corresponding ones in the case of non-relativistic spin-polarized electron beams
is performed.

Keywords: vortex beams; electrons; helicity; chirality; current density

1. Introduction

Electron vortex modes as twisted electron beams have been experimentally realized
in recent years [1–3]. These beams of freely propagating electrons have a wavefront with
a quantized topological structure, and they can carry large amounts of quantum angular
momentum equal to ℓh̄ in the direction of propagation [4]. This wavefront arises from
a singularity in phase that takes the form eiℓϕ, where ϕ represents the azimuthal angle
about the beam axis and ℓ is an integer quantum number that is also referred to as the
topological charge (or winding number). The fundamental ideas behind electron vortex
beam production are roughly the same as those found in the optical vortex counterparts;
however, the electron vortex is unique due to a few more characteristics, most notably
its electric charge, mass, half-integer spin, and extremely small de Broglie wavelengths.
Lloyd et al. [5] studied the behaviour of the electromagnetic field of a non-relativistic
electron vortex Bessel beam.

The applications of electron vortices span in large areas range from quantum information
and nuclear physics up to nanoscience. For example, they provide useful new information
about the magnetic properties of matter using electron energy-loss spectroscopy [2], and
we can exploit them in the determination of the chirality of crystals in transmission electron
microscopy [6]. The application of electron vortex beams with varying handedness, +ℓ or
−ℓ, causes distinct reactions in chiral matter, that is, the relative handedness of the electron
vortex beam affects interaction processes [6–9]. Several studies have examined high-energy
processes, such as radiation generated by an electron vortex, Compton scattering, and
Mott scattering. This requires a fully relativistic treatment of electrons; therefore, the Dirac
equation instead of the Schrödinger equation should be considered [4,10]. Difficult quantity
measurements, previously unexplored in particle or nuclear collisions, have been accessed
via relativistic vortex electrons [11]. Attempts for an exact solution to the Dirac equation
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for an electron vortex have been performed in a number of studies, either for electrons that
propagate in free space or interact with a laser field, a homogeneous magnetic field, or
more general field configurations (see review [12] and the references therein).

The helicity associated with electron vortex beams, both magnetic and current, is
our main focus here. Helicity, defined as the linking or twisting of field lines [13,14], is a
mathematical tool for evaluating the handedness of magnetic fields. The study of helicity
was motivated by its potential applications in a variety of contexts such as gravitational
waves [15], magnetohydrodynamics, magnetic reconnection, astronomy studies [16,17]
(e.g., active galactic regions and planetary magnetospheres), and light propagation through
dispersive and negative-index media [18] (for overviews see [19,20]). The helicity and
chirality of the electromagnetic fields associated with optical vortex beams have recently
been the subject of investigation and clarification [21,22]. These characteristics are critical
for understanding how chiral light interacts with matter. Furthermore, a thorough un-
derstanding of the material’s characteristics can be obtained by utilizing electron vortex
beams with various spin polarization and helicity density values. In this paper, we plan
to investigate in detail the helicities of the magnetic fields associated with a relativistic
electron vortex beam in a way analogous to that followed in the study of non-relativistic
electron vortex beams [23].

We adopted a Bessel-type solution of the Dirac equation, first provided by Bliokh et al. [24],
which describes a fully relativistic vortex of electrons with spin. Barnett [25] suggested the
approximate paraxial Laguerre–Gaussian beam as an alternative solution to the Dirac
equation, which acquires non-paraxial corrections to accurately analyze spin–orbit inter-
action effects. These corrections introduce additional components with different vortex
charges and spin projections, but only one of these components is present in their work.
The authors of [26] proposed exponential wave packets localized in time but extending
indefinitely along the longitudinal z coordinate. While they may not precisely represent
longitudinally-localized electron wave packets in typical experimental conditions, they
can be useful in situations where the finite width of the electron energy spectrum is im-
portant. Indeed, choosing the Bessel-type solution of the Dirac equation is generally more
realistic, and it gives us the opportunity to compare the relativistic results with those ob-
tained for non-relativistic spin-polarized electron vortex beams [23]. The electromagnetic
fields generated by a relativistic electron vortex beam have been proposed recently by
Lei et al. [27], where they depend on both the spin state and the winding number.

In this paper, we aim to identify the current and magnetic helicity densities of magnetic
fields associated with a relativistic electron vortex beam. The structure of the paper is as
follows. In Section 2, we give the wave function of the relativistic electron vortex beam and
the expressions for the components of its magnetic field. Section 3 discusses the properties
of the current and magnetic helicities adopting a Bessel-type solution for the Dirac equation.
The non-relativistic limit of the results is presented in Section 4. Finally, in Section 5, we
give our conclusions.

2. Relativistic Electron Vortex Beams

As mentioned in the introduction, the relativistic behavior exhibited by an electron
vortex is described by the Dirac equation and has been shown by Bliokh et al. [24]. The
wave function for an electron propagating along the z direction takes the following

ψl,s =
Nℓei(kzz−ωt)

√
2

[( √
1 + mec2

E ws√
1 − mec2

E σz cos θws

)
Jℓ(k⊥ρ)eiℓϕ+

i


0
0

−b
√

∆
0

ei(ℓ−1)ϕ Jℓ−1(k⊥ρ) + i


0
0
0

a
√

∆

ei(ℓ+1)ϕ Jℓ+1(k⊥ρ)

]
,

(1)
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where Nℓ is the normalization constant, c is the speed of light, me is the mass of the electron,
E is the electron beam energy, σz is the z component of the Pauli matrix, θ = tan−1(k⊥/kz)
is the opening angle of the cone of the Bessel plane defined in terms of wave vector
components, ∆ = sin2 θ(1 − mec2

E ) is the spin–orbit coupling strength, Jℓ(k⊥ρ) is the first-
order Bessel function, ws = (a, b)T is the spin state with |a|2 + |b|2 = 1, and s represents
the electron spin with values ± 1

2 characterizing the eigenstate of the Pauli operator sz.
Here, we assume such states w 1

2
= (1, 0)T for spin ‘up’ and w− 1

2
= (0, 1)T for spin ‘down’.

Furthermore, in the following numerical evaluation, the wave vector component values
are assumed to be k⊥ = 2.3 × 108 m−1 and kz = 2.3 × 1012 m−1. This ensures that θ = 0.1
mrad is in agreement with experiments in MeV electron microscopy/diffraction [28], where
the electron beam energy is equal to 2 MeV. Applying the normalization procedure for the
wave function Equation (1) leads to |N|2 = k⊥

4π2 for an infinite radial extent Bessel beam. In
the non-relativistic limit, the quantity ∆ that describes the intrinsic spin–orbit interaction
vanishes and θ takes small values. The four-current density in relativistic electromagnetic
theory is written as

Jα = (cρ, j1, j2, j3) = (cρ, j), (2)

where ρ stands for the charge density, and j is the current density. The charge and current
densities in the Bessel mode wave function, given in Equation (1), have previously been
shown by Bliokh et al. [24] as follows:

ρl,s(r) = −eN2
ℓ

[(
1 − ∆

2

)
J2
ℓ (k⊥ρ) +

∆
2

J2
ℓ+2s(k⊥ρ)

]
, (3)

jl,s =
−eN2

ℓ h̄kc2

E
(J2

ℓ (k⊥ρ) cos θẑ + Jℓ(k⊥ρ)Jℓ+2s(k⊥ρ) sin θϕ̂). (4)

As we can clearly see from the two above equations, the introduction of spin degrees
of freedom in the relativistic regime brings in modifications in the charge and current
densities, and this will lead to different magnetic field expressions for the two spin states
and helicities associated with these fields. The physical reason for this is that in the non-
relativistic regime, the orbital angular momentum and the spin angular momentum are
separately conserved. In this case the wave function, for a particle in free space, is just a
product of the coordinate and spin parts. This has to be contrasted with the relativistic case,
where the conserved quantity is the total angular momentum since, even in free space, the
spin is coupled to the orbital angular momentum [26]. The helical trajectories of the current
density lead the electron vortex to possess intrinsic magnetic fields expressed in cylindrical
coordinates. The relativistic electric and magnetic field components may now be found
using the four-current density in the inhomogeneous Maxwell equation ∂βFαβ = −µ0Jα for
infinite radial extent Bessel beams, leading to [27]

E(ρ) = −ρ̂
eN2

ℓ

ε0ρ

∫ ρ

0

[
J2
ℓ (k⊥ρ′) +

∆
2
(J2

ℓ+2s(k⊥ρ′)− J2
ℓ (k⊥ρ′))

]
ρ′dρ′, (5)

Bϕ(ρ) =
eN2

ℓ µ0h̄kzc2

Eρ

∫ ρ

0
J2
ℓ (k⊥ρ′)× ρ′dρ′, (6)

Bz(ρ) =
eN2

ℓ µ0h̄k⊥c2

E

∫ ∞

ρ
Jℓ(k⊥ρ′)Jℓ+2s(k⊥ρ′)dρ′, (7)

where kz = k cos θ and k⊥ = k sin θ. The azimuthal magnetic field component does
not depend on the spin, it is almost identical to the non-relativistic one [5] with a slight
difference in the constant involved. It has been demonstrated that it exhibits an oscillatory
form that reduces with increasing radial distance and whose amplitude decreases with
increasing winding number. Its formula incorporates the Bessel function of the first kind
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squared; hence, it is independent of the winding number’s sign. The oscillating feature
is a direct effect of the oscillating nature of the Bessel beam. On the contrary, the axial
component depends explicitly on the spin quantum number, where it takes lower values in
the case of spin-down states compared to spin-up states. Additionally, the axial magnetic
fields associated with electron vortex beams with various spin states converge to common
values as the winding number increases. The axial magnetic field component for a spin-up
electron vortex beam with ℓ = −1 is opposite to that of a spin-down vortex with ℓ = 1.
This is in agreement with what we found in the case of a non-relativistic spin-polarized
electron vortex beam [23].

3. Helicity Density

Moreau [13] and Moffatt [14] showed that the vortex lines of flows with a non-zero
total helicity are both knotted and linked. A pseudoscalar ‘helicity’ integral of the form
u · (∇× u)d3x can be associated with the topological properties of the field lines, in other
words, helicity can be considered as a topological measure of how much the filed lines wrap
and coil around the propagation axis. This property applies to both the vector potential
A and magnetic field B [29,30], and it gives rise to their definitions of the corresponding
helicity densities: the current helicity density χ can be defined as

χ = B · (∇× B), (8)

and the magnetic helicity density η can be defined as

η = A · (∇× A) = A · B. (9)

We may infer that the magnetic field and vector potential components are solely
functions of the radial distance thanks to the Bessel mode and the cylindrical symmetry
consideration. As a result, the components along the radial direction and their derivatives
with respect to ϕ and z vanish.

3.1. Current Helicity Density

Substituting the relativistic magnetic field expressions in Equations (6) and (7) into
Equation (8) leads to

χ =
e2c4µ2

0h̄2kzk⊥|Nℓ|4

E2ρ

( ∫ ∞

ρ
Jℓ(k⊥ρ′)Jℓ+2s(k⊥ρ′)dρ′ × ∂

∂ρ

( ∫ ρ

0
J2
ℓ (k⊥ρ′)ρ′dρ′

)
−∫ ρ

0
J2
ℓ (k⊥ρ′)ρ′dρ′ × ∂

∂ρ

( ∫ ∞

ρ
Jℓ(k⊥ρ′)Jℓ+2s(k⊥ρ′)dρ′

))
.

(10)

The radial distribution of the current helicity density results for beams of order
ℓ = 0,±1, and ±10 are illustrated in Figure 1. It can be seen that the current helicity
density has an oscillating structure similar to that of the magnetic field components. As we
increase the winding number, we obtain a lower first peak and diminishing oscillations
at longer radial distances ρ. The non-vanishing χ for the case of ℓ = 0 is noteworthy here,
where the plots for the two different values of s are mirror images with respect to the
horizontal axis. The plots for ℓ > 0 exhibit noticeably different characteristics; for example,
the plots (b) (spin-up) and (d) (spin-down) for beams with |ℓ| = 1 look symmetrical with
respect to the z-axis, and the same holds for |ℓ| = 10. Based on the magnetic field formulas
and the Bessel function property J−ℓ(x) = (−1)ℓ Jℓ(x), which holds for integer ℓ [31], this
indicates that Jℓ = J−ℓ for even ℓ, and Jℓ = −J−ℓ for odd ℓ. We infer that for negative
winding numbers, both the current helicity density and total current helicity of the spin-up
state become opposite to the spin-down-state.
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Figure 1. The current helicity density of an infinite relativistic electron Bessel beam with (a) ℓ = 0,
(b) ℓ = 1, (c) ℓ = 10, (d) ℓ = −1, and (e) ℓ = −10. The radial oscillatory behaviour dominates at
larger radial distances for a higher winding number associated with a lower current helicity value.

In Figure 2, we see the two-dimensional distribution of the current helicity density,
which gives a clearer visualization of the difference between the two spin states. It is
also easy to deduce from Figure 2c,e that the distributions of ℓ = ±1 with the same spin
value cannot be described as mirror images of each other. The regions of low current
helicity density (shown in blue) in Figure 2c replace the high helicity density (bright yellow)
of the focal plane; however, their magnitudes are not identical. This is clearly shown
in Equation (10), in which the current helicity density relies on the spin states and sign
of ℓ. These findings confirm the chiral character of the relativistic electron vortex beam,
similar to what has been observed in the case of non-relativistic spin-polarized electron
vortex beams [23]. The choice of a lower value of the radial wave vector in this relativistic
treatment causes a larger radial spread for all the components of the field, and hence this
holds for the current and magnetic helicity densities compared to the non-relativistic case.
This is expressed by the multiplication of the radial wave vector and the radial distance ρ
in the argument of the Bessel function.

An integration across the full transverse plane yields the total current helicity per unit
length as

HC =
∫

S
B · (∇× B)ρdρdϕ, (11)
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where the integration over ϕ gives 2π. Using Mathematica’s Double Exponential Oscillatory
numerical integration approach, the total current helicity for each ℓ value was determined
for the range ℓ = −10 to ℓ = 10. These results are shown in Figure 3. Interestingly, we
find that for ℓ = 0, the spin contribution coming from relativistic effects prevents the total
helicity from being zero. The outcome is not wholly unexpected because the charge and
current distributions, which are what cause all of the physical effects in this work, have a
cylindrical symmetry. Therefore, the Jz eigenvalue along the z-axis, rather than the total
angular momentum J or OAM ℓ, is what matters in this situation. As the winding number
increases, the total current helicity increases for both spin states and is larger in the spin-up
state. The difference between the total current helicities of the two opposite spin relativistic
vortex beams is not constant and varies slightly as a function of the winding number ℓ.

Figure 2. The in-plane current helicity density distribution for an infinite relativistic electron Bessel
beam with (a) ℓ = 0, (c) ℓ = 1, (e) ℓ = −1, (g) ℓ = 10, and (i) ℓ = −10 in the case of spin-up. The
corresponding plots in the case of spin-down are illustrated for the winding number with (b) ℓ = 0,
(d) ℓ = 1, (f) ℓ = −1, (h) ℓ = 10, and (j) ℓ = −10.

Figure 3. The total current helicity for an infinite relativistic electron Bessel beam from ℓ = −10 to
ℓ = 10 in spin-up and spin-down states.
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3.2. Magnetic Helicity Density

The previously calculated magnetic field expressions in Equations (6) and (7) are used
in a direct evaluation of the vector potential of the relativistic electron vortex beam. These
magnetic field components are related to the vector potential components in the following
way in cylindrical coordinates:

B = −dAz

dρ
ϕ̂ +

1
ρ

d(ρAϕ)

dρ
ẑ. (12)

Inserting the relativistic magnetic field expressions, one obtains two differential equations:

dAz

dρ
= −

eN2
ℓ µ0h̄kc2 cos θ

Eρ

∫ ρ

0
J2
ℓ (k⊥ρ́)× ρ́dρ́, (13)

1
ρ

d(ρAϕ)

dρ
=

eN2
ℓ µ0h̄k⊥c2

E

∫ ∞

ρ
Jℓ(k⊥ρ́)Jℓ+2s(k⊥ρ́)dρ́, (14)

the last equation can be written as

dAϕ

dρ
+

Aϕ

ρ
=

eN2
ℓ µ0h̄k⊥c2

E

∫ ∞

ρ
Jℓ(k⊥ρ́)Jℓ+2s(k⊥ρ́)dρ́, (15)

where working out the integration, we find

dAϕ

dρ
+

Aϕ

ρ
=

eN2
ℓ µ0h̄c2

E



[
1
2 − 2F3[{ℓ+1,ℓ+ 3

2 };{ℓ+2,ℓ+2,2ℓ+2};−ρ2k2
⊥ ]4

−ℓ(ρk⊥)2ℓ+2

4Γ2(ℓ+2)

]
; if s = 1

2

[
1
2 − 2F3[{ℓ,ℓ+ 1

2 };{2ℓ,ℓ+1,ℓ+1};−ρ2k2
⊥ ]4

−ℓ(ρk⊥)2ℓ

Γ2(ℓ+1)

]
; if s = −1

2 .

(16)

Solving Equations (13) and (16) using Mathematica’s built-in function DSolve for the
solution of the first-order differential equations, we obtain

Aϕ(ρ) =
eN2

ℓ µ0h̄c2ρ

2k⊥E


[ 1

2 − 2 F̃3[{ℓ+ 1, 2ℓ+ 3
2}; {ℓ+ 2, 2ℓ+ 2, ℓ+ 3};

−ρ2k2
⊥]Γ(2 + 2ℓ)4−ℓ(ρk⊥)2ℓ+2]; if s = 1

2

[ 1
2 − 2 F̃3[{ℓ, ℓ+ 1

2}; {2ℓ, ℓ+ 1, ℓ+ 2};−ρ2k2
⊥]

Γ(2ℓ)4−ℓ(ρk⊥)2ℓ]; if s = −1
2

, (17)

Az(ρ) =
eµ0h̄|Nℓ|2kzc2ρ2

4E
[Jℓ−1(k⊥ρ)Jℓ+1(k⊥ρ)− J2

ℓ+1(k⊥ρ)− J2
ℓ (k⊥ρ) + Jℓ(k⊥ρ)Jℓ+2(k⊥ρ)

+ 4−ℓ(ρk⊥)2ℓΓ(2 + 2ℓ)2 F̃3[{1 + ℓ,
3
2
+ ℓ}; {2 + ℓ, 2 + ℓ, 2 + 2ℓ};−ρ2k2

⊥]].
(18)

where p F̃q[a1...ap; b1...bq; z] is the regularized hypergeometric function. In Appendix A we
show that this set of vector potential components satisfies the Coulomb gauge condition
∇ · A = 0. We can test that they reproduce the correct magnetic field components by taking
the curl of the vector potential in cylindrical coordinates.

After substituting them into the magnetic helicity density given in Equation (9), we
can generate Figures 4 and 5, which show the densities and their distribution for winding
numbers ℓ = 0,±1 and ±10. In case of a zero winding number, the spin-up magnetic
helicity is the inverse of the spin-down magnetic helicity; however, for a given non-zero
OAM, the spin-down Bessel vortex beam’s magnetic helicity is always smaller than the spin-
up Bessel vortex beam’s, and the difference between the two becomes smaller with larger ℓ
values. Increasing the winding number will increase the magnetic helicity density value
and radial extend of the region around the vortex core, where the helicity density is zero.
All these features were observed in the magnetic helicity density associated with the non-
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relativistic spin-polarized electron vortex beam [23]. As we pointed out in the discussion
about current helicity, the difference is related to their current density expressions and
chosen values for the wave vector components.

Figure 4. The magnetic helicity density of an infinite relativistic electron Bessel beam with (a) ℓ = 0,
(b) ℓ = 1, (c) ℓ = 10, (d) ℓ = −1, and (e) ℓ = −10. The difference between the magnetic helicity
densities of the two spin states is clearly demonstrated. The height of the first peak increases for
higher values of ℓ.

Figure 5. The in-plane magnetic helicity density distribution for an infinite relativistic electron Bessel
beam with (a) ℓ = 0, (c) ℓ = 1, (e) ℓ = −1, (g) ℓ = 10, and (i) ℓ = −10 in the case of spin-up. The
corresponding plots in the case of spin-down are illustrated for the winding number with (b) ℓ = 0,
(d) ℓ = 1, (f) ℓ = −1, (h) ℓ = 10, and (j) ℓ = −10.
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4. Non-Relativistic Limit

The energy–momentum relation is given by E2 = p2c2 + m2c4, where m is the rest
mass or invariant mass for an electron; this expression reduces to E = mc2 in the low
velocities limit (p → 0) [24]. Accordingly, the previous magnetic field expressions in
Equations (6) and (7) take the form

Bϕ(ρ) =
eN2

ℓ µ0h̄kz

meρ

∫ ρ

0
J2
ℓ (k⊥ρ′)× ρ′dρ′, (19)

Bz(ρ) =
eN2

ℓ µ0h̄k⊥
me

∫ ∞

ρ
Jℓ(k⊥ρ′)Jℓ+2s(k⊥ρ′)dρ′. (20)

The value kz = 2.3× 1012 m−1 for the longitudinal momentum is utilized in the numer-
ical evaluation that follows. This value corresponds to an accelerating voltage of 300 keV,
which is typical for electron microscopes used in electron vortex beam experiments [2].
The transverse wave vector component k⊥ was assumed to be two orders of magnitude
larger than the transverse wave vector component k⊥, or 2.3× 1010 m−1 [5]. By substituting
the magnetic field expressions in the non-relativistic limit (Equations (19) and (20)) in
the current helicity density given in Equation (8), we obtained the results illustrated in
Figure 6 for ℓ = 0, 1 and 10. These plots are exactly the same as the corresponding plots
found previously in the case of non-relativistic spin-polarized electron vortex beams [23].
A similar results is expected for the magnetic helicity density plots in the non-relativistic
limit. Since the magnetic helicity density is derived from vector potential components
that are obtained from the magnetic field, their plots in the non-relativistic limit will agree
with the ones taken for the non-relativistic spin-polarized electron vortex beams. Our
numerical work has shown that if we obtain the formalism of the non-relativistic case, use
the relativistic values for kz, k⊥, and then instead of the electron mass we use its invariant
mass expression, then the results we obtain will be identical to the ones we have in this
paper. This is a clear indication that the mass increase that occurs in the relativistic velocities
is responsible for the reduction in the calculated quantities compared to the ones in the
non-relativistic regime.

Figure 6. The current helicity density of an infinite relativistic electron Bessel beam with (a) ℓ = 0,
(b) ℓ = 1, and (c) ℓ = 10 within the limit of small velocities.
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5. Conclusions

In summary, to the best of our knowledge, we have, for the first time, investigated
the magnetic and current helicity densities of magnetic fields associated with a Bessel-type
relativistic electron vortex beam. Their dependence on the winding number of the electron
vortex beam was highlighted. It was found that the azimuthal magnetic field component of
the relativistic Bessel beam is the same as that of the non-relativistic one, while different
axial magnetic field values were observed for the two spin states. This caused a difference in
the magnetic and current helicity density results associated with the spin-up and spin-down
relativistic electron vortex beams, which are shown in the corresponding plots in agreement
with what was previously found in the case of non-relativistic spin-polarized electron
vortex beams [23]. We must point out that the resulting values of the relativistic current
helicity density are about three orders of magnitude lower compared to the non-relativistic
ones. However taking the non-relativistic limit of the magnetic field expressions together
with the assumption that the transverse wave vector component is two orders of magnitude
smaller than the axial wave vector (which is used in the non-relativistic treatment), lead
us to assume that the current and magnetic helicity density plots are identical to those
obtained for a non-relativistic treatment of a spin-polarized electron vortex beam.

By comparing the distribution plots for opposite winding numbers, we have demon-
strated that the fields associated with relativistic electron vortex beams have helicity and
exhibit chirality. In terms of helicity, there has been a lot of work published in recent years
investigating novel optical forces that can arise when a chiral particle is exposed to a chiral
light field. These new forces depend on the chirality of the optical field that produces them,
as well as the chirality of the system they act upon [32]. Furthermore, since the electron
vortex fields are chiral, chiral materials can be identified and analyzed, yielding details on
their spatial organization, structural characteristics, and possible biological or chemical
activities. Furthermore, advances in quantum computing and communications may result
from the encoding and processing of quantum information via chirality. To completely
comprehend and make use of the potential of these chiral characteristics, more research
and experimental studies are required.

In our work, we have also derived an expression for the vector potential components
to investigate the magnetic helicity density. We showed that when the the winding number
is increased, the position of the first peak of the current helicity density is shifted towards a
larger radial distance and increase in value. We also calculated the total current helicity and
emphasised that the spin-up total helicity equal minus that of the spin-down for opposite
winding numbers. The helicities for various spin values will converges when ℓ increases,
this suggests that when the OAM increases, its contribution to the current density becomes
more and more dominant over the one which stems from the electron spin.

Finally, it is interesting to discuss our findings about the helicity of electron vortices
that have half-integer spin compared with their respective counterparts for optical vortices
with integer spin. As has been showed in recent work [33], the total helicity of a circularly
polarized optical vortex beam is proportional to the optical spin σ and depends on the
absolute value of the winding number |ℓ|. As a result, the sign of the total helicity is
determined solely by the sign of the spin of the beam. In an electron vortex beam, the
total helicity of the magnetic field depends both on the winding number ℓ and the spin,
as is clearly shown in Figure 3. Moreover, the total helicity of an optical vortex is only
different than zero when the beam is strongly focused and its electromagnetic field contains
a longitudinal component of magnitude considerable to the transverse ones. We believe
that these findings could contribute to a better understanding of half-spin vortex beams.
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Appendix A

We expanded the vector potential divergence in cylindrical coordinates by(
1
ρ

∂

∂ρ

(
ρ

∂

∂ρ

))
Aρ +

1
ρ

∂

∂ϕ
Aϕ +

∂

∂z
Az. (A1)

We have the zero radial component of the vector potential as it appears from Aϕ and
Az given in Equations (17) and (18); they are only functions of ρ, so the second and third
terms vanish. The cylindrical symmetry of the problem imposes that the vector potential,
concerning the magnetic and electric fields, does not depend upon ϕ or z to be consistent
with the components of the magnetic field, and therefore the vector potential has the same
dependence as the current density [34]. Hence, the Coulomb gauge ∇ · A = 0 holds.
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