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Abstract: The interactions between topology and algebraic geometry expose various interesting
properties. This paper proposes the deformations of topological n-manifolds over the automorphic
polynomial ring maps and associated isomorphic imbedding of locally flat submanifolds within the n-
manifolds. The manifold deformations include topologically homeomorphic bending of submanifolds
at multiple directions under algebraic operations. This paper introduces the concept of a topological
equivalence class of manifolds and the associated equivalent class of polynomials in a real ring. The
concepts of algebraic compositions in a real polynomial ring and the resulting topological properties
(homeomorphism, isomorphism and deformation) of manifolds under algebraic compositions are
introduced. It is shown that a set of ideals in a polynomial ring generates manifolds retaining
topological isomorphism under algebraic compositions. The numerical simulations are presented
in this paper to illustrate the interplay of topological properties and the respective real algebraic
sets generated by polynomials in a ring within affine 3-spaces. It is shown that the coefficients of
polynomials generated by a periodic smooth function can induce mirror symmetry in manifolds. The
proposed formulations do not consider the simplectic class of manifolds and associated quantizable
deformations. However, the proposed formulations preserve the properties of Nash representations
of real algebraic manifolds including Nash isomorphism.
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1. Introduction

The studies about algebraic forms of manifolds often require the elements of algebraic
geometry and topology to gain deeper understandings. For example, the compact real
algebraic n-manifolds are formulated over the polynomial ring R[x1, x2, . . . . . . , xn], where
the real algebraic field R is considered as closed. The topological properties of real mani-
folds consider that the manifolds are the real algebraic varieties, and Seifert illustrated that
such real algebraic manifolds can be approximated by a normal product bundle [1]. Nash
generalized these results further by assuming that the associated real algebraic varieties are
non-singular, and the topologies of the manifolds are compact, indicating that such real alge-
braic manifolds are embeddable in the topological spaces of higher dimensions [1,2]. Nash
considered that the algebraic zero-set Zr( f ) of f ∈ R[x1, x2, . . . . . . , xn] is Zariski closed,
and the resulting real algebraic manifolds are analytic as well as topologically connected,
admitting homeomorphism of real algebraic manifolds. On the other hand, it is shown that,
in the case of closed complex algebraic field C, the polynomials f , g ∈ C[x1, x2, . . . . . . , xn]
are topologically equivalent if they maintain isolated singularities, and one can be de-
formed into the other by applying polynomial function h : Cn → C in the complex field [3].
Interestingly, the topology of complex algebraic curves with isolated singularities and their
deformations can be studied by employing the irreducible real algebraic polynomials. For
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example, if h : C2 → C is holomorphic with germ at (0, 0)i ∈ C2 and h((0, 0)i) = 0i has
isolated singularity at (0, 0)i, then the germ of the function can be viewed as a product of

real algebraic polynomials, and it admits the deformations class
{

hD(t) ∈ R[x, y] : t ∈ [0, 1]
}

of real algebraic polynomials within a small neighborhood at zero [4]. Note that the topo-
logical deformations may not always preserve the class of manifolds. Earlier, it was shown
that, in the case of compact as well as complex analytic manifolds in the p-Kähler class, any
small deformation results in the formation of a non-p-Kähler class of manifolds [5]. In other
words, the topological deformations of manifolds are not stability invariant in all cases.

1.1. Preliminaries

Let us review the notions of topological deformation of spaces, imbedding and the
isotopy in an n-manifold denoted as Mn. First, we present the concept of topological
deformation in the general form [6].

Definition 1. Let a topological space be given as X = A ∪ B. The topological deformation of
set A into set B is given by θ : A × I → X such that θ

∣∣∣A×{0} = IdA and θ(A × {1}) ⊂ B,
where IdA is the respective identity function.

If we consider a topological n-manifold Mn and the subspace E ⊂ Mn, then the proper
imbedding of E into Mn is defined as follows [6].

Definition 2. If the injective function iimb : E → Mn is an imbedding, then it is proper if
i−1
imb(∂Mn) = E ∩ ∂Mn.

This leads to the definition of the formation of the isotopy class and smooth imbedding,
which is stated as follows, considering a family of imbedding [6,7].

Definition 3. If
{

iimb(t) : E → Mn : t ∈ [0, 1]
}

is a set of imbedding, then it forms the isotopy
of E in Mn if iimb(t)(x ∈ E) = h(x, t) is continuous, where h : E × [0, 1] → Mn is also continu-
ous. Moreover, if E is a simplicial complex equipped with f : E → R3 , then f (.) is piecewise-smooth
if it is piecewise-smooth for each simplex ∆ ⊂ E.

Remark 1. The isotopy of a locally flat submanifold can be suitably extended under covering maps if
the locally flat submanifold is isomorphic to the corresponding proper imbedding and the respective
submanifold is compact. Furthermore, two simplicial embeddings are isotopic if there is an isotopic
homeomorphism maintaining Haefliger–Wu conditions [7].

Let M3 be a compact 3-manifold with the incompressible boundary ∂M3. The de-
formation of M3, generating a hyperbolic topological space DH(M3), retains the local
connectedness at parabolic points [8]. Note that M3 and DH(M3) are in the homotopy
equivalence class. Moreover, the retention of local connectivity within (DH(M3))

o requires
that the fibrations must not be separated. However, the deformation of topological mani-
fold M3 invites the formation of topological bumping. The formations of topological bumping
due to deformation are first uncovered by Anderson and Canary [9]. The definition of
bumping in a topological manifold due to deformation is presented as follows [8,9].

Definition 4. Let DH(M3) be a topologically deformed manifold and the set {A, B} ⊂ (DH(M3))
o

be representing two locally connected components. The component set is defined to be topologically
bumped at p ∈ ∂DH(M3) if p ∈ A ∩ B.

The characterization of manifold components in (DH(M3))
o is presented showing that

the topological bump occurs in M3 under deformation if it has incompressible ∂M3 [10]. Note
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that, if the deformation of M3 does not produce any topological bump at p ∈ ∂DH(M3), then
it is a topological rigid point. This leads to the following theorem [8].

Theorem 1. Let M3 be a compact 3-manifold such that it preserves the non-cylindrical
Hom(M3, S × I) property for a surface S. If the point p ∈ ∂DH(M3) is rigid, then there is
no bump at that point.

The proof of the theorem is presented in detail in [8]. Interestingly, if we consider that
p ∈ Mn ⊂ Cn is a point on an n-manifold Mn generated in complex affine n-space, then
for all p ∈ Mn, the neighborhoods N(p) are locally connected and locally homeomorphic
real algebraic submanifolds [11]. This observation topologically bridges between the real
algebraic varieties as manifolds and the holomorphic complex affine spaces.

1.2. Motivations

The varying degrees of deformations of topological manifolds retaining stabilities
as well as homeomorphisms have applications in various domains of sciences, and they
are largely dependent on the class of manifolds [12–15]. It was mentioned earlier that a
topological manifold can be viewed as a real algebraic variety, and the topological manifolds
can be formed over a special class of polynomials, called simplicial polynomials, in a real
polynomial ring [1,16]. On the other hand, a real algebraic manifold can also be viewed
as a topologically connected sheet of real algebraic variety, allowing for the formations of
cusps and self-intersections [2]. Nash proposed that a proper representation of a real algebraic
manifold needs the isolated sheet, and the isomorphic ring map λ : RA → RB between two
rings can induce homeomorphism between the respective two real algebraic manifolds
of analytic types [2]. On the other hand, in a complex field, the weighted homogeneous
polynomials in a ring form manifolds involving the isolated singularities [17]. Interestingly,
the manifold deformation has a relationship with algebraic power series and ∗ − product
operations. For example, if Mn is a simplectic n-manifold admitting the corresponding
deformation algebra A = C∞(Mn) on the respective manifold, then AD(A, v) forms the
space of all algebraic power series with the complex variable v, and the coefficients are in
A = C∞(Mn), employing algebraic ∗ − product and Poisson brackets [18]. Let us consider
a pair of n-manifolds given as (Mn, E ⊂ Mn), where E is locally flat. It was shown earlier
that the closure of imbedding iemb : (U ⊂ Mn) → Mn preserves the isomorphism property
denoted as Isom((U ∩ E), (B ⊂ E)) within the manifold, maintaining the corresponding
isotopy class [6]. These observations motivate us to ask the following questions. (1) How
can we generalize the topological deformation of manifolds, considering the bending and folding
of manifolds over a polynomial ring? (2) What are the roles of automorphic ring maps in forming
topological deformations of manifolds? (3) What are the different classes of axial symmetries
generated during the deformations and is there any formation of a topologically equivalent class of
polynomials, if any? This paper addresses these questions in relative detail by combining the
elements of algebraic geometry and topology, considering the real algebraic sets and real
polynomial rings.

1.3. Contributions

This paper proposes the formulations of topological n-manifolds over the polyno-
mial ring, considering real field and its deformations, by employing the concept of au-
tomorphic ring map. The topological deformations of n-manifolds include bending of
submanifolds at multiple directions under algebraic compositions. The proposed for-
mulation admits the isomorphic embeddings of locally flat submanifold E of manifold M
under the algebraic zero-set Zr(I(E)) of the corresponding ideals I(E). The locally flat
submanifold E preserves the isomorphism property given as Isom(X, Zr(I(M)), where
(X ⊂ M) = ∩

i
Zr((γ ◦ vs)({ fi} ⊂ I(M))) is a local submanifold agreeing with E and the

composition (γ ◦ vs) is an automorphic ring map in F[x1, x2, . . . . . . , xn] over closed real
field (details are presented in the following sections). Note that, as a distinction, the pro-
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posed formulations of n-manifold deformations do not assume that the manifold is in
the simplectic class, and the quantizable deformation is not considered by forming any
complex power series over the manifold. In this paper, the proposed formulations employ
a generalized approach by using polynomial rings over the real algebraic field and the
associated automorphic ring maps inducing manifold deformations. Moreover, the pro-
posed formulations preserve the topological homeomorphism of the deformed manifolds
in all cases and admit embeddable submanifolds, which are the Zariski closed algebraic
sets. We preserve the concept of Nash representation of a real algebraic manifold by allowing
for two aspects of it: (1) the formation of topologically connected sheets, where each component
of the connected sheet can have representation of respective isolated sheet, and (2) employment of
commutative ring automorphism as a modified form of Nash isomorphism λ : RA → RB between
two rings, generating the equivalence class of real algebraic manifolds (MA, RA) and (MB, RB).
Moreover, the preservation of topological homeomorphism under deformations in the
proposed formulations admits the notion of the Hom(MA, MB) property of analytic mani-
folds, as pointed out by Nash, under the ring-isomorphism. Furthermore, we introduce
the concept of a topological equivalence class of real algebraic polynomials and real algebraic
sets without considering singularities, and we show, through the numerical simulations,
the existence of such a class under algebraic composition operations forming isomorphic
manifolds. The numerical simulations show the formations of multiple axes of symmetries
during the topological deformations of manifolds retaining isomorphisms and homeomor-
phisms. The interrelationships between PL-homeomorphism, self-homeomorphism, mirror
symmetries and the formation of characteristic polynomials of the graph structures with
varying symmetries (along with the applicational aspects) are explained in brief.

The rest of the paper is organized as follows. The concepts and definitions of the
topological equivalence class and the automorphic ring maps are presented in Section 2.
The formations of topological manifolds over the polynomial ring maps, their deformations
and the concept of algebraic compositions over topological manifolds are presented in
Section 3. The details about the numerical simulations are illustrated in Section 4. The
PL-homeomorphism, self-homeomorphism with mirror symmetries and the applicational
aspects of characteristic polynomials of graphs are illustrated in Section 5. Finally, Section 6
concludes the paper.

2. Automorphic Ring Maps and Topological Equivalence

Let us consider a polynomial ring F[x1, x2, . . . . . . , xn] over the closed real algebraic
field F and a ring automorphism γ : F[x1, x2, . . . . . . , xn] → F[x1, x2, . . . . . . , xn] such that
γ(En(F) ⊆ F[x1, x2, . . . . . . , xn]) ⊂ En(F) condition is admitted. Suppose we consider a
selection function vs : F[x1, x2, . . . . . . , xn] → F[x1, x2, . . . . . . , xn] by following the principles
of axioms of choice in the polynomial ring. The resulting definition of the polynomial ring
map is given as follows.

Definition 5. If F[x1, x2, . . . . . . , xn] is a polynomial ring over the respective closed algebraic field
admitting automorphism γ(.) and vs : F[x1, x2, . . . . . . , xn] → F[x1, x2, . . . . . . , xn] is a unique
selection function for every f ∈ En(F) ⊆ F[x1, x2, . . . . . . , xn], then (γ ◦ vs) = (vs ◦ γ) is an
automorphic ring map such that the following diagram commutes (see Figure 1):
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Note that the automorphic ring map (vs ◦ γ)(En(F)) preserves the dimensionality
within the respective polynomial ring; however, the degrees of polynomials can vary under
automorphic ring maps.

Remark 2. The preservation of dimensionality allows for the uniformity and homogeneity of the
ring map. If we consider a topologically affine n-space An(F) and (x1, x2, . . . . . . , xn) ∈ An(F),
then the automorphic ring map admits the following condition:

w : F → F,
γ({ f }) = {g},
(w ◦ f )(x1, x2, . . . . . . , xn) = g(x1, x2, . . . . . . , xn).

(1)

Example 1. We present a set of examples by considering the varying dimensionalities. First,
we present the polynomial p ∈ E ⊂ R[x] and its forms, considering one dimension under
two ring maps generating {q1, q2} ⊂ E as illustrated in Figures 2–4. Note that we have
fixed deg(p) = 1 and deg(q1) = deg(q2) = 2.
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Next, we increase the dimensionality such that p ∈ E2 ⊂ R[x, y], and the results of the ring maps
are illustrated in Figures 5–7 as follows. Note that the polynomials have deg(p) = deg(q2) = 3
and deg(q1) = 2.
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It is interesting to note that, in all cases, the algebraic ring maps preserve the topological
property of homeomorphisms in various dimensionalities. In some cases, the manifolds are
isomorphic in nature. This shows that topological properties are retained in some cases even
if the real algebraic sets generated by the ring maps vary to some extent. As a consequence,
this invites the concept of a topological equivalence class of manifolds and the associated poly-
nomials in a ring. The following definition presents the concept of a topological equivalence
class of polynomials generated by the corresponding real algebraic sets.

Definition 6. If f , g ∈ F[x1, x2, . . . . . . , xn] are two polynomials with deg( f ) ̸= deg(g) over
a closed field, then [ f ] = [g] = { f , g} is a topological equivalence class if the respective mani-
folds Mn( f ) and Mn(g) admit the Isom(Zr( f ), Zr(g)) property.

Note that the topological equivalence class of polynomials depends on the isomor-
phism property, which is relatively stronger than homeomorphism. As a result, the isomor-
phic manifolds representing the corresponding real algebraic sets are also in the topological
equivalence class of manifolds. The existence of the topological equivalence class of poly-
nomials is illustrated in detail through the numerical simulations as presented in the
Numerical Simulation section (Section 4) of this paper.

3. Deformations of Topological Manifolds over Rings

In this section, we present the definitions and properties of real algebraic sets rep-
resenting the respective topological manifolds and their deformations. Recall that the
topological manifolds are generated retaining the homeomorphism property, irrespective
of varying dimensionalities. Let us consider a polynomial f ∈ F[x1, x2, . . . . . . , xn] such that

it can be decomposed into f =
3

∏
i=1

pi, where pi ∈ F[x1, x2, . . . . . . , xn]. Thus, it preserves

the algebraic zero-set as Zr( f ) = ∪
i
Zr(pi). This leads to the formation of a topological

n-manifold and associated conditions, which are defined in the following section.

3.1. Definitions

First, we present the definition of formation of real algebraic manifolds in affine
topological spaces.
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Definition 7. Let us consider a topological affine space An(F) generated by [−a, a]n and a ∈ F .
If Zr( f ) ⊂ An(F) condition is maintained such that deg(pi) ≤ m, then Mn(±a, f ) is a topologi-
cal n-manifold generated by Zr( f ) in An(F).

We can form another topological manifold over the polynomial ring F[x1, x2, . . . . . . , xn]
with the employment of an automorphic ring map. This is called an image n-manifold, which
is defined as follows.

Definition 8. Let us consider a topological affine space An(F) and two polynomials such that
f , g ∈ F[x1, x2, . . . . . . , xn]. If the polynomial (vs ◦ γ)(En) ⊂ F[x1, x2, . . . , xn] = {g} is decom-

posable as g =
3

∏
i=1

qi, then it generates an image n-manifold denoted as Mn(±a, g) in An(F) if the

following conditions are maintained:

(γ ◦ vs)({p1}) = {q1},
(γ ◦ vs)({p3}) = {q3},
(Zr( f ) ∩ Zr(g)) = (Zr(p2) ∼= Zr(q2)).

(2)

Note that the decomposability of a set of polynomials in the ring is a necessary
condition to form an image manifold under the suitable ring map. Moreover, it is interesting
to note that an algebraic composition operation, denoted by ⊕, can be formulated considering
Zr( f ) and Zr(g) along with the automorphic ring map (vs ◦ γ). The definition of algebraic
composition operation is presented as follows.

Definition 9. If f , g ∈ F[x1, x2, . . . , xn] are decomposable such that (vs ◦ γ)(En) = {g} and the
corresponding algebraic zero-sets are Zr( f ) = ∪

i
Zr(pi) and Zr(g) = ∪

i
Zr(qi), then the algebraic

composition operation ⊕ is defined as Zr( f ⊕ g) = Zr(p1 + q1) ∪ Zr(p3 + q3) ∪ Zr(p2 = q2) .

It is important to note that the algebraic composition operation under the automorphic
ring map within a polynomial ring considers that the participating polynomials in the
composition operation are decomposable into multiple irreducible components.

3.2. Topological and Algebraic Properties

This section presents the topological as well as algebraic properties of the proposed
concepts and formulations. First, we show that two topological n-manifolds can be com-
bined into a composite n-manifold through the algebraic composition operations in the set
of corresponding polynomials in the real ring.

Theorem 2. If Mn(±a, f ) and Mn(±a, g) are two topological manifolds over the polynomial
ring, then Mn(±a, f ⊕ g) is also a topological manifold in an affine An(F), and it is a composite
topological manifold.

Proof. Let Mn(±a, f ) and Mn(±a, g) be two topological n-manifolds generated over the re-
spective polynomial ring in Kn ⊂ An(F). If the polynomials f , g ∈ F[x1, x2, . . . , xn] are decom-
posable, then the respective ideals are {pi, qi} ⊂ I(Kn) and, as a result, {pi + qi : i = 1, 3} ⊂
I(Kn) are also ideals. Note that the respective algebraic zero-sets maintain the condition that
∩
i
Zr(B) = (Zr(p2) ∼= Zr(q2)), where B = {pi : i = 1, 2, 3} ∪ {qi : i = 1, 2, 3}. Thus, the com-

posed algebraic curve represented by ( f ⊕ g) = (p1 + q1).(p2).(p3 + q3) preserves the condition
that ( f ⊕ g) ∈ I(Kn). Hence, the structure Mn(±a, f ⊕ g) is also a manifold in An(F). □

Note that the formations of composite n-manifolds from multiple real algebraic sets do
not always require the automorphic ring maps for each and every irreducible component. In
other words, we can consider that (γ ◦ vs)(.) is invariant for some irreducible components
representing prime ideals. It leads to the following corollary.
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Corollary 1. In each of the topological manifolds A1 = Mn(±a, f ), A2 = Mn(±a, g) and
A3 = Mn(±a, f ⊕ g), the Zariski closed topological subspace ∩

i
Zr(Ai) is an algebraic variety

representing the submanifold under invariant (γ ◦ vs)(h) for h ∈ F[x1, x2, . . . , xn] under the ring
map, where h|( f ⊕ g) .

The proof of the corollary is relatively straightforward, and we present a set of exam-
ples accordingly in the Numerical Simulations section (Section 4). The concept of locally flat
imbedding of a manifold and the isotopy class can be preserved in the proposed formula-
tions. The following theorem illustrates that the isomorphic embedding within a manifold
is admissible considering the respective real algebraic sets. Moreover, such isomorphic
embedding is invariant to the automorphic ring map.

Theorem 3. Let E be an affine Zariski topological space, and consider Bt ⊂ E × [0, 1] for t ∈ [0, 1].
There is an isomorphic embedding iem : Bt → Mo , where M ∈ D, and
D = {Mn(±a, f ), Mn(±a, g), Mn(±a, f ⊕ g)} is a set of real algebraic manifolds.

Proof. Let us consider a set of real algebraic manifolds given by
D = {Mn(±a, f ), Mn(±a, g), Mn(±a, f ⊕ g)} and the corresponding algebraic set
H = (Zr( f ) ∩ Zr(g) ∩ Zr( f ⊕ g)). This indicates that H ⊂ Mo, where M ∈ D. If we con-
sider an affine Zariski topological space E such that Isom(Eo, Ho) isomorphism is preserved,
then it admits the isomorphic embedding iem : Bt → Mo , where Bt ⊂ Eo × {t ∈ [0, 1]}. □

The formation of a composite n-manifold can be considered as a topological deformation
of the participating real algebraic sets. This observation is presented in the following lemma.

Lemma 1. The composite manifold Mn(±a, f ⊕ g) is a topological deformation of Mn(±a, f )
and Mn(±a, g) over the respective polynomial ring.

Proof. Note that Zr(pi + qi) is not isomorphic to Zr(pi) and Zr(qi) for i = 1, 3. Thus,
the composite n-manifold Mn(±a, f ⊕ g) is a topological deformation of Mn(±a, f ) and
Mn(±a, g). □

4. Numerical Simulations

In this section, we present the formation of topological manifolds over the polynomial
ring maps, and the associated manifold deformations are formed through the algebraic
composition operations as well as ring maps. The manifolds are numerically simulated
in the topological product space R3 such that ([−a, a] ⊂ R) = [−10, 10]. We present the
results of the numerical simulations considering three distinct cases.

4.1. Case I: Considering R[x]

First, we consider that the polynomial rings are formed over closed real field such that
dim(pi) = 1 for pi ∈ R[x]. Note that we are not restricting the deg(pi). The formations
of topological manifolds for various polynomials in a ring due to the applications of ring
maps are illustrated in Figures 8 and 9.
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Figure 9. The topological manifold of p2(x) = (x2 + 3)(x + 1)(x − 5).

The formation of a composite topological manifold under automorphic ring maps
and the algebraic composition operation is presented in Figure 10. Note that each of the
topological manifolds is topologically homeomorphic, and the composite manifold given
in Figure 10 is isomorphic to the topological manifold given in Figure 9.
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Figure 10. The topological manifold of p1(x)⊕ p2(x).

It indicates that the composite 1-manifold is capable of retaining the isomorphism of
one of the real algebraic sets under ring maps, and it is topologically homeomorphic to the
other one.

4.2. Case II: Considering R[x, y]

In this set of experiments, we increase the dimensionality while preserving the ring
over the closed field of reals. The formations of the resulting topological manifolds with
deg(pi) > 1 are illustrated in Figures 11 and 12. Note that the respective manifolds have
different proportions of topological bending retaining the homeomorphism property.
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It is interesting to observe, considering Figures 11 and 12, that the 2-manifolds are
homeomorphic and not isomorphic. The formation of a composite topological manifold
under ring maps and algebraic composition operation is illustrated in Figure 13.
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Figure 13. The topological manifold of p1(x, y)⊕ p2(x, y).

Note that the topological deformations are pronounced in this case due to the applica-
tions of ring maps and algebraic composition operations in two dimensions. Interestingly,
the composite manifold is homeomorphic and not isomorphic in this case, which is a
different result as compared to one dimension. Moreover, note that the manifolds admit
the locally flat submanifolds in all cases.

4.3. Case III: Considering R[x, y] with Higher Degrees of Polynomials

In this set of experiments, we maintain the algebraic field and dimensionality unaltered.
However, we considerably increase the degrees of the polynomials forming the correspond-
ing algebraic zero-sets. The topological manifolds participating in algebraic composition
operations are illustrated in Figures 14 and 15. Note that the manifolds are not isomorphic.
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Figure 15. The topological manifold of p2(x, y) = (xy + 1)(x3 + x4y5 + 1)(y3 − 2).

The effects of the ring maps and algebraic composition operation are pronounced within
the resulting composite 2-manifold. The composite manifold is illustrated in Figure 16.
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Figure 16. The topological manifold of p1(x, y)⊕ p2(x, y).

It is interesting to note that the higher degrees of topological deformations are in-
duced in the manifold given in Figure 16 as compared to the manifold given in Figure 13.
However, the deformed 2-manifolds retain the homeomorphism property and topological
connectedness within the manifolds. This illustrates the resulting topological effects due
to the increase in degrees of polynomials in a real algebraic ring in two dimensions. Fur-
thermore, the deformed manifolds preserve locally flat submanifolds irrespective of the
varying degrees of the polynomials in a ring.

4.4. Case IV: Topological Equivalence of Manifolds and Polynomials

In this section, we compare the topological structures of two manifolds under de-
formations generated by two different sets of polynomials with varying dimensions and
degrees. We show the retention of isomorphism property under the algebraic composition
operation. Consider two real algebraic zero-sets by considering Zr(p1(x)⊕ p2(x)) and
Zr(p1(x, y) ⊕ p2(x, y)) as presented in Figures 10 and 16, respectively. Note that both
admit locally flat submanifolds at different dimensions. Next, we simulate the topolog-
ical 2-manifold generated by Zr(p1(x)⊕ p2(x)) ∪ Zr(p1(x, y)⊕ p2(x, y)) by combining
the respective submanifolds under the algebraic composition operation. The resulting
isomorphic manifolds are presented in Figure 17. The results illustrate that the manifolds
generated by {(p1(x, y)⊕ p2(x, y)), ((p1(x)⊕ p2(x)).(p1(x, y)⊕ p2(x, y)))} ⊂ R[x, y] are
topologically isomorphic under the respective algebraic composition operations, where
(p1(x)⊕ p2(x)) ∈ R[x].
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Interestingly, the topological deformations generate multiple axes of symmetries within
the composite and deformed manifolds. Moreover, the mixed-axial symmetries of the com-
posite manifolds under deformations are preserved, illustrating that the respective two sets of
polynomials in a ring are topologically equivalent under algebraic compositions generating
isomorphic topological manifolds. Thus, we can consider that the manifolds presented in
Figure 17 are in a topologically equivalent class of manifolds, and the respective polynomials
are also in an equivalence class within the polynomial ring under automorphic ring maps.
Furthermore, the results illustrate that the real algebraic varieties of higher degrees generating
locally flat submanifolds are invariant under algebraic composition operations.



Symmetry 2024, 16, 556 12 of 14

Remark 3. It is important to note that a topological equivalence class of manifolds is sensitive to
the coefficients of the monomials. If an algebraic variety is irreducible, then the periodically varying
coefficients can induce an equivalence class of manifolds or a set of manifolds with mirror symmetry
depending upon the values of the coefficients under periodic smooth functions. This observation is
presented in Figures 18–20.
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5. PL-Homeomorphism, Self-Homeomorphism and Applicational Aspects

In this section, we consider the PL-homeomorphism and associated self-homeomorphic
functions in general forms and the incorporation of mirror symmetry by topological defor-
mations of manifolds. We briefly indicate the interrelationships between the characteristic
polynomials of graphs, symmetries and the potential applicational aspects. Earlier, it was
shown that the PL-homeomorphism and self-homeomorphism of a topological manifold
cannot be considered as equivalent [19]. For example, the smooth and non-singular self-
homeomorphism of the function f (x) = x + (1/4)e−x−2

sin(1/x) represents a line with
infinitely many isolated fixed points near origin as illustrated in Figure 21.
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However, the multiplicative inclusion of a smooth periodic function into the cor-
responding self-homeomorphic function can induce mirror symmetry in the resulting
topological manifold as illustrated in Figure 22. Note that, in this case, the function f (x) is
not in a standard polynomial form.
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Figure 22. Induced mirror symmetry in topological manifold of sin(x) f (x).

Finally, this is to note that there is an interrelationship between polynomials and
graphs with several applications. The derivation of a characteristic polynomial from a
graph is an interesting concept. If a graph is given as G = (V, E), then the characteristic
polynomial associated to the respective graph can be derived from the adjacency matrix
A(G) of the graph [20]. Interestingly, the roots of a characteristic polynomial of a graph
G = (V, E) are the eigenvalues of the graph. Moreover, if the graph G = (V, E) is a
symmetric graph, then it admits semi-free actions of Abelian groups [20]. In other words,
the symmetry or asymmetry of the graph structures affects the properties of the associated
characteristic polynomials. In the views of applicational aspects involving the characteristic
polynomials, symmetries and graphs in the domain of chemical sciences, the molecules
can be represented in numerical forms representing the underlying graph structures with
varying symmetries, and the chemical properties of the molecules vary accordingly [21,22].

6. Conclusions

The formations of algebraic varieties representing topological n-manifolds over a set of
polynomials in a polynomial ring allow for the homeomorphic deformation of n-manifolds
in an affine topological space. The notions of automorphic ring maps and the algebraic
composition operation within a set of polynomials in a ring admit the corresponding man-
ifold composition from a set of manifolds, and it induces the resulting deformations of
manifolds within the composite manifolds. The deformations include topological bending
of submanifolds at multiple directions while retaining the isomorphic embedding of a
locally flat submanifold. The Nash isomorphism of manifolds is admissible in the proposed
formulations. One of the reasons is that the proposed concept of a topologically equivalent
class of polynomials gives rise to a set of isomorphic topological n-manifolds, where such
a set of n-manifolds can be considered as a topological equivalence class of n-manifolds.
The numerical simulations exhibit the topological deformations of the 1-manifolds and
2-manifolds in various forms, preserving homeomorphism and isomorphism under al-
gebraic composition operations. It is important to note that the proposed formulations
do not consider formations of singularities within the real algebraic sets, indicating that
an n-manifold can be imbedded in a topological (n+1)-space. Moreover, the proposed
formulations are generalized in nature without being specifically restricted to the simplectic
class of topological manifolds.
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