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Abstract: Lorentz invariance underlies special relativity, and the energy formula and relative velocity
formula are well known to be invariant under a Lorentz transformation. Here, we determine the
functional forms in terms of four arbitrary functions for those three dimensional velocity fields that
are automatically invariant under the most general fully three-dimensional Lorentz transformation.
For general three-dimensional motion, using rectangular Cartesian coordinates (x, y, z), we determine
the first-order partial differential equations for the three velocity components u(x, y, z, t), v(x, y, z, t)
and w(x, y, z, t) in the x−, y− and z−directions respectively. These partial differential equations and
the associated partial differential relations connecting energy and momentum are fully compatible
with the Lorentz-invariant energy–momentum relations and appear not to have been given previously
in the literature. We determine the spatial and temporal dependence of the functional forms for those
three-dimensional velocity fields that are automatically invariant under three-dimensional Lorentz
transformations. An interesting special case gives rise to families of particle paths for which the
magnitude of the velocity is the speed of light. This is indicative of the abundant possibilities existing
in the “fast lane”.

Keywords: special relativity; Lorentz invariance; functional forms; energy and momentum partial
differential identities

MSC: 35q75

1. Introduction

In special relativity, the word “special” alludes to invariance under transformations
relating constant relative velocity frames of reference, which are known as Lorentz transfor-
mations, and a Lorentz-invariant quantity is one that assumes an identical form under a
Lorentz transformation. A very attractive notion is that the fundamental structures and
mechanisms of the universe are somehow connected with the invariances of the underlying
model. A curious fact associated with general relativity is that while spiral galaxies are
common in the universe, there appear to be no simple exact solutions of general relativity
that reflect these structures. Yet, in both fluid and solid mechanics, logarithmic spirals arise
from the invariance of the underlying equations under simple one-parameter stretching and
rotations. In this paper, we examine those special relativistic three-dimensional motions for
which the three velocity components in the x−, y− and z−directions are invariant under
arbitrary three-dimensional Lorentz transformations. These results might find physical
application in cosmological theories with background vector fields, such as proposed
in [1,2].

While Lorentz invariance and its consequences are well established in special relativ-
ity, it seems to have been overlooked that the imposition of a Lorentz-invariant velocity
field u(x, t) restricts the functional form of the velocity u(x, t) to the solution of a certain
partial differential equation. Here, for three-dimensional motion with velocity components
u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t) in the x−, y− and z−directions, respectively, the
requirement that the three velocity equations dx/dt = u(x, y, z, t), dy/dt = v(x, y, z, t) and
dz/dt = w(x, y, z, t) remain invariant under an arbitrary three-dimensional Lorentz trans-
formation implies that the three velocity components u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t)
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satisfy certain coupled first-order partial differential Equations (3.1) or (3.3), leading to
their functional forms. We note that, by the Lorentz invariance of the three differential
equations dx/dt = u(x, y, z, t), dy/dt = v(x, y, z, t) and dz/dt = w(x, y, z, t), we mean
that, under an arbitrary Lorentz space-time transformation, the same three differential
equations are obtained in the transformed space-time variables. Further, since the Lorentz
transformation forms a one-parameter Lie group, we may deduce the governing partial
differential equations from an examination of the infinitesimal version of the one-parameter
Lie group. Only in the derivation of the partial differential equations do we assume an
infinitesimal frame velocity.

We determine general functional forms of the velocity components in terms of four
arbitrary functions F , G1, G2 and G3. Assuming that the function F is determined from
the relation F = (1 − G 2

1 − G 2
2 − G 2

3 )
1/2, we note in particular the singular case F 2 + G 2

1 +
G 2

2 + G 2
3 = 1 for which the magnitude of the particle velocity is the speed of light, which

means that there are infinitely many families of paths for which the particles are moving at
the speed of light. The existence of these infinite families of paths with particles travelling
at the speed of light indicates the endless possibilities existing at the speed of light.

In [3,4], the author has given corresponding results for the cases of one- and two-
dimensional special relativistic motions, respectively. For a single spatial dimension x, the
one-dimensional velocity dx/dt = u(x, t) satisfies the first-order partial differential equation

t
∂u
∂x

+
x
c2

∂u
∂t

= 1−
(u

c

)2
, (1.1)

while, for planar motions, using plane rectangular Cartesian coordinates (x, y), the velocity
components dx/dt = u(x, y, t) and dy/dt = w(x, y, t) satisfy the following coupled partial
differential equations

t
(

cos ϕ
∂u
∂x

+ sin ϕ
∂u
∂y

)
+

(x cos ϕ + y sin ϕ)

c2
∂u
∂t

= cos ϕ

(
1 −

(u
c

)2
)
− sin ϕ

uw
c2 ,

t
(

cos ϕ
∂w
∂x

+ sin ϕ
∂w
∂y

)
+

(x cos ϕ + y sin ϕ)

c2
∂w
∂t

= sin ϕ

(
1 −

(w
c

)2
)
− cos ϕ

uw
c2 , (1.2)

where ϕ is the planar angle corresponding to α in the three-dimensional formulation. In
terms of solutions, the one-dimensional Equation (1.1) derived in [3] is far more restrictive.
Here, we follow closely the development [4], and many of the basic formulae and calcu-
lations presented here does not differ significantly from those presented in [4], except, of
course, that the results here are fully three-dimensional. Accordingly, here, we present the
full formulae, but as concisely as is feasible.

We remind the reader that, for those problems involving partial differential equations
and boundary or initial conditions, in order for the present analysis to be useful, it is
necessary to ensure the invariance of both the equation and any associated conditions
under a one-parameter Lie group of transformations. If this is the case, then, generally
speaking, invariance under a one-parameter Lie group of transformations implies the
major simplification of the problem (see, for example, [5]). In the present context, any
solutions of the coupled partial differential Equations (3.3) will generate solutions of those
special relativistic problems provided that any boundary or initial conditions also remain
invariant under Lorentz transformation. This means that any associated boundary or
initial conditions must be assumed to be expressible in terms of invariants of the full
three-dimensional Lorentz group (2.1).

In the following section, we summarise the essential results of special relativity theory
that are needed in order to deduce the partial differential Equations (3.1) or (3.3) for the
velocity components u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t). For fully three-dimensional
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motion, these partial differential equations are derived in the subsequent section, and the
corresponding partial differential equations for energy and momentum are derived in the
section thereafter. The calculation details for the solutions (3.6) for ω(x, y, z, t), B(x, y, z, t),
C(x, y, z, t) and D(x, y, z, t) in terms of four arbitrary functions F and Gi where i = 1, 2, 3
are presented in Appendix A, and the derived solutions are summarised and illustrated in
the final sections of the paper.

2. Results from Special Relativity

Special relativity has become a standard subject such that almost every text on physics
or mechanics has a dedicated chapter on special relativity. The older texts are closer to the
original motivating issues and the developments that gave birth to the subject. Dingle [6]
and McCrea [7] provide student texts, while more comprehensive accounts can be found in
Bohm [8], French [9] and Resnick [10]. Both Moller [11] and Tolman [12] provide standard
works of reference, and the reader may wish to consult [13], containing the original papers
of Einstein, Lorentz, Minkowski and Weyl with notes by Arnold Sommerfeld.

The notion of invariance with respect to frames moving with a constant relative veloc-
ity underlies special relativistic mechanics, and particularly those transformations of space
and time leaving the wave equation unchanged, referred to as Lorentz transformations. We
consider a rectangular Cartesian frame (X, Y, Z) and another rectangular Cartesian frame
(x, y, z) moving with constant frame velocity v∗ = (v∗ cos α, v∗ cos β, v∗ cos γ) relative to
the first frame, where α, β and γ are the direction cosines of the frame velocity v∗ such that
cos2 α + cos2 β + cos2 γ = 1 and v∗ denotes the magnitude of the frame velocity v∗.

We view the magnitude of the relative velocity v∗ as a measure of the departure
of the current frame (x, y, z) from the rest frame (X, Y, Z), and, throughout, we adopt
consistent notation, employing lowercase for variables associated with the moving (x, y, z)
frame and uppercase or capitals for those variables associated with the rest (X, Y, Z) frame.
Accordingly, time is measured from the (X, Y, Z) frame with the variable T and from the
(x, y, z) frame with the variable t so that (X, Y, Z, T) and (x, y, z, t) are the variables of
principal interest and we assume that the two frames coincide initially.

For 0 ⩽ v∗ < c, from [11] (p. 42), the standard fully three-dimensional Lorentz
transformations with fixed cosine angles α, β and γ are given by

x = X + (δ − 1)(X cos α + Y cos β + Z cos γ) cos α − δv∗T cos α,

y = Y + (δ − 1)(X cos α + Y cos β + Z cos γ) cos β − δv∗T cos β,

z = Z + (δ − 1)(X cos α + Y cos β + Z cos γ) cos γ − δv∗T cos γ,

t = δT − δv∗

c2 (X cos α + Y cos β + Z cos γ), (2.1)

where δ = [1 − (v∗/c)2]−1/2, with the inverse and the identity transformations charac-
terised by −v∗ and v∗ = 0, respectively. From the above relations for 0 ⩽ v∗ < c, we
may deduce

x cos α + y cos β + z cos γ = δ(X cos α + Y cos β + Z cos γ − v∗T), (2.2)

and the geometric identity arising as a consequence of zero relative motion perpendicular
to the direction of motion

x2 + y2 + z2 − (x cos α + y cos β + z cos γ)2

= X2 + Y2 + Z2 − (X cos α + Y cos β + Z cos γ)2. (2.3)

A second relation arises as a consequence of relative motion in the direction of motion:

(ct)2 − (x cos α + y cos β + z cos γ)2

= (cT)2 − (X cos α + Y cos β + Z cos γ)2. (2.4)
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The invariance (2.4) describes the measurement of the distance perpendicular to the
direction of relative motion and confirms the isotropy of space independently of time, and
it is most easily proven by writing each of the spatial components of (2.1) in the form

x − (x cos α + y cos β + z cos γ) cos α

= X − (X cos α + Y cos β + Z cos γ) cos α,

and squaring and adding. The invariance (2.4) describes the time-dependent coupling
in the direction of travel and is easily established using the working variables
ξ = x cos α + y cos β + z cos γ and ζ = X cos α+Y cos β+Z cos γ and evaluating (ct)2 − ξ2

from the two relations ct = δ(cT − v∗ζ/c) and ξ = δ(ζ − v∗T). Together, the relations (2.3)
and (2.4) yield the well-known special relativistic identity equivalent to the Minkowski line
element, namely

(ct)2 − (x2 + y2 + z2) = (cT)2 − (X2 + Y2 + Z2). (2.5)

The three invariances (2.3), (2.4) and (2.5) subsequently arise in the solution of the
coupled partial differential Equations (3.6) given in Appendix A.

With velocity components u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t) in the x−, y− and
z−directions, respectively, defined by

u(x, y, z, t) =
dx
dt

, v(x, y, z, t) =
dy
dt

, w(x, y, z, t) =
dz
dt

,

U(X, Y, Z, T) =
dX
dT

, V(X, Y, Z, T) =
dY
dT

, W(X, Y, Z, T) =
dZ
dT

,

we may deduce, by the division of the differential versions of (2.1), the Einstein addition of
velocity laws in the x− and y−directions, respectively; thus,

u =
U + (δ − 1)(U cos α + V cos β + W cos γ) cos α − δv∗ cos α

δ(1 − v∗(U cos α + V cos β + W cos γ)/c2)
, (2.6)

v =
V + (δ − 1)(U cos α + V cos β + W cos γ) cos β − δv∗ cos β

δ(1 − v∗(U cos α + V cos β + W cos γ)/c2)
,

w =
W + (δ − 1)(U cos α + V cos β + W cos γ) cos γ − δv∗ cos γ

δ(1 − v∗(U cos α + V cos β + W cos γ)/c2)
,

noting that we have the relations

u cos α + v cos β + w cos γ =
U cos α + V cos β + W cos γ − v∗

1 − v∗(U cos α + V cos β + W cos γ)/c2 , (2.7)

v cos γ − w cos β =
V cos γ − W cos β

δ(1 − v∗(U cos α + V cos β + W cos γ)/c2)
,

w cos α − u cos γ =
W cos α − U cos γ

δ(1 − v∗(U cos α + V cos β + W cos γ)/c2)
,

u cos β − v cos α =
U cos β − V cos α

δ(1 − v∗(U cos α + V cos β + W cos γ)/c2)
.

By squaring and adding the above relations (2.7), we may show that

u2 + v2 + w2

c2 = 1 +

(
(U2 + V2 + W2)/c2 − 1

)
δ2(1 − v∗(U cos α + V cos β + W cos γ)/c2)

2 ,
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and, from this equation, it is clear that u2 + v2 + w2 = c2 if and only if U2 + V2 + W2 = c2.
Further, we have the important relation

1

(1 − (u2 + v2 + w2)/c2)
1/2 =

δ
(
1 − v∗(U cos α + V cos β + W cos γ)/c2)

(1 − (U2 + V2 + W2)/c2)
1/2 . (2.8)

With energy and momentum in the three spatial directions in the two frames defined,
respectively, by

e =
e0

(1 − (u2 + v2 + w2)/c2)
1/2 , E =

e0

(1 − (U2 + V2 + W2)/c2)
1/2 , (2.9)

p =
m0u

(1 − (u2 + v2 + w2)/c2)
1/2 , P =

m0U

(1 − (U2 + V2 + W2)/c2)
1/2 ,

q =
m0v

(1 − (u2 + v2 + w2)/c2)
1/2 , Q =

m0V

(1 − (U2 + V2 + W2)/c2)
1/2 ,

r =
m0w

(1 − (u2 + v2 + w2)/c2)
1/2 , R =

m0W

(1 − (U2 + V2 + W2)/c2)
1/2 ,

where m0 is the rest mass and e0 = m0c2, we may deduce from (2.8) and the velocity
relations (2.6) the Lorentz-invariant energy momentum relations

e = δ(E − v∗(P cos α + Q cos β + R cos γ)), (2.10)

p = P + (δ − 1)(P cos α + Q cos β + R cos γ) cos α − δ
v∗

c2 E cos α,

q = Q + (δ − 1)(P cos α + Q cos β + R cos γ) cos β − δ
v∗

c2 E cos β,

r = R + (δ − 1)(P cos α + Q cos β + R cos γ) cos γ − δ
v∗

c2 E cos γ,

and the identities

e2 − c2(p2 + q2 + r2) = E2 − c2(P2 + Q2 + R2) = e2
0. (2.11)

3. Lorentz-Invariant Velocity Components u(x, y, z, t)u(x, y, z, t)u(x, y, z, t), v(x, y, z, t)v(x, y, z, t)v(x, y, z, t) and w(x, y, z, t)w(x, y, z, t)w(x, y, z, t)

In this section, we determine the most general three-dimensional velocity field u(x, t) with
velocity components u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t) in the x−, y− and z−directions,
respectively, that remain invariant under the Lorentz transformation (2.1) . Equivalently,
we determine the velocity components u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t) such that the
three differential problems dx/dt = u(x, y, z, t), dy/dt = v(x, y, z, t) and
dz/dt = w(x, y, z, t) transform into dX/dT = u(X, Y, Z, T), dY/dT = v(X, Y, Z, T) and
dZ/dT = w(X, Y, Z, T), respectively, under the general three-dimensional Lorentz trans-
formation (2.1). Since the Lorentz transformation (2.1) forms a one-parameter group of
transformations in the frame velocity v∗, we need only to expand (2.1) to the first order
in v∗ and equate the corresponding infinitesimals to obtain the first-order partial differen-
tial equations for u(x, y, z, t), u(x, y, z, t) and w(x, y, z, t). For infinitesimally small veloci-
ties v∗, on retaining only the linear terms involving v∗, the Lorentz transformation (2.1)
becomes simply

x = X − v∗T cos α, y = Y − v∗T cos β, z = Z − v∗T cos γ,

t = T − v∗

c2 (X cos α + Y cos β + Z cos γ),
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so that, for example, on expanding dx/dt = u(x, y, z, t), we obtain

dx
dt

=
dX − v∗dT cos α

dT − v∗(dX cos α + dY cos β + dZ cos γ)/c2

=
u(X, Y, Z, T)− v∗ cos α

1 − v∗(u(X, Y, Z, T) cos α + v(X, Y, Z, T) cos β + w(X, Y, Z, T) cos γ)/c2

= u
(

X − v∗T cos α, Y − v∗T cos β, Z − v∗T cos γ, T − v∗

c2 (X cos α + Y cos β + Z cos γ)

)
,

which, on expanding and equating the first-order terms in v∗ and then reverting to
the (x, y, z, t) variables, and with similar calculations for dy/dt = v(x, y, z, t) and
dz/dt = w(x, y, z, t), we may deduce the following coupled partial differential equations
for u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t):

t
(

cos α
∂u
∂x

+ cos β
∂u
∂y

+ cos γ
∂u
∂z

)
+

(x cos α + y cos β + z cos γ)

c2
∂u
∂t

(3.1)

= cos α

(
1 −

(u
c

)2
)
− cos β

uv
c2 − cos γ

uw
c2 ,

t
(

cos α
∂v
∂x

+ cos β
∂v
∂y

+ cos γ
∂v
∂z

)
+

(x cos α + y cos β + z cos γ)

c2
∂v
∂t

= cos β

(
1 −

(v
c

)2
)
− cos α

uv
c2 − cos γ

vw
c2 ,

t
(

cos α
∂w
∂x

+ cos β
∂w
∂y

+ cos γ
∂w
∂z

)
+

(x cos α + y cos β + z cos γ)

c2
∂w
∂t

= cos γ

(
1 −

(w
c

)2
)
− cos α

uw
c2 − cos β

vw
c2 .

On making use of the inverse relations to (2.1), namely

X = x + (δ − 1)(x cos α + y cos β + z cos γ) cos α + δv∗t cos α,

Y = y + (δ − 1)(x cos α + y cos β + z cos γ) cos β + δv∗t cos β,

Z = z + (δ − 1)(x cos α + y cos β + z cos γ) cos γ + δv∗t cos γ,

T = δt +
δv∗

c2 (X cos α + Y cos β + Z cos γ),

and (2.2), we may show, using the chain rule and by direct substitution, that the linear
partial differential operator L is Lorentz-invariant, namely

L = ct
(

cos α
∂

∂x
+ cos β

∂

∂y
+ cos γ

∂

∂z

)
+

(x cos α + y cos β + z cos γ)

c
∂

∂t
, (3.2)

L = cT
(

cos α
∂

∂X
+ cos β

∂

∂Y
+ cos γ

∂

∂Z

)
+

(X cos α + Y cos β + Z cos γ)

c
∂

∂T
,
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and the coupled partial differential Equation (3.1) becomes simply

L(u) = c cos α

(
1 −

(u
c

)2
)
− cos β

uv
c

− cos γ
uw
c

, (3.3)

L(v) = c cos β

(
1 −

(v
c

)2
)
− cos α

uv
c

− cos γ
vw
c

,

L(w) = c cos γ

(
1 −

(w
c

)2
)
− cos α

uw
c

− cos β
vw
c

.

In terms of a vector and matrix notation u, a and Q defined, respectively, by

u =


u

v

w

, a =


cos α

cos β

cos γ

,

Q =


1 − (u/c)2 −uv/c2 −uw/c2

−uv/c2 1 − (v/c)2 −vw/c2

−uw/c2 −vw/c2 1 − (w/c)2

,

Equation (3.3) becomes L(u) = Qa and it is a simple matter to show that
det Q = 1 − (u2 + v2 + w2)/c2, so that det Q = 0 if and only if the particle is travel-
ling at the speed of light. This particular characteristic is shared by both the corresponding
one- and two-dimensional Equations (1.1) and (1.2) derived, respectively, in [3] and [4].

On introducing A B, C and D through the relations

A = u cos α + v cos β + w cos γ, B = v cos γ − w cos β, (3.4)

C = w cos α − u cos γ, D = u cos β − v cos α,

we may show that Equation (3.3) takes on the remarkably simple form

L(A) = c

(
1 −

(
A
c

)2
)

, L(B) = − AB
c

, L(C) = − AC
c

, L(D) = − AD
c

. (3.5)

With the substitution A = c tanh ω for some function ω(x, y, t), these equations become

L(ω) = 1, L(B) = −B tanh ω, L(C) = −C tanh ω, L(D) = −D tanh ω, (3.6)

and the final three equations may all be re-written since, for example,

L(B) cosh ω + B sinh ω = L(B) cosh ω + B sinh ωL(ω) = L(B cosh ω) = 0,

so that Equation (3.3) is finally simplified to become

L(ω) = 1, L(B cosh ω) = 0, L(C cosh ω) = 0, L(D cosh ω) = 0,

where A = c tanh ω. In the following section, we present the corresponding partial
differential relations for energy and momentum. The calculation details for the solutions
of the coupled partial differential Equation (3.6) for ω(x, y, z, t), B(x, y, z, t), C(x, y, z, t)
and D(x, y, z, t) are presented in Appendix A, and the solutions are summarised in the
subsequent section.
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4. Partial Differential Relations for Energy and Momentum

From the relations (2.9) for energy and momentum, we may deduce the following
expressions for the partial derivatives

∂e
∂x

=
m0

(1 − (u2 + v2 + w2)/c2)3/2

(
u

∂u
∂x

+ v
∂v
∂x

+ w
∂w
∂x

)
,

∂p
∂x

=
m0

(1 − (u2 + v2 + w2)/c2)3/2

((
1 −

(v
c

)2
−
(w

c

)2
)

∂u
∂x

+
uv
c2

∂v
∂x

+
uw
c2

∂w
∂x

)
,

∂q
∂x

=
m0

(1 − (u2 + v2 + w2)/c2)3/2

((
1 −

(u
c

)2
−
(w

c

)2
)

∂u
∂x

+
uv
c2

∂u
∂x

+
vw
c2

∂w
∂x

)
,

∂r
∂x

=
m0

(1 − (u2 + v2 + w2)/c2)3/2

((
1 −

(u
c

)2
−
(v

c

)2
)

∂w
∂x

+
uw
c2

∂u
∂x

+
vw
c2

∂v
∂x

)
,

with similar expressions for the partial derivatives with respect to y, z and t. On
making use of these relations, and with some rearrangement and division of (3.1) by
(1 − (u2 + v2 + w2)/c2)3/2, we may deduce the partial differential relations connecting the
partial derivatives of the momentum and energy p, q and e; thus,

t
(

cos α
∂p
∂x

+ cos β
∂p
∂y

+ cos γ
∂p
∂z

)
+

ξ

c2
∂p
∂t

=
e
c2 cos α, (4.1)

t
(

cos α
∂q
∂x

+ cos β
∂q
∂y

+ cos γ
∂q
∂z

)
+

ξ

c2
∂q
∂t

=
e
c2 cos β,

t
(

cos α
∂r
∂x

+ cos β
∂r
∂y

+ cos γ
∂r
∂z

)
+

ξ

c2
∂r
∂t

=
e
c2 cos γ,

t
(

cos α
∂e
∂x

+ cos β
∂e
∂y

+ cos γ
∂e
∂z

)
+

ξ

c2
∂e
∂t

= p cos α + q cos β + r cos γ,

where ξ = x cos α + y cos β + z cos γ.
In terms of the invariant operator L defined by (3.2) , these partial differential relations

become more transparent and are simply

cL(p) = e cos α, cL(q) = e cos β, cL(r) = e cos γ, (4.2)

L(e) = pc cos α + qc cos β + rc cos γ,

which arise using the definitions (2.9) and the relations (3.3) as follows:

cL(p) = m0c
(

L(u)
(1 − (u2 + v2 + w2)/c2)1/2 +

u
c2

(uL(u) + vL(v) + wL(w))

(1 − (u2 + v2 + w2)/c2)3/2

)
=

m0c
(1 − (u2 + v2 + w2)/c2)3/2

((
1 −

(v
c

)2
−
(w

c

)2
)

L(u) +
uv
c2 L(v) +

uw
c2 L(w)

)
=

m0c2 cos α

(1 − (u2 + v2 + w2)/c2)3/2

(
1 −

(u
c

)2
−
(v

c

)2
−
(w

c

)2
)

=
e0 cos α

(1 − (u2 + v2 + w2)/c2)1/2

= e cos α,
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cL(q) = m0c
(

L(v)
(1 − (u2 + v2 + w2)/c2)1/2 +

v
c2

(uL(u) + vL(v) + wL(w))

(1 − (u2 + v2 + w2)/c2)3/2

)
=

m0c
(1 − (u2 + v2 + w2)/c2)3/2

((
1 −

(u
c

)2
−
(w

c

)2
)

L(w) +
uv
c2 L(u) +

wv
c2 L(w)

)
=

m0c2 cos β

(1 − ((u2 + v2 + w2)/c2)3/2

(
1 −

(u
c

)2
−
(v

c

)2
−
(w

c

)2
)

=
e0 cos β

(1 − (u2 + v2 + w2)/c2)1/2

= e cos β,

cL(r) = m0c
(

L(w)

(1 − (u2 + v2 + w2)/c2)1/2 +
w
c2

(uL(u) + vL(v) + wL(w))

(1 − (u2 + v2 + w2)/c2)3/2

)
=

m0c
(1 − (u2 + v2 + w2)/c2)3/2

((
1 −

(u
c

)2
−
(v

c

)2
)

L(w) +
uw
c2 L(u) +

wv
c2 L(v)

)
=

m0c2 cos γ

(1 − ((u2 + v2 + w2)/c2)3/2

(
1 −

(u
c

)2
−
(v

c

)2
−
(w

c

)2
)

=
e0 cos γ

(1 − (u2 + v2 + w2)/c2)1/2

= e cos γ,

L(e) =
e0

c2
(uL(u) + vL(v) + wL(w))

(1 − (u2 + v2 + w2)/c2)3/2

=
m0(uc cos α + vc cos β + wc cos γ)

(1 − (u2 + v2 + w2)/c2)3/2

(
1 −

(u
c

)2
−
(v

c

)2
−
(w

c

)2
)

= pc cos α + qc cos β + rc cos γ.

Formally, we may use the results (4.2) to obtain L2(e) = e and

L2(p) = (p cos α + q cos β + r cos γ) cos α,

L2(q) = (p cos α + q cos β + r cos γ) cos β,

L2(r) = (p cos α + q cos β + r cos γ) cos γ.

Further, for (2.11), we may apply the operator L to e2 = e2
0 + c2(p2 + q2 + r2) to confirm

the validity of the equation eL(e) = c2(pL(p)+ qL(q)+ rL(r)), as might be anticipated. The
partial differential relations (3.1) are also fully compatible with the Lorentz-invariant energy–
momentum relations (2.10). Since L is a Lorentz-invariant operator, the application of L to
the first equation of (2.10) yields a linear combination of the second and third equations of
(2.10), while its application to both the second and third yields the first relation.

5. Summary of Solutions of Coupled Partial Differential Equations (3.3)

Equations (3.3) constitute first-order partial differential equations, which are formally
solved in Appendix A using Lagrange’s characteristic method, leading to (3.6). The final
details are as follows:

ω(x, y, z, t) = sinh−1
(

ξ

((ct)2 − ξ2)1/2

)
+ Φ(C1, C2, C3, C4), (5.1)

B(x, y, z, t) = c sech ωΨ1(C1, C2, C3, C4),

C(x, y, z, t) = c sech ωΨ2(C1, C2, C3, C4),

D(x, y, z, t) = c sech ωΨ3(C1, C2, C3, C4),
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where ξ = x cos α + y cos β + z cos γ, and Φ, Ψ1, Ψ2 and Ψ3 all denote arbitrary functions
of the indicated arguments C1, C2, C3, C4 as given below,

C1 = x cos β − y cos α, C2 = x cos γ − z cos α, C3 = y cos γ − z cos β, (5.2)

C4 = ((ct)2 − (x cos α + y cos β + z cos γ)2)1/2,

noting that C2
1 + C2

2 + C2
3 = x2 + y2 + z2 − (x cos α + y cos β + z cos γ)2. As described in

Appendix A, the final solutions of (3.5) for A, B, C and D as defined by (3.4) are given by

A(x, y, z, t) = c
(

ctF + ξ

ct + ξF

)
, B(x, y, z, t) = cG1

((ct)2 − ξ2)1/2

ct + ξF
, (5.3)

C(x, y, z, t) = cG2
((ct)2 − ξ2)1/2

ct + ξF
, D(x, y, z, t) = cG3

((ct)2 − ξ2)1/2

ct + ξF
,

where F (C1, C2, C3, C4) and Gi(C1, C2, C3, C4) denote arbitrary functions of the indicated
arguments, for i = 1, 2, 3 and ξ = x cos α + y cos β + z cos γ.

From the definitions (3.4) of A, B, C and D, the general Lorentz-invariant velocity
components u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t) inherit the particular functional forms
determined from the relations

u cos α + v cos β + w cos γ = c
(

ctF + ξ

ct + ξF

)
, (5.4)

v cos γ − w cos β = cG1
((ct)2 − ξ2)1/2

ct + ξF
,

w cos α − u cos γ = cG2
((ct)2 − ξ2)1/2

ct + ξF
,

u cos β − v cos α = cG3
((ct)2 − ξ2)1/2

ct + ξF
,

where F (C1, C2, C3, C4) and Gi(C1, C2, C3, C4) denote four arbitrary functions of the in-
dicated arguments, for i = 1, 2, 3 and ξ = x cos α + y cos β + z cos γ. From the above
equations, we may readily deduce

u = c

{(
ctF + ξ

ct + ξF

)
cos α +

((ct)2 − ξ2)1/2

(ct + ξF )
(G3 cos β − G2 cos γ)

}
, (5.5)

v = c

{(
ctF + ξ

ct + ξF

)
cos β +

((ct)2 − ξ2)1/2

(ct + ξF )
(G1 cos γ − G3 cos α)

}
,

w = c

{(
ctF + ξ

ct + ξF

)
cos γ +

((ct)2 − ξ2)1/2

(ct + ξF )
(G2 cos α − G1 cos β)

}
.

By squaring and adding the four relations in either (5.4) or (5.5), we obtain

u2 + v2 + w2 = c2

{(
ctF + ξ

ct + ξF

)2
+ (G 2

1 + G 2
2 + G 2

3 )
(ct)2 − ξ2

(ct + ξF )2

}
, (5.6)

from which it is clear that if F is determined from the relation F = (1 − G 2
1 − G 2

2 − G 2
3 )

1/2,
then u2 + v2 + w2 = c2, and there exist infinitely many families of singular paths with
particles moving at the speed of light u2 + v2 + w2 = c2 that arise from the special case
F 2 + G 2

1 + G 2
2 + G 2

3 = 1.
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From Equations (2.9) and (5.6) and with the abbreviation G 2 = G 2
1 + G 2

2 + G 2
3 , we

obtain the following expression for the particle energy e,

e =
e0

(1 − (u2 + v2 + w2)/c2)
1/2 =

e0(ct + ξF )

((ct)2 − ξ2)1/2(1 − (F 2 + G 2))1/2 , (5.7)

while, from the expressions for the momenta p, q and r

p =
m0u

(1 − (u2 + v2 + w2)/c2)
1/2 , q =

m0v

(1 − (u2 + v2 + w2)/c2)
1/2 , (5.8)

r =
m0w

(1 − (u2 + v2 + w2)/c2)
1/2 ,

we obtain

pc =
e0

(1 − (F 2 + G 2))1/2

{
(ctF + ξ) cos α

((ct)2 − ξ2)1/2 + (G3 cos β − G2 cos γ)

}
, (5.9)

qc =
e0

(1 − (F 2 + G 2))1/2

{
(ctF + ξ) cos β

((ct)2 − ξ2)1/2 + (G1 cos γ − G3 cos α)

}
,

rc =
e0

(1 − (F 2 + G 2))1/2

{
(ctF + ξ) cos γ

((ct)2 − ξ2)1/2 + (G2 cos α − G1 cos β)

}
.

In the final section of the paper, we provide some illustrations of these formulae
assuming a specific dependence on the arbitrary functions F and Gi for i = 1, 2, 3.

Finally, in this section, we note an interesting connection with the covariant curvature
tensor Rijkm. For general F , on using the expressions (5.5) with ξ = x cos α + y cos β + z cos γ

and η = ((ct)2 − ξ2)1/2, we have the differential relations

dξ

dt
= c
(

ctF + ξ

ct + ξF

)
,

dη

dt
= c

((ct)2 − ξ2)1/2

(ct + ξF )
,

noting that we have used dξ/dt = u cos α + v cos β + w cos γ, and, in the derivation of the
second equation, we have used the first. Thus, from (5.6), we have(

ds
dt

)2
= u2 + v2 + w2 =

(
dξ

dt

)2
+ (G 2

1 + G 2
2 + G 2

3 )

(
dη

dt

)2
,

and, therefore, with the abbreviation G 2 = G 2
1 + G 2

2 + G 2
3 , we may deduce the metric

(ds)2 = (dξ)2 + G 2(dη)2. For this metric in the two independent variables (x1, x2) = (ξ, η),
from [14] (p. 56), there is only one non-zero component of the covariant curvature tensor
Rijkm, namely R1212, which is given by

R1212 = −G
∂2G

∂ξ2 .

For a flat space, we expect R1212 = 0, so that G necessarily has the structure
G = I(η)ξ + J(η), where I(η) and J(η) denote arbitrary functions of η.

6. Some Illustrations of the Solutions (5.1) and the Momenta Expressions (5.9)

In this section, for the purposes of illustration and to verify the analysis at least
for a special case, we assume a particular dependence on the four arbitrary functions
F and Gi, where i = 1, 2, 3. Specifically, we examine the case when these functions
depend only on C4 = ((ct)2 − (x cos α + y cos β + z cos γ)2)1/2 and we use the nota-
tion η = ((ct)2 − ξ2)1/2, where ξ = x cos α + y cos β + z cos γ. We first illustrate the
solutions (5.1) for A(x, y, z, t) and B(x, y, z, t) and then give an application of the mo-
menta expressions (5.9) . We consider the development of special relativity formulated
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in [15], which predicts that the momenta p(x, y, z, t), q(x, y, z, t) and r(x, y, z, t) and the
wave energy E (x, y, z, t) = −e(x, y, z, t)− V(x, y, z, t) each satisfy the planar classical wave
equation, namely

∂2E

∂t2 = c2
(

∂2E

∂x2 +
∂2E

∂y2 +
∂2E

∂z2

)
, (6.1)

where V(x, y, t) denotes an applied external potential that is generating conventional spatial
forces fx(x, y, z, t), fy(x, y, z, t) and fz(x, y, z, t) and a non-conventional force g(x, y, z, t) in
the direction of time, such that

fx = −∂V
∂x

, fy = −∂V
∂y

, fz = −∂V
∂z

,

gc2 = −∂V
∂t

,

and g(x, y, z, t) is more commonly recognised as the mass or energy production term. We
refer the reader to [15] for further details of this particular extension of special relativity.

We first assume that the arbitrary functions F and G1 are functions of η = ((ct)2 − ξ2)1/2

only, so that, with A and B defined by

A(x, y, z, t) = c
(

ctF (η) + ξ

ct + ξF (η)

)
, B(x, y, z, t) =

cH (η)

ct + ξF
,

where H (η) = ηG1(η), we might deduce the following expressions for the partial derivatives

∂A
∂x

=
c cos α

(ct + ξF )2

(
ct(1 −F 2)− ξη

dF

dη

)
,

∂A
∂t

=
c2

(ct + ξF )2

(
−ξ(1 −F 2) + ctη

dF

dη

)
,

∂B
∂x

= − ξ cos α

η(ct + ξF )2

(
(ct + ξF )

dH

dη
− ξH

dF

dη

)
− H F cos α

(ct + ξF )2 ,

∂B
∂t

=
c2t

η(ct + ξF )2

(
(ct + ξF )

dH

dη
− ξH

dF

dη

)
− cH

(ct + ξF )2 ,

with similar expressions for the partial derivatives with respect to y and z and for the
functions C and D. On making use of these expressions for the partial derivatives, to-
gether with the definition (3.2) of the operator L, it is easy to verify that the equations
L(A) = c(1 − (A/c)2) and L(B) = −AB/c are correctly satisfied.

The special relativity theory formulated in [15] predicts that the components of momen-
tum as given by (5.8) satisfy the classical three-dimensional wave equation (6.1). Assuming
that the arbitrary functions F and G1 are functions of η = ((ct)2 − ξ2)1/2 only and that
G2 = G3 = 0, we see from (5.8) that the momentum p in the x−direction has the structure
pc = ctϕ(η) + ξψ(η), where the functions ϕ(η) and ψ(η) here are defined by

ϕ(η) =
e0 cos αF (η)

η(1 − (F (η)2 + G (η)2))1/2 , ψ(η) =
e0 cos α

η(1 − (F (η)2 + G (η)2))1/2 ,

and where G 2 denotes G 2
1 + G 2

2 + G 2
3 = G 2

1 . The question therefore arises as to whether it is
possible to choose the functions ϕ(η) and ψ(η) (or equivalently the functions F (η) and
G (η)) such that pc = ctϕ(η) + ξψ(η) satisfies the wave equation. On making use of partial
differential expressions such as
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∂ϕ

∂x
= − ξ cos α

η

dϕ

dη
,

∂ϕ

∂t
=

c2t
η

dϕ

dη
,

∂2ϕ

∂x2 =

(
ξ2

η2
d2ϕ

dη2 − (ct)2

η3
dϕ

dη

)
cos2 α,

∂2ϕ

∂t2 = c2
(
(ct)2

η2
d2ϕ

dη2 − ξ2

η3
dϕ

dη

)
,

with similar expressions for ψ(η) and the partial derivatives in the y and z directions, the
condition that p satisfies the wave equation becomes

ct
(

d2ϕ

dη2 +
3
η

dϕ

dη

)
+ ξ

(
d2ψ

dη2 +
3
η

dψ

dη

)
= 0.

Thus, the functions ϕ(η) and ψ(η) must be such that

d2ϕ

dη2 +
3
η

dϕ

dη
=

d2ψ

dη2 +
3
η

dψ

dη
= 0,

and therefore any expressions of the form ϕ(η) = α1 + α2/η2 and ψ(η) = α3 + α4/η2

where αj for j = 1, 2, 3, 4 denote four arbitrary constants will ensure that the wave equation
is correctly satisfied.

As a simple illustration of this result, we consider the case α1 = α3 = 0, α2 = λ − µ
and α4 = λ + µ for certain constants λ and µ. In this case, the momentum is given by

pc =
λ

ct − ξ
− µ

ct + ξ
,

which clearly satisfies the classical wave equation. The functions F and G are obtained by
solving the two equations

e0 cos αF η = (λ − µ)(1 − (F (η)2 + G (η)2))1/2,

e0 cos αη = (λ + µ)(1 − (F (η)2 + G (η)2))1/2,

from which we may readily deduce

F (η) =
λ − µ

λ + µ
, G (η) =

(4λµ − (e0η cos α)2)1/2

λ + µ
,

so that F is a constant, and, evidently, the constants λ and µ must be of the same sign in
order to ensure that G is well defined.

7. Conclusions

For fully three-dimensional motion with rectangular Cartesian coordinates (x, y, z),
we have shown that the requirement that the three velocity equations dx/dt = u(x, y, z, t),
dy/dt = v(x, y, z, t) and dz/dt = w(x, y, z, t) remain invariant under the general three-
dimensional Lorentz transformation (2.1) gives rise to the three coupled partial differential
Equations (3.1) for the three velocity components u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t) in
the x−, y− and z−directions, respectively. These first-order partial differential equations
are solved using Lagrange’s characteristic method to deduce the solutions
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u = c

{(
ctF + ξ

ct + ξF

)
cos α +

((ct)2 − ξ2)1/2

(ct + ξF )
(G3 cos β − G2 cos γ)

}
, (7.1)

v = c

{(
ctF + ξ

ct + ξF

)
cos β +

((ct)2 − ξ2)1/2

(ct + ξF )
(G1 cos γ − G3 cos α)

}
,

w = c

{(
ctF + ξ

ct + ξF

)
cos γ +

((ct)2 − ξ2)1/2

(ct + ξF )
(G2 cos α − G1 cos β)

}
,

in terms of four arbitrary functions F (C1, C2, C3, C4) and Gi(C1, C2, C3, C4) for i = 1, 2, 3,
ξ = x cos α + y cos β + z cos γ and Cj for j = 1, 2, 3, 4 denote four independent integrals of
the solution procedure that are defined by (5.2), namely

C1 = x cos β − y cos α, C2 = x cos γ − z cos α, C3 = y cos γ − z cos β,

C4 = ((ct)2 − (x cos α + y cos β + z cos γ)2)1/2.

With the velocity components given by (7.1) , the corresponding particle energy e and
momenta p, q and r are given, respectively, by (5.7) and (5.8).

We observe the very curious fact that with A, B, C and D given by (A.3) involving
the four arbitrary functions F , G1, G2 and G3, the singular case F 2 + G 2

1 + G 2
2 + G 2

3 = 1
is such that u2 + v2 + w2 = A2 + B2 + C2 + D2 = c2 for all arbitrary functions F , G1, G2
and G3 satisfying the constraint. The existence of these infinitely many singular families of
paths with particles moving at the speed of light is indicative of the abundant possibilities
that might exist in the “fast lane”. To the author’s knowledge, neither the coupled partial
differential Equations (3.1) and (3.3), nor the particular functional forms determined from
either (5.3) or (5.5), nor the fact that the energy e and momenta p, q and r satisfy the
partial differential relations (4.1) or in operator form (4.2) have been previously given in
the literature.
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Appendix A

Appendix A.1. Derivation of Solutions of Partial Differential Equation (3.6)

In this appendix, we use Lagrange’s characteristic method to determine solutions of
the partial differential Equation (3.6) for ω(x, y, z, t), B(x, y, z, t), C(x, y, z, t) and D(x, y, z, t)
in terms of four arbitrary functions F , G1, G2 and G3. Lagrange’s method introduces a
characteristic parameter s through the eight equations

dx
ds

= ct cos α,
dy
ds

= ct cos β,
dz
ds

= ct cos γ, (A1)

dt
ds

=
(x cos α + y cos β + z cos γ)

c
,

dω

ds
= 1,

d(B cosh ω)

ds
= 0,

d(C cosh ω)

ds
= 0,

d(D cosh ω)

ds
= 0,

to deduce eight independent integrals. Explicit solutions for ω, B cosh ω, C cosh ω and
D cosh ω are then obtained by taking one integral to be an arbitrary function of the space-
and time-independent integrals. The solutions so obtained are the most useful in the sense
that the dependent variables are direct functions of the space and time coordinates. These
solutions are not necessarily the most general since other solutions can be constructed by
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taking any of the integrals to be an arbitrary function of any of the remaining integrals. For
the above system, there will be other implicitly defined solutions involving more than one
of the dependent variables.

On division by the first equation of (A1) to eliminate the characteristic parameter s,
we have

dy
dx

=
cos β

cos α
,

dz
dx

=
cos γ

cos α
, (A2)

dt
dx

=
(x cos α + y cos β + z cos γ)

c2t cos α
,

dω

dx
=

1
ct cos α

,

d(B cosh ω)

dx
= 0,

d(C cosh ω)

dx
= 0,

d(D cosh ω)

dx
= 0.

The first and second equations readily integrate to yield x cos β − y cos α = C1 and
x cos γ − z cos α = C2, and, by symmetry, we have y cos γ − z cos β = C3. The third
equation becomes

dt
dx

=
(x cos α + y cos β + z cos γ)

c2t cos α

=
(x cos2 α + cos β(x cos β − C1) + cos γ(x cos γ − C2))

c2t cos2 α

=
(x − C1 cos β − C2 cos γ)

c2t cos2 α
,

which, on integration and simplification, yields (ct)2 − (x cos α + y cos β + z cos γ)2 = C2
4 .

The fourth equation of (A1) yields

dω

dx
=

1
ct cos α

=
1

cos α
(
C2

4 + (x cos α + y cos β + z cos γ)2
)1/2

=
1(

C2
4 cos2 α + (x − C1 cos β − C2 cos γ)2

)1/2 .

With the substitution x − C1 cos β − C2 cos γ = C4 cos α sinh Ω, this equation may be imme-
diately integrated to yield

ω = Ω + C5 = sinh−1

(
x − C1 cos β − C2 cos γ

C1/2
2 cos α

)
+ C5

= sinh−1
(

x cos α + y cos β + z cos γ

((ct)2 − (x cos α + y cos β + z cos γ)2)1/2

)
+ C5,

and the remaining equations of (A1) integrate trivially to give B cosh ω = C6, C cosh ω = C7
and D cosh ω = C8, so that the solutions of (3.6) for ω(x, y, z, t), B(x, y, z, t), C(x, y, z, t) and
D(x, y, z, t) are obtained from

ω(x, y, z, t) = sinh−1
(

ξ

((ct)2 − ξ2)1/2

)
+ Φ(C1, C2, C3, C4),

B(x, y, z, t) = c sech ωΨ1(C1, C2, C3, C4),

C(x, y, z, t) = c sech ωΨ2(C1, C2, C3, C4),

D(x, y, z, t) = c sech ωΨ3(C1, C2, C3, C4),

where ξ = x cos α + y cos β + z cos γ and Φ, Ψ1, Ψ2 and Ψ3 all denote arbitrary functions of
the indicated arguments.
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These expressions may be simplified using sinh−1(z) = log(z+ (z2 + 1)1/2) and using
ξ = x cos α + y cos β + z cos γ as the working variable; then,

sinh−1
(

ξ

((ct)2 − ξ2)1/2

)
=

1
2

log
(

ct + ξ

ct − ξ

)
,

so that if we redefine the arbitrary function Φ = (log F)/2, we have

A(x, y, z, t)
c

= tanh ω =
e2ω − 1
e2ω + 1

=

(
(ct + ξ)F − (ct − ξ)

(ct + ξ)F + (ct − ξ)

)
=

(
ctF + ξ

ct + ξF

)
,

where F = (F − 1)/(F + 1) is yet another redefinition of the arbitrary function. Similarly,
for B(x, y, z, t), C(x, y, z, t) and D(x, y, z, t), we have

B(x, y, z, t)
c

=
2Ψ1

(eω + e−ω)
=

2F1/2((ct)2 − ξ2)1/2Ψ1

(ct + ξ)F + (ct − ξ)

= G1
((ct)2 − ξ2)1/2

ct + ξF
,

C(x, y, z, t)
c

= G2
((ct)2 − ξ2)1/2

ct + ξF
,

D(x, y, z, t)
c

= G3
((ct)2 − ξ2)1/2

ct + ξF
,

where Gi = 2F1/2Ψi/(F + 1) = (1 − F 2)1/2Ψi for i = 1, 2, 3. Thus, with A, B, C and D
defined by (3.4), the general solutions of (3.5) are given by

A(x, y, z, t) = c
(

ctF + ξ

ct + ξF

)
, B(x, y, z, t) = cG1

((ct)2 − ξ2)1/2

ct + ξF
,

C(x, y, z, t) = cG2
((ct)2 − ξ2)1/2

ct + ξF
, D(x, y, z, t) = cG3

((ct)2 − ξ2)1/2

ct + ξF
,

where F (C1, C2, C3, C4) and Gi(C1, C2, C3, C4) denote arbitrary functions of the indicated
arguments, for i = 1, 2, 3 and ξ = x cos α + y cos β + z cos γ.

Finally, we comment that the combined transformations

F =
F − 1
F + 1

=
e2Φ − 1
e2Φ + 1

= tanh Φ,

show that Φ = tanh−1 F and therefore a Lorentz invariance appears through a trans-
lation in Φ, while F transforms like a velocity; thus, F ∗ = (F − v∗/c)/(1 − F v∗/c).
Accordingly, with ζ = X cos α + Y cos β + Z cos γ, using the transformational formulae
ξ = δ(ζ − v∗T) and ct = δ(cT − ζv∗/c), the key quantities in (A1) transform under a
Lorentz transformation as

ctF + ξ

ct + ξF
=

cTF ∗ + ζ

cT + ζF ∗ ,
((ct)2 − ξ2)1/2

ct + ξF
=

(1 − (v∗/c)2)1/2

(1 − v∗F /c)
((cT)2 − ζ2)1/2

cT + ζF ∗ .
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