MMF-Gait: A Multi-Model Fusion-Enhanced Gait Recognition Framework Integrating Convolutional and Attention Networks
Abstract
1. Introduction
- We present a multi-model fusion-based framework that leverages the capabilities of five state-of-the-art (SOTA) deep learning models, including both CNN-based and attention-based architectures, to extract intricate and fine-grained spatiotemporal gait features.
- We employ three separate fusion strategies, feature-level fusion, decision-level fusion, and hybrid fusion, to improve the accuracy of gait recognition. These approaches ensure that the decisions of multiple models are consistent and that their unique features enhance recognition performance.
2. Related Work
2.1. Model-Based Approaches
2.2. Appearance-Based Approaches
3. Proposed Framework
3.1. Gait Energy Image
3.2. Framework Architecture
3.3. Loss Function
4. Experiments and Discussions
4.1. Datasets
4.2. Training Parameters and Test
4.3. Experimental Results
4.3.1. CASIA-B
4.3.2. OU-LP
4.3.3. OU-ISIR D
4.4. Comparison with Previous Studies
4.5. Discussions
4.6. Ablation Study
4.6.1. Impact of Number of Models Used in Fusion
4.6.2. Impact of Different Models Combination in Hybrid Fusion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jain, A.; Bolle, R.; Pankanti, S. Introduction to Biometrics; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Kak, S.F.; Mustafa, F.M.; Valente, P. A review of person recognition based on face model. Eurasian J. Sci. Eng. 2018, 4, 157–168. [Google Scholar] [CrossRef]
- Besbes, F.; Trichili, H.; Solaiman, B. Multimodal biometric system based on fingerprint identification and iris recognition. In Proceedings of the 2008 3rd International Conference on Information and Communication Technologies: From Theory to Applications, Damascus, Syria, 7–11 April 2008; pp. 1–5. [Google Scholar]
- Bachoo, A.K.; Tapamo, J.R. A segmentation method to improve iris-based person identification. In Proceedings of the 2004 IEEE Africon, 7th Africon Conference in Africa (IEEE Cat. No. 04CH37590), Gaborone, Botswana, 15–17 September 2004; Volume 1, pp. 403–408. [Google Scholar]
- Fan, C.; Peng, Y.; Cao, C.; Liu, X.; Hou, S.; Chi, J.; Huang, Y.; Li, Q.; He, Z. Gaitpart: Temporal part-based model for gait recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 14225–14233. [Google Scholar]
- Uddin, M.Z.; Muramatsu, D.; Kimura, T.; Makihara, Y.; Yagi, Y. MultiQ: Single sensor-based multi-quality multi-modal large-scale biometric score database and its performance evaluation. IPSJ Trans. Comput. Vis. Appl. 2017, 9, 18. [Google Scholar] [CrossRef]
- Makihara, Y.; Nixon, M.S.; Yagi, Y. Gait recognition: Databases, representations, and applications. In Computer Vision: A Reference Guide; Springer: Cham, Switzerland, 2020; pp. 1–13. [Google Scholar]
- Bouchrika, I.; Goffredo, M.; Carter, J.; Nixon, M. On using gait in forensic biometrics. J. Forensic Sci. 2011, 56, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Iwama, H.; Muramatsu, D.; Makihara, Y.; Yagi, Y. Gait verification system for criminal investigation. Inf. Media Technol. 2013, 8, 1187–1199. [Google Scholar] [CrossRef]
- Lynnerup, N.; Larsen, P.K. Gait as evidence. IET Biom. 2014, 3, 47–54. [Google Scholar] [CrossRef]
- Uddin, M.; Ngo, T.T.; Makihara, Y.; Takemura, N.; Li, X.; Muramatsu, D.; Yagi, Y. The ou-isir large population gait database with real-life carried object and its performance evaluation. IPSJ Trans. Comput. Vis. Appl. 2018, 10, 5. [Google Scholar] [CrossRef]
- Hossain, M.A.; Makihara, Y.; Wang, J.; Yagi, Y. Clothing-invariant gait identification using part-based clothing categorization and adaptive weight control. Pattern Recognit. 2010, 43, 2281–2291. [Google Scholar] [CrossRef]
- Muramatsu, D.; Shiraishi, A.; Makihara, Y.; Uddin, M.Z.; Yagi, Y. Gait-based person recognition using arbitrary view transformation model. IEEE Trans. Image Process. 2014, 24, 140–154. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.; Muramatsu, D.; Takemura, N.; Ahad, M.; Rahman, A.; Yagi, Y. Spatio-temporal silhouette sequence reconstruction for gait recognition against occlusion. IPSJ Trans. Comput. Vis. Appl. 2019, 11, 9. [Google Scholar] [CrossRef]
- Hasan, K.; Uddin, M.Z.; Ray, A.; Hasan, M.; Alnajjar, F.; Ahad, M.A.R. Improving Gait Recognition through Occlusion Detection and Silhouette Sequence Reconstruction. IEEE Access 2024, 12, 158597–158610. [Google Scholar] [CrossRef]
- Rida, I.; Almaadeed, N.; Almaadeed, S. Robust gait recognition: A comprehensive survey. IET Biom. 2019, 8, 14–28. [Google Scholar] [CrossRef]
- Ahmed, M.; Al-Jawad, N.; Sabir, A.T. Gait recognition based on Kinect sensor. In Proceedings of the Real-Time Image and Video Processing 2014, SPIE, Brussels, Belgium, 13–17 April 2014; Volume 9139, pp. 63–72. [Google Scholar]
- Deng, M.; Wang, C. Human gait recognition based on deterministic learning and data stream of microsoft kinect. IEEE Trans. Circuits Syst. Video Technol. 2018, 29, 3636–3645. [Google Scholar] [CrossRef]
- Sah, S.; Panday, S.P. Model based gait recognition using weighted KNN. In Proceedings of the 8th IOE Graduate Conference, Okayama, Japan, 28–30 March 2020; pp. 1019–1026. [Google Scholar]
- Chao, H.; He, Y.; Zhang, J.; Feng, J. Gaitset: Regarding gait as a set for cross-view gait recognition. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 8126–8133. [Google Scholar]
- Lin, B.; Zhang, S.; Yu, X. Gait recognition via effective global-local feature representation and local temporal aggregation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 14648–14656. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Redmon, J. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Simonyan, K. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Vaswani, A. Attention is all you need. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2017. [Google Scholar]
- Dosovitskiy, A. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Mogan, J.N.; Lee, C.P.; Lim, K.M.; Muthu, K.S. VGG16-MLP: Gait recognition with fine-tuned VGG-16 and multilayer perceptron. Appl. Sci. 2022, 12, 7639. [Google Scholar] [CrossRef]
- Pushpalatha, K.; Neha, V.; Prajwal, P.; Ashraf, M.; Chiplunkar, C.H. ResNet-Based Gait Recognition: Leveraging Deep Learning for Accurate Biometric Identification. In Proceedings of the 2023 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), Mangalore, India, 13–14 October 2023; pp. 49–54. [Google Scholar]
- Mogan, J.N.; Lee, C.P.; Lim, K.M.; Muthu, K.S. Gait-vit: Gait recognition with vision transformer. Sensors 2022, 22, 7362. [Google Scholar] [CrossRef] [PubMed]
- Kittler, J.; Matas, J.; Jonsson, K.; Sánchez, M.R. Combining evidence in personal identity verification systems. Pattern Recognit. Lett. 1997, 18, 845–852. [Google Scholar] [CrossRef]
- Ross, A.A.; Nandakumar, K.; Jain, A.K. Handbook of Multibiometrics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; Volume 6. [Google Scholar]
- Zhan, H.; Kou, J.; Cao, Y.; Guo, Q.; Zhang, J.; Shi, Y. Human Gait phases recognition based on multi-source data fusion and BILSTM attention neural network. Measurement 2024, 238, 115396. [Google Scholar] [CrossRef]
- Qin, L.; Guo, M.; Zhou, K.; Sun, J.; Chen, X.; Qiu, J. Gait recognition based on two-stream CNNs with multisensor progressive feature fusion. IEEE Sens. J. 2024, 24, 13676–13685. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Zeng, Y.; Ye, C.; Xu, W.; Ben, X.; Wang, F.Y.; Zhang, J. Rethinking Appearance-Based Deep Gait Recognition: Reviews, Analysis, and Insights From Gait Recognition Evolution. IEEE Trans. Neural Netw. Learn. Syst. 2025, 36, 9777–9797. [Google Scholar] [CrossRef] [PubMed]
- Mehraj, H.; Mir, A.H. Person identification using fusion of deep net facial features. Int. J. Innov. Comput. Appl. 2021, 12, 56–63. [Google Scholar] [CrossRef]
- Makihara, Y.; Sagawa, R.; Mukaigawa, Y.; Echigo, T.; Yagi, Y. Which reference view is effective for gait identification using a view transformation model? In Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’06), New York, NY, USA, 17–22 June 2006; p. 45. [Google Scholar]
- Takemura, N.; Makihara, Y.; Muramatsu, D.; Echigo, T.; Yagi, Y. Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition. IPSJ Trans. Comput. Vis. Appl. 2018, 10, 4. [Google Scholar] [CrossRef]
- Yu, S.; Tan, D.; Tan, T. A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006; Volume 4, pp. 441–444. [Google Scholar]
- Makihara, Y.; Mannami, H.; Tsuji, A.; Hossain, M.A.; Sugiura, K.; Mori, A.; Yagi, Y. The OU-ISIR gait database comprising the treadmill dataset. IPSJ Trans. Comput. Vis. Appl. 2012, 4, 53–62. [Google Scholar] [CrossRef]
- Iwama, H.; Okumura, M.; Makihara, Y.; Yagi, Y. The OU-ISIR gait database comprising the large population dataset and performance evaluation of gait recognition. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1511–1521. [Google Scholar] [CrossRef]
- Bouchrika, I.; Nixon, M.S. Model-based feature extraction for gait analysis and recognition. In Proceedings of the Computer Vision/Computer Graphics Collaboration Techniques: Third International Conference, MIRAGE 2007, Rocquencourt, France, 28–30 March 2007; Proceedings 3. Springer: Berlin/Heidelberg, Germany, 2007; pp. 150–160. [Google Scholar]
- Yoo, J.H.; Hwang, D.; Moon, K.Y.; Nixon, M.S. Automated human recognition by gait using neural network. In Proceedings of the 2008 First Workshops on Image Processing Theory, Tools and Applications, Sousse, Tunisia, 23–26 November 2008; pp. 1–6. [Google Scholar]
- Yoo, J.H.; Nixon, M.S. Automated markerless analysis of human gait motion for recognition and classification. Etri J. 2011, 33, 259–266. [Google Scholar] [CrossRef]
- Preis, J.; Kessel, M.; Werner, M.; Linnhoff-Popien, C. Gait recognition with kinect. In Proceedings of the 1st International Workshop on Kinect in Pervasive Computing, New Castle, UK, 18 June 2012; Volume 14. [Google Scholar]
- Bari, A.H.; Gavrilova, M.L. Artificial neural network based gait recognition using kinect sensor. IEEE Access 2019, 7, 162708–162722. [Google Scholar] [CrossRef]
- An, W.; Yu, S.; Makihara, Y.; Wu, X.; Xu, C.; Yu, Y.; Liao, R.; Yagi, Y. Performance evaluation of model-based gait on multi-view very large population database with pose sequences. IEEE Trans. Biom. Behav. Identity Sci. 2020, 2, 421–430. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, Z.; Lin, D.; Tang, J.; Luo, B. Semi-supervised learning with graph learning-convolutional networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11313–11320. [Google Scholar]
- Teepe, T.; Khan, A.; Gilg, J.; Herzog, F.; Hörmann, S.; Rigoll, G. GaitGraph: Graph Convolutional Network for Skeleton-Based Gait Recognition. In Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021; pp. 2314–2318. [Google Scholar] [CrossRef]
- Teepe, T.; Gilg, J.; Herzog, F.; Hörmann, S.; Rigoll, G. Towards a Deeper Understanding of Skeleton-based Gait Recognition, 2022. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Anchorage, AK, USA, 19–22 September 2021. [Google Scholar] [CrossRef]
- Gao, S.; Tan, Z.; Ning, J.; Hou, B.; Li, L. ResGait: Gait feature refinement based on residual structure for gait recognition. Vis. Comput. 2023, 39, 3455–3466. [Google Scholar] [CrossRef]
- Ray, A.; Uddin, M.Z.; Hasan, K.; Melody, Z.R.; Sarker, P.K.; Ahad, M.A.R. Multi-Biometric Feature Extraction from Multiple Pose Estimation Algorithms for Cross-View Gait Recognition. Sensors 2024, 24, 7669. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.F.; Zhang, Z.; Shan, C.; Wang, L. Stronger, faster and more explainable: A graph convolutional baseline for skeleton-based action recognition. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020; pp. 1625–1633. [Google Scholar]
- Han, J.; Bhanu, B. Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 28, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zheng, N. Gait history image: A novel temporal template for gait recognition. In Proceedings of the 2007 IEEE International Conference on Multimedia and Expo, Beijing, China, 2–5 July 2007; pp. 663–666. [Google Scholar]
- Bashir, K.; Xiang, T.; Gong, S. Gait recognition using gait entropy image. In Proceedings of the 3rd International Conference on Imaging for Crime Detection and Prevention (ICDP 2009), IET, London, UK, 3 December 2009; pp. 1–6. [Google Scholar]
- Wang, C.; Zhang, J.; Pu, J.; Yuan, X.; Wang, L. Chrono-gait image: A novel temporal template for gait recognition. In Proceedings of the Computer Vision–ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete, Greece, 5–11 September 2010; Proceedings, Part I 11. Springer: Berlin/Heidelberg, Germany, 2010; pp. 257–270. [Google Scholar]
- Lam, T.H.; Cheung, K.H.; Liu, J.N. Gait flow image: A silhouette-based gait representation for human identification. Pattern Recognit. 2011, 44, 973–987. [Google Scholar] [CrossRef]
- Xu, W. Deep large margin nearest neighbor for gait recognition. J. Intell. Syst. 2021, 30, 604–619. [Google Scholar] [CrossRef]
- Junaid, I.; Ari, S. Gait recognition under different covariate conditions using deep learning technique. In Proceedings of the 2022 IEEE International Conference on Signal Processing and Communications (SPCOM), Bangalore, India, 11–15 July 2022; pp. 1–5. [Google Scholar]
- Suthar, O.; Katkar, V.; Vaghela, K. Person Recognition using Gait Energy Image, MobileNetV3Small and Machine Learning. In Proceedings of the 2023 IEEE 3rd International Conference on Technology, Engineering, Management for Societal impact using Marketing, Entrepreneurship and Talent (TEMSMET), Mysuru, India, 10–11 February,2023; pp. 1–6. [Google Scholar]
- Chen, Y.; Li, X. Gait feature learning via spatio-temporal two-branch networks. Pattern Recognit. 2024, 147, 110090. [Google Scholar] [CrossRef]
- Uddin, M.Z.; Hasan, K.; Ahad, M.A.R.; Alnajjar, F. Horizontal and Vertical Part-wise Feature Extraction for Coss-view Gait Recognition. IEEE Access 2024, 12, 185511–185527. [Google Scholar] [CrossRef]
- Kharb, A.; Saini, V.; Jain, Y.; Dhiman, S. A review of gait cycle and its parameters. IJCEM Int. J. Comput. Eng. Manag. 2011, 13, 78–83. [Google Scholar]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Zuama, L.R.; Setiadi, D.R.I.M.; Susanto, A.; Santosa, S.; Gan, H.S.; Ojugo, A.A. High-Performance Face Spoofing Detection using Feature Fusion of FaceNet and Tuned DenseNet201. J. Future Artif. Intell. Technol. 2025, 1, 385–400. [Google Scholar] [CrossRef]
- Uddin, M.Z.; Shahriar, M.A.; Mahamood, M.N.; Alnajjar, F.; Pramanik, M.I.; Ahad, M.A.R. Deep learning with image-based autism spectrum disorder analysis: A systematic review. Eng. Appl. Artif. Intell. 2024, 127, 107185. [Google Scholar] [CrossRef]
- Shiraga, K.; Makihara, Y.; Muramatsu, D.; Echigo, T.; Yagi, Y. Geinet: View-invariant gait recognition using a convolutional neural network. In Proceedings of the 2016 International Conference on Biometrics (ICB), Halmstad, Sweden, 13–16 June 2016; pp. 1–8. [Google Scholar]
- Alotaibi, M.; Mahmood, A. Improved gait recognition based on specialized deep convolutional neural network. Comput. Vis. Image Underst. 2017, 164, 103–110. [Google Scholar] [CrossRef]
- Min, P.P.; Sayeed, S.; Ong, T.S. Gait recognition using deep convolutional features. In Proceedings of the 2019 7th International Conference on Information and Communication Technology (ICoICT), Kuala Lumpur, Malaysia, 24–26 July 2019; pp. 1–5. [Google Scholar]
- Aung, H.M.L.; Pluempitiwiriyawej, C. Gait biometric-based human recognition system using deep convolutional neural network in surveillance system. In Proceedings of the 2020 Asia Conference on Computers and Communications (ACCC), Singapore, 4–6 December 2020; pp. 47–51. [Google Scholar]
- Balamurugan, S.; Raj, V.J.; Peter, S.J. Deep features based Multiview gait recognition. Turk. J. Comput. Math. Educ. (TURCOMAT) 2021, 12, 472–478. [Google Scholar]
Models | CASIA-B | OU-LP | OU-ISIR DBlow | OU-ISIR DBhigh |
---|---|---|---|---|
VGG-16 | 62.83 | 47.34 | 66.50 | 49.00 |
ViT | 46.81 | 69.88 | 42.50 | 65.00 |
ResNet-50 | 89.76 | 59.96 | 73.00 | 75.00 |
GoogLeNet | 53.62 | 63.44 | 51.00 | 52.00 |
EfficientNet-B0 | 69.06 | 64.34 | 63.00 | 64.00 |
DLF (ours) | 90.16 | 71.55 | 86.50 | 91.00 |
FLF (ours) | 90.45 | 77.80 | 93.00 | 90.00 |
Hybrid (ours) | 92.07 | 87.14 | 93.50 | 93.00 |
Models | CASIA-B | OU-LP | OU-ISIR DBlow | OU-ISIR DBhigh |
---|---|---|---|---|
VGG-16 | 46.20 | 50.14 | 47.95 | 48.02 |
ViT | 12.82 | 6.79 | 12.95 | 13.88 |
ResNet-50 | 3.78 | 10.71 | 5.13 | 6.01 |
GoogLeNet | 48.72 | 8.56 | 50.46 | 46.04 |
EfficientNet-B0 | 30.43 | 6.97 | 37.90 | 32.47 |
DLF (ours) | 3.02 | 6.17 | 3.88 | 1.92 |
FLF (ours) | 3.68 | 5.49 | 1.62 | 1.18 |
Hybrid (ours) | 2.73 | 4.08 | 1.94 | 1.41 |
Models | 0° | 18° | 36° | 54° | 72° | 90° | 108° | 126° | 144° | 162° | 180° | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|
VGG-16 | 56.10 | 58.87 | 53.23 | 50.00 | 73.17 | 75.81 | 65.85 | 63.71 | 57.26 | 70.97 | 66.13 | 62.83 |
ViT | 67.48 | 50.00 | 39.52 | 36.29 | 44.72 | 30.65 | 43.09 | 45.97 | 41.13 | 53.23 | 62.90 | 46.81 |
ResNet-50 | 88.37 | 95.16 | 88.71 | 82.26 | 90.24 | 87.10 | 90.24 | 90.32 | 84.68 | 94.35 | 95.97 | 89.76 |
GoogLeNet | 61.63 | 62.42 | 30.65 | 54.03 | 50.00 | 42.42 | 61.32 | 59.81 | 63.81 | 52.42 | 51.32 | 53.62 |
EfficientNet-B0 | 64.88 | 70.48 | 64.03 | 70.48 | 67.32 | 68.06 | 69.76 | 71.29 | 72.10 | 68.06 | 73.23 | 69.06 |
DLF (ours) | 90.32 | 87.10 | 86.29 | 91.13 | 91.87 | 91.94 | 91.87 | 88.71 | 93.55 | 94.35 | 84.68 | 90.16 |
FLF (ours) | 99.19 | 95.97 | 90.32 | 85.48 | 86.99 | 85.48 | 87.80 | 86.29 | 87.10 | 93.55 | 96.77 | 90.45 |
Hybrid (ours) | 93.50 | 91.13 | 90.32 | 92.74 | 91.87 | 86.29 | 94.31 | 92.74 | 93.55 | 91.94 | 94.35 | 92.07 |
Models | Accuracy [%] | Precision [%] | Recall [%] | F1-Score [%] |
---|---|---|---|---|
VGG-16 | 99.27 | 99.31 | 99.27 | 99.24 |
ViT | 99.12 | 99.22 | 99.12 | 99.10 |
ResNet-50 | 99.56 | 99.64 | 99.56 | 99.55 |
GoogLeNet | 99.34 | 99.36 | 99.34 | 99.32 |
EfficientNet-B0 | 99.63 | 99.67 | 99.63 | 99.64 |
DLF (ours) | 99.85 | 99.88 | 99.85 | 99.85 |
FLF (ours) | 100.00 | 100.00 | 100.00 | 100.00 |
HF (ours) | 100.00 | 100.00 | 100.00 | 100.00 |
Models | Accuracy [%] | Precision [%] | Recall [%] | F1-Score [%] |
---|---|---|---|---|
VGG-16 | 99.64 | 99.45 | 99.64 | 99.51 |
ViT | 99.58 | 99.40 | 99.58 | 99.46 |
ResNet-50 | 99.95 | 99.92 | 99.95 | 99.93 |
GoogLeNet | 99.06 | 98.60 | 99.06 | 98.75 |
EfficientNet-B0 | 98.93 | 98.40 | 98.93 | 98.58 |
DLF (ours) | 99.97 | 99.96 | 99.97 | 99.97 |
FLF (ours) | 99.97 | 99.96 | 99.97 | 99.97 |
HF (ours) | 99.97 | 99.96 | 99.97 | 99.97 |
Models | OU-ISIR DBlow | OU-ISIR DBhigh | ||||||
---|---|---|---|---|---|---|---|---|
Accuracy [%] | Precision [%] | Recall [%] | F1-Score [%] | Accuracy [%] | Precision [%] | Recall [%] | F1-Score [%] | |
VGG-16 | 99.50 | 99.67 | 99.50 | 99.47 | 99.63 | 99.67 | 99.50 | 99.58 |
ViT | 98.00 | 98.67 | 98.00 | 97.87 | 99.00 | 99.33 | 99.00 | 98.93 |
ResNet-50 | 99.67 | 99.61 | 99.83 | 99.47 | 100.00 | 100.00 | 100.00 | 100.00 |
GoogLeNet | 99.50 | 99.67 | 99.50 | 99.47 | 99.50 | 99.67 | 99.50 | 99.47 |
EfficientNet-B0 | 98.00 | 98.67 | 98.00 | 97.87 | 98.50 | 99.00 | 98.50 | 98.40 |
DLF (ours) | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
FLF (ours) | 99.75 | 99.67 | 99.60 | 99.77 | 100.00 | 100.00 | 100.00 | 100.00 |
HF (ours) | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Models | Accuracy [%] | |||
---|---|---|---|---|
CASIA-B | OU-LP | OU-ISIR DBlow | OU-ISIR DBhigh | |
GEINet [72] | 97.65 | 90.74 | 99.65 | 99.93 |
Deep CNN [73] | 25.68 | 5.60 | 83.81 | 87.70 |
CNN [74] | 98.09 | 89.17 | 99.37 | 99.65 |
CNN-2 [75] | 94.63 | 48.32 | 96.73 | 89.99 |
Deep CNN-2 [76] | 86.17 | 45.52 | 95.21 | 96.18 |
DLF (ours) | 99.85 | 99.97 | 100.00 | 100.00 |
FLF (ours) | 100.00 | 99.97 | 99.75 | 100.00 |
HF (ours) | 100.00 | 99.97 | 100.00 | 100.00 |
Exp. No. | No. of Models | Accuracy [%] | ||
---|---|---|---|---|
DLF | FLF | HF | ||
1 | 2 | - | 99.78 | |
2 | 3 | 99.85 | 99.85 | - |
3 | 4 | - | 99.93 | 99.93 |
4 | 5 | 99.85 | 100.00 | 100.00 |
Exp. No. | Stage 1 (FLF) | Stage 2 (FLF) | Stage 3 (Single Model) | Final Fusion (HF) | Accuracy [%] |
---|---|---|---|---|---|
1 | VGG-16 + ViT | ResNet-50 + GoogLeNet) | EfficientNet-B0 | DLF (D1, D2, D3) | 99.85 |
2 | VGG-16 + ResNet-50 | ViT + GoogLeNet | EfficientNet-B0 | DLF (D1, D2, D3) | 99.78 |
3 | VGG-16 + GoogLeNet | ViT + ResNet-50) | EfficientNet-B0 | DLF (D1, D2, D3) | 99.71 |
4 | VGG-16 + EfficientNet-B0 | ViT + ResNet-50 | GoogLeNet | DLF (D1, D2, D3) | 100.00 |
5 | ViT + ResNet-50 | VGG-16 + GoogLeNet | EfficientNet-B0 | DLF (D1, D2, D3) | 100.00 |
6 | ViT + GoogLeNet | VGG-16 + ResNet-50 | EfficientNet-B0 | DLF (D1, D2, D3) | 100.00 |
7 | ViT + EfficientNet-B0 | VGG-16 + ResNet-50 | GoogLeNet | DLF (D1, D2, D3) | 100.00 |
8 | ResNet-50 + GoogLeNet | VGG-16 + ViT | EfficientNet-B0 | DLF (D1, D2, D3) | 100.00 |
9 | ResNet-50 + EfficientNet-B0 | VGG-16 + ViT | GoogLeNet | DLF (D1, D2, D3) | 100.00 |
10 | GoogLeNet + EfficientNet-B0 | VGG-16 + ViT | ResNet-50 | DLF (D1, D2, D3) | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, K.; Tuhin, K.A.; Bapary, M.R.I.; Doula, M.S.U.; Alam, M.A.; Ahad, M.A.R.; Uddin, M.Z. MMF-Gait: A Multi-Model Fusion-Enhanced Gait Recognition Framework Integrating Convolutional and Attention Networks. Symmetry 2025, 17, 1155. https://doi.org/10.3390/sym17071155
Hasan K, Tuhin KA, Bapary MRI, Doula MSU, Alam MA, Ahad MAR, Uddin MZ. MMF-Gait: A Multi-Model Fusion-Enhanced Gait Recognition Framework Integrating Convolutional and Attention Networks. Symmetry. 2025; 17(7):1155. https://doi.org/10.3390/sym17071155
Chicago/Turabian StyleHasan, Kamrul, Khandokar Alisha Tuhin, Md Rasul Islam Bapary, Md Shafi Ud Doula, Md Ashraful Alam, Md Atiqur Rahman Ahad, and Md. Zasim Uddin. 2025. "MMF-Gait: A Multi-Model Fusion-Enhanced Gait Recognition Framework Integrating Convolutional and Attention Networks" Symmetry 17, no. 7: 1155. https://doi.org/10.3390/sym17071155
APA StyleHasan, K., Tuhin, K. A., Bapary, M. R. I., Doula, M. S. U., Alam, M. A., Ahad, M. A. R., & Uddin, M. Z. (2025). MMF-Gait: A Multi-Model Fusion-Enhanced Gait Recognition Framework Integrating Convolutional and Attention Networks. Symmetry, 17(7), 1155. https://doi.org/10.3390/sym17071155