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Abstract: We extend the Landau theory of bent-core mesophasdsd-wave high-d
superconductors by considering additional secondasgudo-proper order parameters.
These systems exhibit a remarkable analogy reldieig symmetry groups, lists of phases,
and an infinite set of physical tensors. This agalbes upon an internal dual structure
shared by the two theories. We study the dual ¢operamansforming rotations into
translations in liquid crystals, and gauge symrastmto rotations in superconductors. It is
used to classify the bent-core line defects, andrnialyze the electronic gap structure of
lamellar d-wave superfluids.
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1. Introduction

The unconventional class of liquid crystals discedeone decade ago, which is constituted with
non-chiral bent-core molecules [1], presents a pictymorphism [2] with extraordinary features and
symmetry properties, the most prominent being thentneous onset of chirality in the ordered
smectic phases [3]. Despite many attempts to desthese phases with acrobatic combinations of
classical order parameters [3-6], smectic densayes, polarization, and tilt vectors, a simpler and
more elegant description involving a single vest@ve order parameter [7,8] seems to us necessary to
account of the available experimental data [7+®]pdrticular, from the thermodynamical point ofwie



Symmetry010, 2 16

the fact that a direct transition occurs commordgnizen the isotropic liquid and the ordered phases
much more likely when a single order parametenvwslved. This permits us to predict the structure o
the stable phases together with their thermodyranbehaviour [7,8], and more specifically the
behaviour of several important physical tensoruleisig, for instance, the biaxiality, electro-apti
response and chirality of the predicted structutesaddition, we have successfully extended our
model to almost all observed bi-dimensionally amdimensionally ordered bent-core phases [9].

This single order parameter can be equivalenthnispa by either a polarization wave or a tilt
wave, since they transform according to the saredurcible representation of the non-chiral eucldea
group when the wave vector is different from zét@ombines thus in a single object the degrees of
freedom involved by distinct classical order partaree We have shown in Refs. [7,8] that this model
permits to foresee the stabilization of four ordephases, denoted by C, R, and EL corresponding,
respectively, to linear, circular and elliptic patations of the order-parameter wave. R describes
smectic G phase predicted in 1992 [10] and then observdxk-core systems [10,11], EL describes
the commonly observed B2 phase [12,13], and we haeposed that C is an unmodulated
approximation of the intriguing B7 phase found 892 [2]. In these phases the polarization and tilt
waves are "parallel”, in a sense explained beloawéver, we shall show that when one permits the
two waves to be "non paralleli'e., relatively shifted along the smectic normal datigely rotated,
four additional phases can be stabilized. The rea$dhis unusual extension of the polymorphism,
which is characteristic of transitions with contus-symmetry breakdowns, has been described
within the context of superconductivity in Ref. [14

The bent-core theory exhibits a quite remarkablalagy [7] with the theory of d-wave
superconductors in 2D systems [15], such as higkaihellar superconductors or unconventional
superfluid films. This analogy relies upon the fdw@t the two theories have the same "image group”
[16], that is, the same set of matrices associaitidthe symmetries of the parent, isotropic ormai
phases. The main consequence of this peculiarthyaisboth systems have the same list of phasés wit
analog symmetry groups, the same theoretical ptiageams, and the same thermodynamic variations
of the primary and secondary order parameters.irdt $ight the analogy is rather formal since a
common matrix can be associated with distinct da&yametry elements in each system. For instance,
a gauge symmetry in superconductors yields the saatgx as a translation in liquid crystals. Thus,
we do not expect a common behavior of the sameigadyguantities. However, the analogy is more
subtle for it relates in fact the behaviors of idist, but analog, tensors. For instance, the maogos
polarization normal to the smectic planes exhibkactly the same thermodynamic behavior as the
linear magneto-electric suceptibility in supercoctdus. More precisely, both cancel in analog séts o
ordered phases, with the same critical exponents.

This universality property relating distinct system a well-known feature of the Landau theory of
phase transitions [16-18]. When the image grougmasll, the physical consequences of the analogy
are poor, and the number of analog systems is,largeconversely when the image group is large. For
instance, deGennes used such an analogy betweainirngtpsuperconductors and smectic A liquid
crystals [19], on the one hand, and between nestiarfluids and smectic C [20], on the other hand.
These two analogies bear much information becawsanmage groups are continuous. In the first
analogy gauge symmetries correspond to translatioSsnectic A, while in the second analogy they
correspond to rotations in Smectic C. In both cdkesorder parameter is bidimensional, describing
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density waves, on the one hand, and the moledlilaor the other hand. deGennes extended further
the former analogy by proposing a liquid crystahlag of the superconducting gauge-type coupling
with the magnetic field [21-23], which goes muclydred the coincidence between image groups.

In the case of bent-core mesophases the image gantpins four connected bicontinuous parts
[7,8]. This very large group yields thus a still mdruitful analogy, which permits to relate prexis
the rich polymorphisms of the two systems, andrédinite set of tensors accounting for most of their
physical properties. It mixes the two deGennesamie$ since both rotations and translations are
simultaneously broken in the bent-core ordered piesses. We shall use this analogy to complete the
d-wave theory, and to predict the behavior of itbke phases. In particular, we shall focus atbenti
on the properties of the electronic excitation spea, which is a key physical feature of these exyst
crucially depending on symmetry considerations.

The analogy is complicated by the dual internalcdtire of the two theories. Indeed, the image
groups are products of two isomorphic one-dimeraisabgroups, which can be interchanged without
modifying the formal structure of the theories. Shiuality relates rotations and translation in the
liquid crystal system, and rotations and gauge sgtrias in superconductors. In both cases it defines
an inner automorphism of the bicontinuous groupiclviis realized by a dual operator permuting its
subgroups. The fact that the free energies areriantaunder this operator yields many interesting
consequences. Firstly, it permits to classify ladl bbjects involved in these theories, phases, gtmgm
groups, and physical tensors, into either self-cigécts or dual-conjugated pairs, revealing many
non-trivial features of these systems. Secondlgrovides a deep insight into both mathematical and
physical aspects of the theories. We shall showanticular how the classification of line defeats i
bent-core phases results from the dual charactiweadrder parameter.

2. The Vector-Wave M odd

The primary order parameter of the vector-wave rhdéscribing ordered bent-core mesophases
[7,8] is spanned by a transverse polarization V\Ta@:

P(2) = p, coskz+¢,) & + p, coskz+4,) & (1)

where the axis Oz is parallel to the wave ve&toso that its two components remain parallel to Ox
and Oy. p, py, # andg, are the real amplitudes and phases of the wawe cracteristic features

of I5(z) may be more conveniently expressed in termteefollowing complex amplitudes :

?y )

m=pe?" = pd% -ipe? | n,=p,e? =pe? -ipe’
Although this order parameter contains only foumponents,7,,n7:*.1, *, the vector wave
belongs in fact to an infinite-dimensional irrechlei representation of the Euclidean group ®(B,
where O(3) is the orthogonal group generated bgtimots and inversion, ancg TS the 3D continuous
translation group. It is spanned by an infinitefatvaves propagating along all the directionspaice.
However, since for stabilizing ordered smectic-tgbase one needs to consider only the two parallel
wave vectorsk =k €, and K appearing in Eqg. (1), one can restrict the symynatralysis to the
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subgroupD,,, x T3 of O(3)x T3 leaving the setlf and 42} invariant. D, X T3 is generated by the
rotationsCy around z, the space inversion |, one mirror plageparallel tok and the translations; T
parallel to Oz. The action of these symmetrieshendomplex amplitudesy(,7,,n,*,17,*) is given by
the matrices:

ikt (3)

One can refine the description of the symmetry4irgamechanism by considering a secondary
wave A (z) representing the mean tilt vector of the madlesilocated at position z :

A =a, coskz+y,) & + a, coskz+y,) &, @)

where e, and éy form a basis of unit orthogonal axial vectors. Tdwmmplex amplitudes oh are
defined as in Eq. (2) :

—ad? — g Q¥ _in o N 77 S 17 M v
S=xe t=ae T -iae) , H=apeti=ae TX-iae

(5)
The corresponding matrices B, x T; are deduced from those in Eq. (3) by changingityes of
the inversion | and of the mirror plarg, .

The presence of two continuous symmetries in (3)ligs that the order parameters split into two
“Goldstone anglespr andgy :

_PR+ PR _#+4; Yt

R 2 4 4

P, A (6)
g Bt bt w-w;
T2 7 4 4

and six “energetic components™ On the one hamndaaand o, ,0,, which describe the shape i
andP separately, and, on the other haqﬁa,— ¢Q, ¢TP —¢¢ which describe the relative orientation
and z-position of the two wavegg is naturally associated with the subgroup genédrhterotations
and the space inversion | since it transforms as:

Cofr=¢r— ¢ andTiPr = ¥R

OyPr = —9r andlgr = ¢R
whereasp is associated with translations and the mirrongla, since:
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Copr = ¢7 andTidy = o7 —kt
|1 =—¢7 and oyt = @7
In a single domain of any ordered phgteandg; can be set to zero by suitably choosing the
coordinate frame. In the sequel we shall often iaihf assume such a choice.
Eight phases are stabilized. In a first set of foliases already described in Refs. [5] the twororde
parameters are “parallel” (in a broad sense ingligathat the symmetry groups éf(z) andl5(z)
coincide). In this set all the phases, denoted pR,LC and EL, satisfy the "parallelism” constraint

Pr=gR+5. $T =47 +3 (modn).

L : Isotropic liquid.

R : Linear phaseA andP are both linearly polarized. The plane of poIatiizraofA is normal to
that of P and the maximums of the primary wave coincide Witk nodes (zeroes) of the secondary
wave, and reciprocally. Its symmetry is the norahorthorhombic space group Pmma.

C : Circular phase The two waves are circularly polarized, ahds everywhere parallel t8. Its
chiral helical symmetry is0;22 (generated b, T, and U,).

EL : Elliptic phase The two waves are elliptically polarized. Theteys of elliptic axes oP and
A are parallel so that the two fields are paralkepasitions where they are either maximum or
minimum. The group is R22.

In the second set of four phases, which were nosidered in [7,8], the polar and axial waves are
no longer “parallel”:

C’ : The two waves are circularly polarize&l(z) is shifted along z with respect El(z) so that
they are turned everywhere to the same aggle ¢, . The group iso,.

: The two waves are still linearly polarized bbe ttwo correspondlng planes are no longer
perpendlcular The plane & is rotated with respect to the pIanerby an anglee,zﬁT ¢T The
relationships between the maxima and the zerod¢Beofwo waves in R persist in R’. The group is
P21/m

R” : The converse situation occurs in R”. The twoapahtion planes are again perpendicular, but
the maximums of one wave are now shifted alongth vaspect to the zeroes of the other wave to a

distance RAz = ¢g - ¢£—§ . The group is Pina.

EL’ : The two waves are elliptically polarized andeated along independent directions. The group
is P2.

We present in Fig. 1 schemes of the molecular &tres associated with the various ordered phases
and the group-subgroup relationships characteristig polymorphism. We have discussed in our
previous articles the assignment of the observedgiwith our predictions for unprimed phases and
2D and 3D structures stabilized when one consisiersral waves with non-parallel wave vectors.



Symmetry010, 2 20

Figure 1. (a) Group-subgroup relationships between the ordelhedgs(b) Scheme of the
molecular organization in the various stable phastdhe vector-wave model. The
difference between R and R' is rather subtle: (i¢ @irection of the polarization in R' is
not fixed by symmetry, so that the molecular plaae rotate when the temperature is
changed. (ii)) The molecular fluctuations are legametric in R', which cannot appear in
the figure since we represent only the mean oriemaat the positions of maximum

density.
R ._' EL E]

CIRCULAR C
w2

ELLIPTIC EL'
P2

Let us notice that our thermodynamical analysibased on the homogeneous part of the free
energy which does not contain the gradient invasiar the Ginzburg-Landau approach. The model
yields only homogeneous stable states. For themolgeneous states it gives the access only to their
local structure, but not to the global one. Weehahown in Ref. [7,8] that homogeneous single
domains of the phases C and R can be stabilizede \&h, because of its spontaneous chirality, is
automatically submitted to an incommensurate lamfjital deformation. We expect also that this
phase presents transverse deformations, which @mdount for the complex inhomogeneous spatial
structure reported experimentally in the bent-qirase B7.

Numerous phases and subphases have yet been abgevent-core systems. They are usually
identified by characteristic textures, while theiolecular organization and space groups are oftén n
known exactly. In particular variants associatethva single texture can be associated, or not, with
distinct symmetriesj.e. distinct phases. We have identified sixteen amtirgg main phases and
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subphases within the vector-wave model. On the lbaed, most of them are two- or three-
dimensional, so that waves with non-parallel wagetors participate to the ordered structure. On the
other hand, the one-dimensional phases are (poonly) identified as follow: Sm&R, B2=EL, C'

or EL', B6=R' or R", B7= C, C' or EL', SmO=EL', a8 is a subphase of EL' obtained with an
additional homogeneous order parameter.

The physical behavior of each phase is characted®ea number of secondary tensors waves.
Among the most important one may notice: (i) Dgnsraves, which give the phases R, R’, R”, EL
and EL’ the structure of layered smectic phas@sMacroscopic polarization along Oz arising in R”
and EL’. (iii)) Anisotropic components of the optensor in the monoclinic and orthorhombic linear
and elliptic phases.

In order to classify the infinite set of tensorsves let us introduce the following convenient
notation, in which in most cases two integers, rgrfrep], are sufficient: One [n] indicates its tem
properties, and the other [p] its wave vector. Bhegmbers refer to the irreducible representatadns
the Euclidean group O(8)'3 For non-zero wave vectors, the tensor waves assitiked according to
the 2D-rotation little group SO(2) of .

(a) First, let us denote a 2D-tensor of rank n>thwhe symbol, and, for n=0 by its parity with
respect to the mirror plane, (scalarry, and pseudo scaldy)). For instance, a polar vector
(Vx,Vy,V2), splits into one 2D-vectorr{:Vy,Vy) plus one even 2D-scalar,(V,).

(b) Since all the ordered phases are periodicehsor waves have wave vectd?fgplz (p integer).

At p=0 there is a single homogeneous “wave”, whiah be either even or odd under I. Hence, the
classification of waves is similar to that of 2Dwers in (a), and one may use the same synf%s
Iy andry for representing the corresponding waves.

We shall denote now symbolically W)@ Drl(oi) a tensor wave of rank n and wave vecthr. fts
dimension is either 1Irf 0 r7), 2 (GO, orr,0rg) or 4 (C,0T,). The index n indicates how the
wave transforms under rotations, and p how it fanss under translations. For instance, there are
two polar-vector waves with wave vector One transverse wavé, (0T, ) which coincides with the
primary order parameter of our model, and one koiigal wave (5 01).

We classify these tensor waves with respect tagthap G=D,,, X T, which is isomorphic to the
abstract group O(Z) O(2). The first copy of the 2D orthogonal group PiRC,,,, generated by the
rotations about Oz and the mirror plagig. The second copy contains the groupofl translations

along Oz (mod. 2/k since we consider only waves with wave vectd?s) pnd the space inversion |.
Thus the image group can be rewritten as:

G =Dun xTy= (Ci, xCg) O (Ty xCy)= Or(2) U O1(2) (7)

wherex indicates the semi-direct product, anidthe direct product. The indices R and T denote the
rotation and translation O(2)-subgroups of. @s={e, g, } and G={e,I} (rigorously speaking the
actual image group is rather &, C, T} since C, T, is represented by the identity matrix in

Eq. (3)).
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The previous classification of tensor waves is diyerelated to the representations of. Ghe
irreducible representations off@) and @(2) are both Iabeleﬂg , o andl™ , (n positive integer).

For Qk(2), Mo andlg represent 2D-scalars, respectively even and ot iespect tao,, andl ,
represents a 2D-tensor of rank n. I(®), I o andlg represent homogeneous quantities respectively
even and odd with respect to |, ahgdrepresents a wave with wave vectd&.pThen the full set of

tensor waves can be classified according to theviiodg irreducible representations ok@) Or(2) :
I'g O Fg : homogeneous scalar, invariant undggrand | (e.g., density).

Mo O : homogeneous scalar, invariant undgrand odd under | (B).

Mo O g : homogeneous scalar, odd undgrand invariant under | (R).

o 0Ty : homogeneous scalar, odd undgrand | (chiral indexy).

MO T : homogeneous tensor of rank n, symmetric ungafl AP for n=1).

MO T : homogeneous tensor of rank n, odd undef} (P for n=1).

I'g 0T p: scalar wave with wave vectoEp(density wave or fz) for p=1).

o O T p: pseudo-scalar wave with wave vectér (e.g., A(z) for p=1).

MO, : tensor wave with rank n and wave vectdr {®.g., order parameteﬁs(z) andl5(z) for
n=p=1).

The chiral indexy is a pseudo scalar, which vanishes in non-chinasps and changes its sign in
two domains of opposite handedness in chiral ph#s€5andP® are homogeneous axial and polar

vectors, whereas (2) andl5(z) are axial and polar transverse vector wavek wive vectok . The
transverse components of the axial ve&d? represent the tilt vector. Its longitudinal compohA?
can be interpreted as the componegtt,y, of the second-order electroclinic tensgr defined by
JA P =ty EEy, which describes the action of high electric fietsh the homogeneous tilt vector. The
dielectric and optic tensors gy — £yy, éxy} are examples of ;[ [, Whereas the first-order

electroclinic tensor &, - &, &, }, where A = £ E,, provides an example 6f,0 Iy .

These tensors permit also to visualize geometrangtational and rotational) aspects of the wave
P(z). To isolate its translational properties letda$ine the scalar function :

M(z) = P(2)P(z) = n_+A: Cos(2kz) + B Sin(2kz) (8)

where n the scalarg? + 02, and[A,,B,]=2p,0, [cosi¢g — ¢,),~sin(¢, — ¢,)] transforms a$, 0Ty .

To visualize M(z) we consider M and kz as the riaail angular polar coordinates, respectivelynn a
abstract plane where the function M(z) defines thenlosed orthorhombic curve (Fig. 2a). It is
invariant under a rotatiof,, and it rotates under a translation Ih the EL-phase the curve has the
shape of a double balloon which becomes circuléihenC-phase, and which splits into two parts & th
R-phase. The splitting results from the canceltattbP(z) at periodic positions, denoted by “nodes” of
the wave, along z in R. The presence of a nodesscated with specific symmetry elements that we
shall discuss below. Let us notice that a "dualcdtion of the angular properties of the wave is
provided by thel, O, -type tensor [A.,B.]=2p,0,[-Ccosig + ¢,),Sin(¢ + ¢,)]. Finally, these two
tensors and corresponding figures can be simildefined with the secondary wa@e(z) in order to
distinguish graphically primed and unprimed phases.
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All tensors and tensor waves (except density) vamghe isotropic liquid and can get finite values
in one or several ordered phases. The list of tineesponding "permitted” tensors is given in Table
for all the ordered phases.

Figure 2. (a) Graphic representation of the unprimed bent-cdiasps. The angular
coordinate represents the position z in the urlit (@ecomplete rotation in the graphic
plane is associated with a translation of one oelt A1), whereas the radial coordinate
represents the modulus of the polarization at osiz. In the circular C phase the
polarization modulus does not vary with z. In Ek thodulus varies periodically yielding
a bean-shape curve, but it vanishes nowhere. heRrall axis of the bean vanishes along
directions corresponding to the nodes of the prddéion wave(b) Angular variations of
the wave function modulus in the superconductirgfest It is isotropic in phase I,
orthorhombic without nodes in phase lll, and exsiliour nodes in phase II.

(@) bent-core mesophases (b) superconducting phases

Phase R Fhase U ( ! Phase |
Jp— Y Phase Il o

(/ . Jara— . P(Z) kz / _ I}Nf ' >
X e C} — ("R

Phase EL
T ey Phase Il

s \\“\/ )
( P 4 s (/5 \J

Table 1. First line: Tensor-wave types. Second line: Phalsieeaning of the waves. The
superscript (0) indicates that the tensor is homegeas. For each tensor wave, the list of
phases in which they take non-zero values is itelcen the third line.

o'00Fe |F o |ToOlg |Fo0OFy |Fo Ol |[Th0OTg |[FaOT,
Ol FaOro
polarization |tilt A |chiral Pz) n=1 |AJ2) p=1|PY PPn=1|A () or P (2)
PO index y |AY AVp=1 n=p=1
C R"EL C R |C C EL|neven neven. |neven: n+p even :
EL EL R,R,R” REL,EL'\R"EL,EL" |R,EL,EL',R",R”
EL,EL’ n=p:C,C
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One sees that if a phase is symmetric under tlevs@tationC,,T,,,, then the tensor waves with
n+p odd vanish. This rule forbids, for instancensverse ferrielectricity (becausé” EP§°’ =0) and
ferriclinicity (A =A{"=0), on the one hand, and longitudinal antiferrceleity (cancellation of the

wave B(z) with periodA), and anticlinicity (wave Xz) with periodA), on the other hand. Then, the
ordered phases can only be transversely antifearm longitudinally ferro- electric or -clinic.
Likewise, only even harmonics of the density waga condense, so that the smectic character of the
phases corresponds always to a bilayer orderingdoperiod =1/2).

More generally, Table 1 displays the main physieffiects permitting one to distinguish
experimentally the various ordered phases arisirtge model :

() In C, all the tensor waves with n=p condensd are circularly polarized. The corresponding
polarization has, of course, always the same haredsdas the structure. Since phase C is chyral,
takes opposite values in domains with differentdemimess. C remains non-smectic (zero density
wave), non-polar, and optically uniaxial. In costrain C' a homogeneous polarization’{Ptakes
place along the helix axis. Moreover the preserice ltomogeneous longitudinal tilt vector along Oz
(A io)) leads to a macroscopic second-order electrocdiffect.

(if) R is smectic (with periodi /2), non-chiral, and optically biaxiakfy). The R~ R’ transition is
characterized by the onset of a second-order eldutic effect (k. +tyy;). But, in contrast to C’, no
homogeneous polarization arises along the helig. &onversely, at the RR” transition the system

becomes longitudinally ferroelectric, but withoatyasecond-order electroclinic effect.
(iif) At the C- EL transition first-order electroclinic coefﬁcien(sif) arise, and the phase becomes

optically biaxial ;) and smectic. At the R EL transition, the system becomes chirgl) @nd first-
order electroclinic éijc). At the EL- EL’ transition the system becomes homogeneouslarzad

along Oz, and begins to exhibit a second-ordettrelelmic effect (k.+tyy,). Finally, at the R- EL’
transition the system becomes chiral, polar aloagn@h first-order electroclinicity, whereas at the
R” - EL’ transition the chirality is accompanied by aditudinal pseudo-scalar wave with peridd2
and a second-order electroclinic tensor.

Table 1 exhibits spectacular regularities: In lal phases, except R’ and R”, if a tensor wave @f th
typel x0T m (R, T=n,, or,) is permitted, then the “dual” tensbrm 0 I r)is also permitted.
Furthermore, if” g0 I () is permitted in R’ the ) I &) is permitted in R”. Finally, all tensors of
the symmetric typel{m)J I m) and only them, are permitted in C. The followsegtion is devoted to
explain and formalize these regularities that wadlstenote by theotation/translation dual character
of the vector-wave model.

3. TheDual Symmetry

The properties of the two Goldstone angbgsandgi shown in Eq. 6 together with the previous

classification of tensor waves reveal the dualdhating translations and rotations in the vectowava

model. This duality originates (i) in the structuoé the image group G(EQ. 7), in which the
translation subgroup,k C; is isomorphic to the rotation subgradg,, (ii) in the fact that the tensor-

wave representation associated with the order pﬁstmrﬁi (z) isT, O 7, in which the indices have the

same unit value (n=p=1) for its tensor (rotatioasyl wave (translations) aspects. This duality eslat
different symmetry operations (e.g., rotatidhsto translationsT,, ), different tensor fields (e.g.,
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O, tol, OrM) different components of the order paramegr (o0 ¢r) and different phases (e.g.
R’ to R”). It permits one to explain also variougesific properties of “self-dual” objects such as
Colyk, M1 L T10r the C-phase.

The duality idea can be rigorously formalized byame of a “dual operator” D, defined by the
following matrix in the primary order-parameter e@&/,,/7,,/7,*, 1 *):

0

0
0 ©)

o o o
O r O O
o o+ O

and by the same matrix in the seconda#dy,{,,&* & *) space. The fact that D transforms
translation-like objects into rotation-like onesnmade clear by using the following notation for the
basis functions in the order-parameter spades:} =gtk €., where the first index * is associated
with the wave parte(iikz) of the basis function (appearing in Eqgs. (1) & and the second index
with its vector parté, =& +ig,). Then, D simply permutes the wave and vectorciestiDlab) = |ba)
(note that any combination of D with a symmetryGaf might be used as well as the definition of a
possible duality operator). Furthermore, D permates the elements ofg(®) with those of @(2):

DC,TD=Cy Ty » DID =0,. (10)

If one combines D with G then one finds an “extended” groéq which contains “dual-free”
elements g (belonging to, §5together with dual combinations gD of D with dfiae operationséL
is not a symmetry group in the usual sense becBuge a classificatory operation, which has a
descriptive role, and not @ynamicalsymmetry constraining the physical propertieshw& system.
However, the free energy of the vector-wave modeinvariant under D, so that the list of low-
symmetry phases and their thermodynamic propenaes well-defined dual features (e.g., dual pairs
of phases appear in symmetric parts of the thealgbhase diagram). This makes a classification of
the phases based on the duality operator consiséémdenote b)éph the extended symmetry group
of the phase "ph" (=C, R, EL, R’...), defined as sgroup ofél_ Ieavingls(z) andA (2) invariant.

In the domain obtained by canceling the anglgsand¢t the extended groups of C, R, and EL
contain D itself. This property is reminiscent det“magnetic groups” in which the time-reversal
operation (formally analogous to D in our approatiay be or not combined with spatial symmetries.
When a group contains the time reversal, it charesets the properties of a paramagnetic structure
(denoted by G1’ in Shubnikov’s notation, where Gy space group). However, this classification is
not directly relevant for duality because D canpbesent in the group of one domain of a phase and
absent in another domain (where it is replaced rinther possible duality operator gf)g Thus, it
turns out to be more convenient to distinguish eetw“dual-free groups” (containing only dual-free
operations) and “dual groups” (containing dual atiens). The unprimed phases (R, C, EL) have dual
groups while the primed phases (C’, R’, R”, EL'vbalual-free groups. In a phase with a dual group i
is always possible to find one domain (by setting two Goldstone phases to zero) in which D is
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present. Accordingly, we use the Shubnikov’s notaapplied to this special domain for denoting the
extended symmetry groups of the unprimed phasép(ﬂs Gpnl' whereas in the primed phase
Gph = Gph-

Unlike time reversal, D does not commute with b# elements of G It commutes only with the
operationsC,T; provided thatg - kt = n7 (n integer) and with the twofold axesdand Uy (or with a
different pair of perpendicular twofold axes if od@ooses another definition for D). We denote such
operations as “self-dual” (they form a group codeg with that of a cholesteric). For the non self-
dual operations g one can thus define their duajugate DgD (DgD=g when g is self-dual, because
D? is the identity operation). This permits one tokea more subtle classification of the low-
symmetry groups that splits them into “self-duabugys” (which contain only self-dual operations),
“globally self-dual groups” (such thatdi})h D=éph) and non-self-dual groups. In the latter Cé@ﬁ
is associated with its “dual-conjugate’filgh D. Any dual group is automatically globally selfaluC,

C’, EL and EL’ are self-dual, R is globally selfaluand R’ and R” are non-self-dual phases whieh ar
mutually dual conjugated. The analogy between tduahd time reversal is correct only for the self-
dual groups, since in this case D is present ithalldomains of the dual phases. C and EL are then
analogous to paramagnetic structures whereas CERhdre analogous to ferromagnetics.

In order to discuss the consequences of this @lzeson let us first extend the duality idea to
tensor waves. A set of measurable physical quastitiansforming ak, 0 I, (a,bs,,;,1,2,3...) is
either “self-dual” if a=b or associated with itsual-conjugate” transforming ds, [l I, . For instance,
the order-parameter modulu,sf(+p%, which transforms aﬁa 0 I‘J) and the chiral indey are self-
dual scalars, whereas the order parameﬁéﬁ andA (z) are self-dual vector waves. On the other
hand, the homogeneous polarizatidfi Bnd the homogeneous “tilt vector’®Aare dual-conjugated
scalars. The homogeneous tilt vector in the x-yn@lgA” A") is dual-conjugated with the first

X

harmonic {.e., with wave vectoﬂZ) of the density wave, whereas the homogeneousipati@n
(P P is dual-conjugated with the first harmonic of tterality wave y (). The macroscopic optic
tensor €x—£&yy, £xy) (Second-rank homogeneous tensor) is dual-corgdgatth the second harmonic
of the density wave.

The main physical consequences of the duality résrh the following fact: Whenever a dual-free
symmetry g forbids the existence of a tensor wamespme of its components) transforming as
N0y, its dual-conjugate DgD forbids (the same comptsedf) [, I,. For instance, the
inversion | cancels the three componenfs &nd (B ,P{") of the macroscopic polarization, then the
mirror plane g, =DID cancels the homogeneous tilti%and the first harmonic of the chirality
wavey (z). Consequently, in a globally self-dual phase fttrbidden tensor waves are either self-dual
or appear as dual-conjugated pairs. The same pyomecurs for the allowed tensor waves.
Furthermore, allowed dual-conjugated tensor waweg rsimilar thermodynamic properties : They
vanish at the same temperature with the sameairdiponents. Analogously, in the dual conjugated
phases R’ and R”, whenever a tensor wave is fodnd@r allowed) in one phase, then its dual
conjugate is forbidden (or allowed) in the otheagd (with the same thermodynamic behavior):

1- In the C-phase the homogeneous polarizatigh,P®) and tilt vector (47 ,A() are forbidden,
then their dual-conjugates, namely the first hanmasf the density wave and qaf(z), are also

forbidden. Moreover, © forbids any homogeneous tensor (except scalard) arcording to the
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previous duality rule, any scalar wave. Thus, @Gé&croscopically 2D-isotropic and not smectic slt i
optically uniaxial, on the one hand, and it doesgiee rise to Bragg peaks in normal (non-resonant)
x-ray diffraction, on the other hand. Moreover, tireler-parameter modulus |(1I'g [ I'J) and the
chirality index y (I Oy ) are permitted while the macroscopic longitudipalarization Fﬁo)
(Fg OFg) and tilt vector A” (I'g Oy ) vanish. Indeed, the helical symmetry of C makes i
“maximally self-dual” because it allows only selfia tensor wavesl(, [l I';) and, furthermore, all
the self-dual tensor waves. For instance, in theplane a single harmonic (with wave vecfo} of
the polarizatiorls(z) and tiltA (z) waves are allowed, hence making the C-phadegtirhelielectric.
Similarly, a single harmonic (with wave vectoE)Zof the 2D-optic tensor&y(z)—¢€yy(z),£xy(2)) is
permitted, yielding the same rotatory-power effibein in a cholesteric phase, and the same optic gap
features (within a much shorter wavelength range).
2- C' differs from C only by the onset of Pand A”: It is ferroelectric along Oz because the
molecular polarization, which is normal koin C, is uniformly tilted around an axis normalktoand
to the molecular symmetry axis. On the other haegeral tensor waves with the same transformation
properties (as, for instancé,(z) andl5(z)), which are locked in parallel directions in @ay have
different orientations in C'. For instancé,(z) andl5(z) are mutually shifted by a constant angle in C'.
3- In the group of the linear R-phase the mirr@angls (and inversion) are not self-dual but they
appear by pairs of dual-conjugated operatio(ts,;0,) and(IT,0,Tx). R is smectic and permits
all the even harmonics of the density Wa\l/'eg {r,,) and all the homogeneous even-rank tensors
(Fn O I'g) as for instance the 2D-optic tensen—&yy, £xy), Which makes the phase biaxial. R is also
characterized by the onset of all the odd harmooid® (1 U Top41), €ach one giving one resonant

Bragg peak at (2p+1Z). Simultaneously, the first harmonic of all the addk tensor waves
(Foneq U T ) are present in R.

The dual features of R’ and R” appear clearly as oonsiders the tensors appearing at the
transitions R- R’ and R- R”. A homogeneous tilt vector% appears in R’ while a homogeneous
polarization B appears in R”. & indicates that in R’ the direction of the transeepolarization (or
equivalently of the molecular planes) is not lockasl in R, and can change with temperature. Along
the same way, in R’ all the even harmonics of theatity wave x (z) appear, whereas their dual
conjugates, the homogeneous pseudo tensors oframks, appear in R”. Moreover, on approaching
the R’ R transition temperature T’ the amplitude of th&t2harmonic vanishes as (T-T,Wwhereas
the modulus of the tensor with rank 2n vanisheda3”)" at the R"- R transition temperature T”.

3- In EL all the tensor waves permitted in C andRnare also permitted. Moreover the odd
harmonics of the density Wave'x 0T ;p4) together with the homogeneous tensors of odd rank

(F,n41 0T ) take non-zero values.

4. Dual classification of Line Defects

Line defects are topologically non-trivial field$ the Goldstone angleg; and¢r (see Eq.6), on
the one hand, and of the direction lofon the other hand. We present here below a coenplet
topological classification of the possible defeasing standard homotopy analysis of the imagemrou
It clearly reveals the dual character of the vegtave theory, for they naturally classify into séifal
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(dispiration) and pairs of dual conjugated (distaoadisclination) lines. Nevertheless, one doets no

expect similar thermodynamic behaviors for dualjggated defects since the line core lies in thé rea
space, which does not exhibit the same translattation duality as the order-parameter space. The
dual symmetry is a property of the order-paramspace, not of the actual space. It applies to the
classification of defects because at the topolddgsel the possible defects are completely deteeahi

by the geometry of the Goldstone part of the oplgameter space, which is strongly constrained by
the dual symmetry. In particular, we shall see timhotopy group considerations reflect directly its

dual structure.

4.1. Circular phases

When one considers the condensation of a transverger wave in a perfect nematic phase (with
k parallel to the optic axis) the thermodynamic mgmtesented in sections | and Il remains valid, but
the direction ofk is locked even in inhomogeneous ordered states.s@ime situation occurs when,
starting from the isotropic phase, the walls of shenple are prepared in order to lock the direation
K (e.g., in homeotropic-like configurations). In sleetwo cases, the inhomogeneous states can result
only from the space variation of the ang#gs and¢. Hence, we shall now distinguish two types of
linear defects : Type-1x-) lines involve variations of; andgg only. They appear after transitions
from either the free isotropic liquid or the homogeus nematic. Type-2(A.)-lines involve spatial
variations of the direction df . They cannot be induced by transitions from defiest-nematics or in
k -locked configurations, but only in the isotropiguid or in nematics with preexisting disclinations

Figure 3. Line defects in C. The “equal phase” surfaces|@uas to the smectic layers in
R and EL) are represented by continuous lines,th@dgolarization by arrows when it is
parallel to the figure and circles when it is nofrnait.. (a) x-line (272-disclination) with
a core parallel tk . (b) x-line with a core normal t (jelly-roll configuration). A
domain wall between two oppositely wound domaingmesented by a thick ling) (A1—

) line (—n-disclination with core normal tﬁ). (c) (A+) line (+7-disclination with core
normal toR).
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Type-I Starting from a homogeneous nematic phase, gHipes can take place in C and C'.
Their topology is generated by a rotation of thealdelix to an angle 2about the line core. The line
is parallel tok and the polarization turns around it as in Fig. Bae order-parameter variations
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around the core can be interpreted within dual poirviews: (i) The polarization rotates by an angl
2 n (disclination line with unit winding number). (iifhe wave is translated by a distante
(dislocation with unit Burgers vector). As long #we direction ofk is fixed by the underlying
homogeneous nematic, an infinity of such defecth wiinding numbers...,—2,—1,1,2... are possible.
Contrariwise, when the circular phases arise froeisotropic liquid state the direction lofcan vary

so that disclinations with even winding numbersdmee topologically trivial, whereas those with odd
numbers all become topologically equivalent. Acawgty, there exists in this case a single typeyof
defect.

x-defects could also appear in the “jelly roll” cmpiration wherek is perpendicular to the line
(Fig. 3b). In this configuratioR rotates about the line, transforming the planethefhomogeneous
smectic into cylinders wound around the disclimatimre. It can be associated with cylindrical walls
separating domains of opposite handedness. The vemterk remains continuous where it crosses
the wall, but inside the cylinder the polarizatijgnecesses as a right-handed helix, and as a leftelda
one outside. Note that such wall cannot exist iolesterics since all the domains have the same
handedness in chiral systems.

Type-2 To describe the two other defects it is convenienstart from the classification of
disclinations in cholesterics. Indeed, a cholestghase is analogous to C and C’, whose helical
groups combine translations with rotations, thotlgh cholesteric local point group is non polar and
orthorhombic (D) while it becomes polar and monoclinicoJGn C, and triclinic (@) in C'. Thus,
although the disclinations are similar in thesee¢hphases, four types can be found in cholesterics,
while only three types exist in C, and one in C’:

- The y-line is common to the three phases.

- The remaining cholesteric lines are generateddgtions by angles or —n about the three
orthogonal axes x, y and z. In cholestericand - rotations are topologically equivalent, yielding
three types of defects (x,y and z). On the confriar n and - are not equivalent but around X is
equivalent ton around y or z, yielding only two distinct defe¢tsand ). Their structures, depicted
in Figs. 3-c,d, are similar to the cholesteric $imenoted ad. andA_. Like y they can be observed in
circular phases appearing in nematics providedahat-disclination line preexists. A nematic wedge
disclination (angle 2zm) transforms in. (for m=1/2) orA. (for m=-1/2) at the Nematic C
transition.A.and A become topologically unstable in C'.

Combining x, A. and A, yields the following merging effects: Two linestbke same type annihilate
each other. Two lines of different types combineiich a way as to form a single defect of the third

type.
4.2 Linear Phases

In R infinitely many distinct typel-defects can lobtained by combining two elementary
dispirations: (i) One in which the structure isnskated byA/2 along z and rotated clockwise by an
angle n when circling around the core, and (ii) its coucieckwise image. Combining (i) with itself
yields a pure dislocation with Burgers vector equal (two smectic layers). Combining (i) and (ii)
(but with opposite translationsi#2 and +1/2) yields a pure@n-disclination. (i) and (ii) are obviously

dual-conjugated. More generally, let us denotediiect (i) by {1/2,1/2} (shorthand for%u, %271})
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and the defect (ii) by {1/2,-1/2}. A general typedefect reads then {n,p}, where n and>®) are
simultaneously integers or simultaneously halfgets. They combine together according to the rule
{n,pHn’,p’}={n+n’,p+p’(mod. 2)}. {n,p} is self-dual if n=xp(mod.2) whereas {n,p} and
{p,n(mod. 2)} are dual conjugated. {n(integer),& & pure dislocation while {0,1} is the single pure
disclination. Let us finally notice that {n,p} afein,p+1} are topologically equivalent. Four exangle
of such defects are represented if Figs.4-a,b,c,d.

Four type-2 elementary defects arise wkenan vary : In (iii/), the structure turns by:sabout an
axis parallel to the polarization (Figs. 4-f,h).(Ia/t), the structure turns byzabout an axis normal
to the polarization and t& (Figs. 4-e,9).They can also be considered as the traces ofi- *
disclinations in an underlying nematic phase. Ttmybine according to the following rules:

(Gii/+) i) =(iv/+) (iv/+)=(iii/)Giil-)=Avi-)i vi-)={n,1} (or {-n,0})
(iii/+)(iiil-)=(@vi+)(iv/-)={n,0}  (or {-n,1})

(iii/+) (iv/+)=(iiil-) (iv/-)={n+1/2,1/2} (or {-n-1/2 ,3/2})

(iii/+) (iv/-)=(iii/-) (ivi+)={n+1/2,3/2} (or {-n-1/2 ,1/2})

{n,OXiii/+}={n, Liii/-={n+1/2, L/2}ivi+}={n+1/2,  3/2}iv/-}={iii/+}
{n, OXiv/+)={n, 1{ivi-={n+1/2,3/2)iii/+}=(n+1/2,1  [2}iiil-}={ivi+}
{n, OHiii/-Y={n, Liii/+}={n+1/2,312ivi+}={n+1/2,  1/2MivI-}={iii/-}
(N, OKiv/-}={n, I{ivi+}={n+1/2, 1/2}iii/+}=(n+1/2,3  [2}iiil-}={iv/-}

where n may be any integer. The four first assmrialaws leave n indeterminate in the resulting
defect. One can build pure dislocations by assogdype-2 defects with the same nature but differe
angles [e.qg., (iii/+) and (iii/=)], or a pure diswtion {0,1} with defects having the same natunel a
angle [e.g., (iii/+) and (iii/+)]. Similarly, the emerators (i) and (ii) can arise from combinations
involving type-2 defects of opposite nature andsame angle [e.qg., (iii/+),(iv/+)] for (i), or oppibe
angles [e.g., (iii/+),(iv/-)] for (i)). In R andR” (i), (ii) and their combinations {n,p} persisthite
(ii/x) and (iv/x) become unstable by the same psscwhich forbidsz-disclinations in conventional
SmC phases. Moreover {n,p} and {-n,p+1} become togmally independent. Hence, the dual-
conjugated phases R’ and R” present the same éfesticlasses.
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Figure 4. Line defects in R. The straight lines indicate #uge of the smectic layers.
(a) Dispiration {1/2,1/2} with core parallel th . (b) An equivalent defect with core
normal tok-. (c) Pure {0,1} 2n-disclination. The arrows and circles indicate the
components of the polarizatid$1 at the center of the layers respectively paralted a
normal to the figure(d) Pure {1,0} dislocation(e) —i-disclination of type (iv,-)(f) —7-
disclination of type (iii,-).(g) + nz-disclination of type (iv,+)(h) + zz-disclination of type
(iv/-).
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4.3 Elliptic Phases

At first sight the classification in EL is the sam® that in R, whereas in EL’ it is equivalenthatt
in R” and R”. However, one has yet considered @mgroximate elliptic structures, in which the two
circular polar waves forming the elliptic wave hahe same wavelength. In fact, we have shown in
references [5] that EL and EL’ are actually incomswrate. In EL the polarization wave reads:

P(2) =2(py+ p2) cosKZ] 8y (2) +2(op - py) sin[KZ & (z) (11)

where €, (z)=cos(Qzg,—sin(Qzg, andé€, (z)=sin(Qz)g +cos(QzE, are perpendicular unit vectors
turning within the x-y plane. The two wavelengthg,—=1/Q andA =1/K<<A g are incommensurate.
The plane containing the polarization of two sustesmolecules precesses slowly around Oz. This
helical structure differs from that in C and C’ two respects : (i) The length scale of the elliptic
helical modulation is much larger than the molecsiae (typically within the optic range) while the
scale of the pitchl in the circular structures ranges within molecugagth. (ii) The helical symmetry
in C and C’ is continuous (perfect helix) whileistdiscrete in EL and EL’. However, the symmetry
groups of EL and EL’ are not broken by the incomsueate modulations. Indeed, Eq. (10) shows that
the modulated space groups are generated by tew saisT,; >C,-g, /2 (Which becomes;2when
Q=0) and Y, The groups with Q=0 and#Q are isomorphic. Accordingly, the classificatidnliae
defects is not modified by the modulation thoughirtspatial structures are changed.
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5. Analogy With d-Wave Superconductivity

Attracting fermions in two-dimensional systems cemsk at low temperature into bound states, the
so called Cooper pairs [24]. These states may bssifled according to their angular and spin
moments [26-28]. For instance, in a conventionpesconductor two electrons form a charged Cooper
pair with zero orbital and spin moments. Thesewase » pairs are responsible on the specific
properties (zero resistivity, magnetic flux expaisand Josephson effect) of the superconducting. sta
At the symmetry point of view superconductors atearacterized by the breakdown of the
electromagnetic gauge symmetry [29]. Such gaugeatipas, denoted by g transform the Cooper
pair wave-functiony into equivalent wave functions exp() ¢. In the superconducting stadeis
different from zero and the gauge symmetries aokésr. However, since the s-wave function is
isotropic it does not break the rotational symme®y the contrary, the wave function can break
spatial symmetries when its orbital momentum i¢edént from zero. Such a phenomenon occurs in
various superfluid systems, such as the superfigif(p-wave pairing) [26,27,28], the heavy fermions
(p or d-wave pairing) [30] and the high-®oxide superconductors (d-wave pairing) [31,32]. $tall
show now that the theory of d-wave 2D supercondaa®strongly analogous to the theory of bent-
core liquid crystals.

Let S;; and $; be the spins of two fermions at positiohsandr,, and ¢(r, 6,$1,S,,) their wave
function. r andé@ are the polar coordinates of the relative positignr,. In a d-wave the orbital
momentum is L=2, and the spin is in the singlees®&S,,Sy,) [15]:

W (r, 0,51257) = { D+ exp(2i6) + D_exp(-2i6) } S(S12,.7) - (12)

D.=[ID,lexp(i¢+), D_=LID_Lexp(i¢_), D+* and D* are the four complex components of the

order parameter. They transform according to aeducible representation of the normal phase
symmetry group, which contains the gauge transfoams g,, the continuous 2D rotations ,Cas

well as the discrete time reversal T and mirromnplay operations. The corresponding matrices are

given by:
(em e?? W
e—ia e'2i¢
9, = g J C¢ - o214
e—ia e2i¢
(13)
1 1
1 1
g, = , T =
1 1

in the basis {[},D;*,D_,D_*}. These matrices generate the “image group”:

Oc(2) U Or(2) (14)
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where (2) contains gauge and time reversal transformatamereas &(2) is the 2D rotation group
C.v- As in the vector wave modeld®) and @(2) are isomorphic copies of the 2D orthogonal grou
O(2) (see Eqg. (7)). One sees immediately that tdergparameter (12) transforms as the irreducible
representatiom 1(G)D Fl(R) of Og(2)LOR(2). The analogy between the bent-core and d-waveeis
results from, (i) the group isomorphism of theightisymmetry phases (see Eqgs. 7 and 13), (ii) ttte fa
that in both cases the order parameter spans ribgduaible representation,[11 ; of these groups.
Consequently, the d-wave model [15] exhibits a trotégauge duality completely analog to the
translation/rotation duality of bent-core mesoplase

In order to realize concretely the analogy we nasntify the image groups of the two systems
along two ways. In the first way the rotation graafpthe liquid crystal is identified with the rokarn
group of the superfluid whereas the translatiorugns identified with the gauge group. In the seton
way the identifications are reversed. These cageslaviously dual-conjugated. More precisely :

First analogy: A rotation of the liquid crystal by an angfeis equivalent to a rotation of the
superfluid by an angl@/2. A translation ofAz along the helical axis is equivalent to a gauge
transformation by an angle=kAz (as in the deGennes’ analogy for Sm-A [19,21jpac® inversion |
is equivalent to time reversal T, and the liquigstal mirror planeoy is equivalent to the superfluid
mirror gy. This yields the following identification betwe#me order-parameters:

Do 772, Di & -n1* (13)
Second analogy In the second identification the rotational pedies of the superconductor are

equivalent to the translational properties of tigeitl crystal (as in the deGennes’ analogy for Sm-C
[20,21]):

C - 9, (@=¢),0, « T
T - C, (p=kt/2), 1 ~ o

X

Do -2, Dy & n1* (14)

Accordingly, the physicali.e. gauge-invariant) properties of d-wave Coopersaientify with
either liquid crystal translational properties athatheir dual rotational analogs.

This comparison allows us to expose the propedtfissiperconducting phases by simply translating
those studied in bent-core phases. However, theo@nas actually complete when one defines a
secondary wave function, analogAgz), with the same symmetry propertiesys, 6,S1,,). This
can be achieved in many different ways, one of theing described in Ref. [14] within the context of
s-wave superconductivity. Thus, the four unprimbadges, which have already been calculated with a
single wave function in Ref. [15], can then be ctenpented by four additional primed phases. Their
properties are summarized in Tables 2-a,b, and acedpwith their bent-core analogs. The gauge part
of the symmetry groups are not indicated in theddes. Moreover, in systems containing a mirror
plane parallel to x,y (for instance in high-Juperconductors), this plane is never broken byotider
parameter, and it must be included in the ordergdnsetry groups. For instance, the magnetic
symmetry of phase Il becomes 4mmm1'.
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Table 2a. Symmetry and properties of the superconductingiomgat phases. Their analog
mesophases are indicated in rows 4 (first analagg)5 (second analogy).

Unprimed phasesNormal I Il 1]
Magnetic groups com1' oom’. 4mm1l’ 4m’'m’
Properties non magnetic | magnetic non magnetic | magnetic
non chiral non chiral non chiral non chiral
First analogy Isotropic C R EL
Second analogy| Isotropic C R EL

Table 2b. Symmetry and properties of the superconducting gdirphases. Their analog
mesophases are indicated in rows 4 (first analagg)5 (second analogy).

Primed phases I 15 " "
Magnetic groups oo 4mm 41 4
Properties magnetic magnetic non magnetic | magnetic
chiral non chiral chiral chiral
First analogy C R’ R" EL'
Second analogy| C' R" R’ EL'

Phase Il and EL help us to illustrate some aspetthe analogy physical meaning. Indeed, the
phase-lll wave function can be understood as atgoasuperposition of Cooper pairs with orbital
moments oriented toward +z and pairs oriented tdwar Likewise, the elliptic phase results from the
superimposition of two circularly polarized wavdsopposite handedness. In 1l the up and down pairs
arise with the same amplitude so that the totalmaig moment vanishes. In the analog linear R phase
the right and left helices have the same amplitadethat there is no winding of the polarizatiom O
the other hand, in | all the pairs are up and tlagmetization is maximum, whereas in its analog C an
helix with a single handedness is present so keathirality is maximum.

The dual classification of physical quantities has different interpretation with the
superconductors. Indeed, the representdtigin I, can be associated with an observable only when
n=0 since only gauge-invariant quantities are medwe. Thus, we have only to consider the
quantitiesr ;0T , T ,0r, ,0r,, which represent scalars, pseudo scalars andkpteausors

invariant under time reversal, on the one hand, thed antisymmetric time-reversal counterparts
r,Or, r,0r, r,0ry on the other hand. Their values in the ordereakgs can be deduced
from Table 1 on using any one of the previous agat(being careful that a tensor of rank p initiqu
crystal is associated with a tensor of rank 2pupesconductors!).

Let us now consider the lowest-degree tensors:

a) Scalars : Pair densitygnz projection of the orbital momentuny Bnd z projection of an axial
vector A. The scalaw antisymmetric under time-reversal is the respaasdficient associated with a
second-order magneto-electric effe® = o ExB. In structures where is finite a polarizatior15



Symmetry010, 2 35

perpendicular to the electric fiel appears when a magnetic fieldlis applied. This effect happens
for instance in unconventional s+s’ supercondudi@t$.

b) Second-rank tensors : Dielectric tensoey2 exx-£yyl, and a second-rank tensor antisymmetric
under time-reversal [Byy, Txx—Tyy]. The 3D tensor is the response function of the linear magneto-
electric effectP=17 B whereP is the polarization and the magnetic field.

c) Forth-rank tensors : [A,B] on the one hand, anfdurth-rank tensor antisymmetric under time
reversal [A’,B]. The latter tensor may represdre elastic (|) response (lki) to a bilinear magneto-
electric excitation: y=Mijk BkE|. Where A'=My111+M2211+-M1122tM2222 and B'=My112-M2212-
M1121*M2221.

The superconducting tensors and their liquid-ctyataalogs are indicated in Table 3. As an
example, the bilinear magneto-electric coefficienin the superconducting phase has two analogs, a
homogeneous longitudinal polar vectgrdhd a homogeneous longitudinal axial vectgrMote again
that according to the first analogy liquid-crystahsors of rank r are associated with superconayicti
tensors of rank 2r. For instance, the fourth-ralaktec coefficients in the superconducting system a
associated with the second-rank optical tensdneriquid crystal.

Table 3. Superconducting tensors and their liquid crystall@gs. The type of tensor wave
is indicated in the first column. The first numbedicates the wave vector and the second
number indicates the tensor rank of the waves.

Tensors Superconductor First analogy Second analogy
[0%,07] Pair density, § n. n.
[07,07] Bilinear Mag-elec.€; Polarization P Axial-vector, A
[07,0] Linear Mag-elec.r; Tilt-vector A, Polarization P
[07,07] Magnetization L Chirality, x Chirality y
[0%,1] Biaxiality Tilt Smecticity

[Exy Exx-Eyyl (Tx, Ty) Density wavek)
[07,1] Linear Mag.electric Polarization Az eiIKZ

[Txy, Txx-Tyyl (Px,Ry)
[07,2] Tetragonality Biaxiality Smecticity

Elastic [A,B] Optic £xy ,Exx-Eyy Density wave (R)
[07,2] Forder Mag.elect. Electro clinic. A, 6%

- c C
[A'B] [55 Eyy Exyl

As with bent-core mesophases, four physical questitjuadratic in the order-parameter
components are sufficient to characterize mosh@fhysical properties in the unprimed phases :
ng =LD.[F+[D.[F represents the Cooper pair densiy, (T ;).
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L, =D, [F-[D.[F represents the 2D orbital momentufn,(J T ;).
A=Dy*D. +D*D,, B=i(Ds*D. +D.*D. ) form a quadrivalent tensof { O I ,), which can be

used to characterize the angular variation of thie wave function. Indeed, let us write the gauge-
invariant norm ofy as:

Yy =ng + Acos46-Bsin4l (15)

This expression permits one to draw the wave fonctn each unprimed phase (Fig. 2b). It is
circular in the isotropic phase | whereas it présdour branches in the other phases. In phadeell t
wave function vanishes along four directions. Alahg corresponding directions in the reciprocal
space nodes appear in the quasiparticle excitapestrum. This means that when the wave vector
of a quasiparticle lies parallel to this directidts, energy vanishes continuouslyfaget closer to the
Fermi surface, while a gap is present in generalctions. The occurrence of such nodes results from
specific symmetry operations in the phase-Il groamd yields most of the unconventional dynamic
and thermodynamic properties of this phase [26-28].

A superconductor with four nodes in the excitaspectrum gap (phase Il) is analog to a linearly-
polarized vector wave (R-phase). The relation betwsodes in the superconducting gap and zeroes of
the polar wave is reinforced by comparing the fleave curves (Eq.15) representigigs* in phase Il
(Fig.2b) and the bean-shaped curve M(z) (Eq.8) samazing the translation properties of the
polarization wave in the R-phase (Fig.2a). In #@gel, only two leaves are present instead of fiour
its superconducting analog. This inessential dfiee results from the second-rank tensor angular
character of a d-wave Cooper pastfirst-rank of the polarization wave.

The analogy between nodes in the excitation spactid zeroes of the polar wave in phases Il and
R is a consequence of their common symmetry featufer instance, from analogy 2 the linear
character of the vector-wave (due to the mirromela,) is related to the paramagnetic feature of
phase Il (due to the time reversal T). Let us abgrsone domain of phase Il defined py=¢ _=0. Its
symmetry group is generated by@,,,, T andoy. g,C ,,, changes the sign of the wave function
after a 90° rotation, therefoug( 8) must vanish along four directions. This is thengyetry origin of
the four nodes occurring in the gap. In order ttedeine the vanishing directions let us consider th
symmetry g,C,,,0x=0, Oxy, Which changes the sign of the wave function togetvith a mirror
plane directed along x+y, which transfor@snto 71/2-6: g , oy @(6)=-¢(n/2-6). The invariance of
¢ under g , O  provides immediately the four nodes  directions:
Y(nld)=¢g @B nld)=y’ nld)=w(7 n/4)=0. The zeroes of the vector-waves result frora $ame
arguments. According to the second analogy therg&ms of the R-phase are,T,,,, gx and I.

C ,T,, means that the transverse vector-waves revergedinections after a translation of/2. oy
indicates that5(z) is polarized in the (y-z)-plane aﬁd(z) in the (x,z)-plane. Since the transverse
axial and polar vector-waves are linearly polarized reverse their directions aftéf2, they must
vanish on a lattice of points separated b{2. To determine the positions of these zeroesuset
consider the mirror plane O ;.1 normal to Oz and located at 2#4. This plane force to vanish

at z=A/4 and 34/4. On the contrary, the zeroes Pfare determined by the location of the inversion
centers | located at z=0 antd(analogy 2 makes apparent,byand,& closer thany andP, because of
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the sign change D.. -77,* in the correspondences (13),/#2 phase shift appears betwer%(z) and
Y(6) as we introduce the additional correspondence 3.

In conclusion, let us note that in high-Tc supedariors (other superconductors or superfluid are
either 3D or do not exhibit d-wave pairing) the exaymmetry is difficult to obtain experimentally
(because it involves gauge transformations) and ghase can be identified by indirect gap
measurements. In the experimental literature, tmdymost symmetric phases (I and Il) are discussed.
As usually in the theory of phase transitions, ldest symmetric phases are much less likely, sb tha
we do not really expect that all the predicted pkdse actually stabilized.”

6. Conclusion

To summarize, we have shown that the vector-wadergparameter of bent-core molecules can
stabilize eight phases, according to the polaopastates and relative orientations of the wa?\(eés)
and|5(z). The symmetry groups of these phases contdatisos and translations, which can be
interchanged by a dual operation D. D permits onddssify the stable phases, their symmetry groups
and the various tensor waves condensing at thesmonding phase transitions. For instance, the
circular C phase is self duale., it contains only mixed symmetry operations cornrgna translation
with a rotation, and it allows only the appearanteself-dual tensor waves. The theory of d-wave
lamellar high-Tc superconductors presents the sdnad character between gauge symmetries and
rotations. Moreover, the order parameters and syneseof the two theories are isomorphic, so that
they present strong physical and mathematical gredoThus, all the tensor waves of the vector-wave
theory have two dual analog tensor quantities engihperconducting system. Each couple of analogs
exhibits the same thermodynamic behaviour. We hased analogy and duality to extend the
superconductors theory, to classify the possible tlefects in bent-core phases, and to discusgathe
in the excitation spectrum of 2D d-wave supercotahsc
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