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Abstract: Several situations of general interest, in which #ymmetry groups usually
applied to spectroscopy problems need to be exteradte reviewed. It is emphasized that
any symmetry group of geometrical operations toubed in Molecular Spectroscopy
should be extended for completeness by considén@dime reversal operator, as far as
the Hamiltonian is invariant with respect to thearsion of the direction of motion. This
can explain the degeneracy of pairs of vibraticavad rotational states spanning the so-
called separably degenerate irreducible represensat in symmetric tops of low
symmetry, and Kramers degeneracy in odd electroecules in the absence of magnetic
fields. An extension with account of time reversahlso useful to determine relative phase
conventions on vibration-rotation wavefunctions jehtrender all vibration-rotation matrix
elements real. An extension of a molecular symmgttoyip may be required for molecules
which can attain different geometries by large aimgé periodical motions, if such
motions are hindered and are not completely frgecial cases involving the internal
rotation are discussed in detail. It is observedt tthe symmetry classification of
vibrational modes involving displacements normalthe internal rotation axis is not
univocal, but can be done in several ways, whictuadly correspond to different
conventions on the separation of vibration andriak rotation in the adopted basis
functions. The symmetry species of the separatatinal and torsional factors of these
functions depend on the adopted convention.

Keywords: molecular symmetry; groups and representationsg tneversal; Kramers
degeneracy; internal rotation
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1. Introduction

It is usual, among researchers dealing with vibreti and rotational Spectroscopy, to classify the
energy levels according to the irreducible repredems of a group determined by the molecular
geometry. Point groups, consisting of the operatigaiated to all symmetry elements of a molecule,
are in general adopted in the case of moleculesrgothg only small amplitude vibrational
deformations with respect to an unique referencemgdry [1-3]. Permutation-inversion groups,
consisting of permutations of identical nuclei gpefmutations followed by inversion through the
mass centre, are used in the presence of largdatadgtieformations, which may involve changes in
the molecular conformation [4]. In any case, grogpssisting only of geometrical operations are
usually employed.

One should remember that what really matters, ieoto choose the group suitable to the
classification of energy states, is the symmetrythef Hamiltonian and not of the molecule. For
instance, pure rotational states can be classafoedrding to the irreducible representations ofcag
formed by the symmetry operations of the ellipsoidnertia of the molecule, which has a higher
symmetry than the molecule itself. However, wheorational modes have to be considered too, the
geometrical symmetry of the Hamiltonian matchessyrametry of the molecule.

In the absence of magnetic fields, the Hamiltonsaalso invariant with respect to the inversion of
the direction of motion, that is the inversion dif momenta and angular momenta, including spin.
Such inversion implies the change of sign of tmeetiderivatives of all coordinates, therefore the
inversion of the direction of motion is usuallyeakd to as "time reversal” [5,6]. Time reversal ba
expressed as the product of a linear operator tittnescomplex conjugation operator, therefore it
transforms all constants, scalars and wavefunciiogsheir complex conjugates. In fact, the quamtu
mechanical operators corresponding to observableshwmply a time derivative in their classical
definition (e.g., the components of linear and dagmomenta), contain the factor i which multiplees
coordinate derivative, and change sign under tieversal because of their imaginary nature. Thus, in
principle, time reversal should be considered al$ agethe geometrical symmetry operations forming
the groups usually applied in Spectroscopy, and thay require appropriate extensions of these
groups. We shall see that other types of extensiaght be required for symmetry groups applied to
molecules with large amplitude periodical motions.

2. Double Degenerate Vibrational Modes

Double degenerate vibrational modes occur in mdédschaving one symmetry axis (z-axis) with
order larger than two, or one four-fold or higheder rotation-reflection axis (alternating z-axiSuch
modes consist of two orthogonal components osicijedt the same frequency, which we call &pd
Qp- The respective harmonic Hamiltonians, in terms&@fmal coordinates and associated momenta,
are

Ha= ~(@"Q% +P2) (12)

Hp = %(wzQi + Ps) (1b)
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wherew=21wv, v is the vibrational frequency, ari@ andP represent the operators corresponding to a
normal vibrational coordinate and its conjugate rentam.
The total Hamiltonian is
H=Hgz+Hp (2)

The two components can generate an angular momeatioat the top axis z, whose operator is

L=Q_P, ~Q,P,: (3)

Figure 1 shows thatl, Hy and Hp, commute with each other, but commutes only with the total
HamiltonianH. The figure also shows the quantum numbers adedcwith the eigenvalue of each

operator. Thus, representing a general vibratistete asfva,vb,v,l>, with v=vgt+vp, the states of a

degenerate fundamental pair can be taken eithptGis-) and| O11) (for short‘1a> and‘1b> ) or

as| --1,0 and|--1,-1 (for short‘11> and‘1'1> ).

Figure 1. Commutativity of energy and momentum operators dar isotropic two-
dimensional harmonic oscillator.

H_(Va) H(v)
~ H=H_+ Hy
AN V=Vga+Vh
2
Hp(Vb) L (1)
commutativity

————— non commutativity

With the first choice, one knows the total energy #éhe excitation in each of the two components,
but the angular momentum is not defined. With #eoad choice, one knows the total energy and the
angular momentum generated by the vibrational g@lrs, that is £ 7 in fundamentals, wheré is
the Coriolis coupling coefficient of the pair und®msideration). The relation between the two séts
components is:

1ﬂ> = (‘1a> +i ‘1b>)/*/§ 4)

The state:%la> and‘1b> are mixed under rotation about the z-axis (theyld not be mixed only

under a rotation by a multiple af). On the contrary, the functio+§1> are only multiplied by a

unitary factor under the top axis rotation. They ¢& mixed only by a reflection through a plane
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containing the top axis or by a rotation about ais amormal to it, an operation called "second
orientating operation" by Henry and Amat [7]. Wdl ¢his operation®, reserving the symbar for

the top axis operation (“first orientating operatlo Thus, in the absence of symmetry planes
containing the top axis and of axes normal tohiaf(is, for molecular geometries correspondinghio t

point groupsCpn , Chh, Sy, each of two‘1ﬂ> functions would constitute the basis of a one-

dimensional irreducible representation. In spitetlis group theoretical conclusion, the physical
intuition and the equivalence of the directionsmal to z in the case of high rotational symmetry
about the z-axis still suggest that the a and batitmal modes should occur in degenerate pairs. Th
is even more evident for the rotational statesabse the moments of inertia about x and y would be
equal anyway. It is for this reason that the ommeafisional symmetry species spanned by the

components of #Lﬂ> pair in the mentioned class of molecules are ddtig Herzberg "separably

degenerate irreducible representations” [2]. THid situation is clarified if the time reversal ogigon
is applied, and this can be understood without revgeany mathematical treatment. In fact, the

components of #lﬂ> pair differ from each other by the sign of theraionally generated angular

momentum, then they are interchanged if the dwactif motion is inverted, and must form the basis
of a two-dimensional corepresentation, in a group Wwimcludes the time reversal operation
We show as an example the extension of the poautpyCs through direct multiplication by, &).

Table 1. Character table and symmetry species of the gooupCs. Although E and E

are uni-dimensional representations un@grthe vibrational modes of these symmetries
occur in pairs of the same energy, behaving as oaems of a two-dimensional
corepresentation E.

Cs E c3 Cc3
A 1 1 1 T, R,
_—F& 1 expQri/3)  exp(2ri/3)  TeHT, ReHRy

E\E

1 Xp(-21i/3) expRri/3) T Ty R-iRy

Table 1 shows the irreducible representations hatt tharacters for the point gro@a, and the
behavior of the components of typical polar vecttirear displacement) and axial vectors (angular
displacementR). Polar and axial vectors describing motion (ImeaomentumP and angular
momentumJ) also behave a3 and R, respectively, since the group contains only gecdos
symmetry operations. Note that the "separably degee' species £and E are two mono-
dimensional species, and that circular vector camepts of the form x+iy and x-iy are basis of these
two separate representations. On the contraryr ttmenponents along x and y are basis of a two-
dimensional reducible representation, whose chemrmeire the sum of those of Bnd E, that is 2,-1,-

1, and which can be completely reduced te-lE by a transformation to circular components, sueh a
that in equation (4).
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Table 2. Characters and symmetry species of the extendedpdCsx(E, @), with
©%=E. The behavior of vector components, also multiplisdthe imaginary unit, is
shown in the upper part. The lower part applieswhand y components are combined in
the form xdy. See text.

Cx(E,O) E C% C: o C% C3 Bases

A 1 1 1 1 1 1 T,, RoriP,, iJ,

A, 1 1 1 -1 -1 -1 P,, JoriT,, iR

E, 2 1 a1 2 1 1 TuT),(RoR)or(PeiPy), (i id)
E 2 -1 -1 -2 1 1 I{’x,- Py) ’ (\]x,v ‘]y) or (iTx- iTy) ’ (in- |Ry)
A 1 1 1 1 1 1 T,,RoriP,,iJ,

A, 1 1 1 -1 -1 -1 T,, RoriP,, iJ,

E 2 1 1 0 0 0 T,4T,0; RAR, ; PaiPy; Jid,

If the symmetry operations @f; are multiplied by E, @), one obtains the six operations shown on
the top of Table 2. They form a group@* = E, that is for systems with integral spin. Anywagré
we are dealing with vibration-rotation energy statnd the resolution of spin structures is not
considered. AlsoH, @) is a group if©@*=E.

Table 2 shows the characters of the transformatangector components. The components of
vectors that imply motion, such &andJ, or do not imply motion, such d8sandR, transform with
opposite signs under the operations containing timersal. However, their behavior under the
antiunitary operations (those containighin Table 2) is reversed if the vectors are mukggblby the
imaginary unityi. This can be seen in the upper part of Table . dvident in this table that only the
unitary operations have definite characters inv@rmicorepresentation of a group containing unitary
and antiunitary operations, whereas the charactetge antiunitary operations depend on the basis
and can be affected also by phase choices [4,5]e Mamplicated characters for antiunitary operation
would be obtained for general phases, consistevitly transformations a@(e'(pq) = é2'(p(e'(pq) and
O(e'(pp) =- éZ'(p(e'(pp), for coordinates and momenta.

The lower part of Table 2 applies if the x and yagmnents of vectors are expressed in the circular
form x4#y. It can be easily understood that circular congmts of the form xty are switched into
each other under the antiunitary operations, tbeeahey are bases of a corepresentation in whieh t
characters of the antiunitary operations vanisttdiepresentation in the lower part of Table 2).
Comparison of the corepresentatiornsEE and E clearly shows that a change of basisaffacet only
the characters for the antiunitary operations.

The components Qand @ of perpendicular vibrational modes Gf-molecules can be chosen to
transform asTy and Ty, therefore their circular combinations, with defihangular momentum, span
the non-degenerate species &d E of this point group, see Table 1. However, thegnsform
according to the E-corepresentatiorCgk( E, @), therefore they are actually degenerate.
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3. Spin Double Groups and Kramers Degeneracy

It is customary in several procedures of Spectqmgdo start with entities, such as operators and
wavefunctions, classified under the full rotatiowp (the group of all rotations, by any angle and
about any axis), and then to exploit the resolutbthe species of this highly symmetric group into
those of less symmetric groups, which apply to gpecific cases. The sets of angular momentum
wavefunctions are typical bases of the irreduciblaresentations of the full rotation group, since t
wavefunctions associated with the components ofmgular momentum with principal quantum
numberj span the 1-dimensional specid’s(J). In particular, if the orientation of the compoteof a
given F(J) set is chosen in such a way that they are simetias eigenfunctions (j)% and|,, with good
guantum numbersandk, they transform under a rotation {pybout z as:

R(@) | jixk) = exp(zke) | jixk) (5)

It is evident that j,¢k> is invariant under a rotation byt2that is replacingp by @+2m, if k (andj)
has an integral value.

Applying this machinery to functions with half igi@l angular momentum, which actually occur in
the presence of half integral spin, one finds fi@nthat these functions change sign under a ootati
by 2rt Thus, it is customary to add to the operationshef full rotation group, or of the symmetry
group of the molecule, a somewhat fictitious elemBp and to extend the group by direct
multiplication by €, R) [4,8]. The species symmetric underoccur in integral spin states and are
calledsingle valuedthose anti-symmetric und& occur with half integral spin and are calldauble
valued It can be shown that states corresponding to ldoulued representations of the extended
group occur always at the least in degenerate gdremners degenerate doublets). In low-symmetry
groups, some or all spin functions may span norexdeate species, but in this case, for half integra
spin, each non-degenerate species occurs at\wgast torresponding to Kramers doublets of the same
energy. However, Kramers degeneracy can be lifyetthé presence of a magnetic field.

In these considerations, one is faced with twoidliff points. One point is that, in spite of the
previous consideration® is a new operation, distinct from any operati(2m) of the extended full
rotation group (see table 55 of Ref. [8], wheredperation®R(2m) are included under the symbof,
with ¢=21, and the new operatioR occurs as well). Another point is that we canngilan why a
magnetic field could lift the Kramers degeneracgtiBpoints are clarified if the fictitious operati®
is replaced by the square of time reversal oper@®3r{4]. This will also make the understanding of
Kramers degeneracy in the absence of fields ea3ie. has to remember that all components of the
spin operators, as for angular momenta, changeusidar time reversal.

The spin functions with defined values of the z-poment are written d§£>. In the absence of
external magnetic fields, it is convenient to cleo& quantization z-axis fixed to the molecule. We
adopt the phase conventions that the functions fvith0 or +1/2 transform under time reversal as

@|s,0 = -1)° 1S,0 for integralS (6)

S-1/2

O|Si#l2) = (-1)”°|Sr12) for half integralS. (7)
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We also adopt the widespread convention that thigbmelements of the ladder operat@s are
real and positive. With these conventions, buildupgthe spin functi0t11S,—1/2> by applyingS. to
|S#1/2) and operating with time reversal, we also findrfr(v):

O|St12) = (-1)°72|Sz1/2) for half integralS. (8)

Then, building up spin function$:+.5) by applyingS{ to|S,Q or S+Z"1/2 to |S¢1/2), whatever
applies, one finds:

0|ss) = (-1)°*|sr5) for anyS. 9)

Note that equations (6-8) are special cases oftequgd).
Operating by@on both sides of equation (9), one finds evenyuall

0°ss) = (-1/%ss) for anys. (10)

Equation (10) shows that function with integralrs@ire invariant unde@z, but those with half
integral spin change sign, just as for the opend®o
Moreover, using combinations of spin functions witand -2, one finds:

O(S2)t [Sra)V2=[(-1)5"7|Sr2) £ (-1)5* % [S#2)1/V2 (11)

SinceS 2 andSt+2 have the same parity for integ&lbut opposite parities for half integi&al
one finds that

O(|S2)£[Sr2))V2=1(-1)5* 2 (|S+2) +(|S,=))/V2  for integralS (12)
and
O(|S2)t[Sr2))V2=1(-1)5" 2 (|S#2) %(|S,=))/V2 for half integrals  (13)

Equations (12,13) show that for integ&time reversal transforms the spin functions ofvabmto
themselves, with a change of sign at the most, edsefor half integra® @ transforms the above spin
functions into different functions, orthogonal teetn. Now if the Hamiltonian is invariant under time
reversal, the eigenstatgsand @y (inclusive of spin) have the same energy (in facthis case the
equation@GHY = GEY becomeH @AY = EOW), therefore they must be degenerate if they dferdit
functions, that is ifS is half integral. On the other hand, in the presenf a magnetic field the
Hamiltonian is not invariant under time reversald @&y andy are no longer bound to have the same
energy. This explain why a magnetic field cantli@ Kramers degeneracy.

Thus an extended spin double group is actuallythiry subgroup of the group obtained by direct
product of the original symmetry group and the gr{ ©,02 0%, see Ref. [4].

4. The Extended Symmetry Group E, ®')x(E,@), With @*=E

The point groups possessing & symmetry element, consisting of either a binamation axis
normal to the main axis (chosen as the angular mamequantization axis z) or of a reflection plane
containing z, always have a subgrdiip ®'). The ensemble of operatiofls, ®) X(E,@) is also a
group, a{E, @) does, if@*=E. This group can be effectively employed to classibration-rotation
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coordinates, operators and wavefunctions, incluthieg real or imaginary nature [9]. Spin structigre
not considered and one can assume @fat E. It is a subgroup of the extended group resubipghe
multiplication of the point group or molecular gmby (E,@). Table 3 shows the characters of the
corepresentations of this group, which apply toebas Cartesian components of vectors, with either
real or imaginary coefficients, see also the uaet of Table 2.

Table 3.Character table and symmetry species of the gfBuR)x(E, @), with ©*=E.

See text.
(E, ®)%(E,0) E R @ e
ri 1 1 1 1
rt 1 1 1 1
ry 1 1 -1 -1
r3 1 1 -1 1

The upper index in the species symbols are assdcwith the invariance or change of sign with
respect to time reversal, whereas the lower indefgrs to the behavior unde®. Hamiltonian
operators with real coefficients containing evenodd powers of momenta are invariant or change
sign under time reversal.

In order to determine the relative phases of thatianal basis function|s],k,M > we only need to
define a phase anglg relative to the shift o, since in the absence of external fields the Hamién
is diagonal inJ andM. For non-degenerate oscillators, the values optrese angled(s) andd,(a),
relative to the shift in the vibrational quantanobdes symmetric or anti-symmetric und®t have to
be defined. For two-dimensional oscillators, ustirgular components, the value &jf£9|;, wheredj;
is the phase angle relative to the shift pfthe quantum number related to the angular momentu
generated by the degenerate vibrational modestchhe defined. For three-dimensional oscillators,
using spherical components, one has to definehbsgyangled,(s) :«(S), dmi(s), dvi(a) M(a) and
Omi(@), where | and m apply to the angular momenturregeed by the three-dimensional mode and
its z-component, and (s) and (a) apply to threeedisional modes with character 1 or -1 un@®er
Classifying the vibration-rotation operators actogdo the symmetry species of the group in Table 3
and exploiting the property that the rotational affwrational factors in the Hamiltonian must hake t
same symmetry, we have shown that it is possibl#etermine values dx and of all the vibrational
phase angles in such a way that all vibration-imtatnatrix elements are real [9,10].

The calculation of vibration-rotation transition ments also requires to define two additional
phase angleg; and dy, relative to the shifts ol andM [9-11]. We have also shown that with the
phase conventions leading to real vibration-rotatinatrix elements, and with] either 0 ormt
(modulo ) the matrix elements of vibration-rotation traimsitmoment operators are all realff is a
reflection and all imaginary iR’ is a rotation [9,10].

The problem of defining convenient phase convestifam vibration-rotation spectroscopy was of
actual interest already in the early sixties. Wiele that a general satisfactory definition tookeng
time to be found, because of the little attentiamdgo the convenience of extending the geometrical
symmetry groups applied to molecules, to accountitite reversal.
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5. Symmetry Groups for Floppy Molecules

There are molecules undergoing one or more periddformations of large amplitude, with a
potential surface with several minima. They canuass different inter-converting geometries or
conformations, and are usually referred to as fflomolecules".

It is obvious that the energy levels of floppy nmikes cannot be classified according to a point
group. In fact, a suitable point group consistshef operations related to the symmetry elements of
molecule in a unique reference geometry.

The most general group for a molecule consistdlgdeamutations of nuclei of the same species,
followed or not by the inversion of all particlesraugh the molecular mass centre, and of their
combinations, and is called "complete nuclear péatran inversion group” (CNPI) [4]. It can be
easily understood that a given CNPI implies onlg #mowledge of the number of nuclei of each
species present in a molecule, that is of its behtmical formula, without any knowledge about the
permitted molecular geometry (or geometries). ingiple, this is the group that should be considere
by a theoretician "ab-initioist”, searching to fihdw could all the nuclei assemble together in the
formation of the molecule, without making use ofy @xperimental evidence and then without any
assumption about preferred geometries.

In practical cases, when not all permutations @ntatal nuclei can occur in the vibrational
molecular motion, the use of a CNPI group wouldegate plenty of useless labels, that would allow
one to distinguish components of energy levels whaditting will never be observable. Thus it is
convenient to select from a CNPI group those elésnehich bring the molecule into geometries that
can actually be attained, and can be brought badke initial geometry by allowed large amplitude
deformations and overall rotations (feasible opena). The ensemble of these feasible operations
forms the molecular symmetry group.

As an example, we examine the acetaldehyde mol€Eidere 2). Three system of axes, all with
the y-axis normal to the plane of the page, arevaha the figure. The axis z is parallel to thesimial
rotation axis g Xpam and am are principal inertia axes, 4s the axis about which the whole
molecule must rotate to compensate for the anguanentum caused by the internal rotation of the
methyl group (top) with respect to the aldehydeugrél-C-O. We also shall make use of a coordinate
system %, Vs, Zg fixed to the internally rotating top (methyl gmuwith x3 and y parallel to x and y
in the reference conformation with the internahtimn angler equal to zero.

This molecule can assume three conformations with lwydrogen of the methyl group eclipsed
with the hydrogen of the HCO group (we call thertipsed), and three conformations with one methyl
hydrogen eclipsed with the oxygen of the HCO growp call them staggered). They can be inter-
converted by the internal rotation of the methydugy with respect to the HCO group, about the C-C
axis. The molecular symmetry group of acetaldehyglg,consists of the identity, the two circular
permutations (123) and (132), and the three pefioatinversion operations (12)*, (13)* and (23)*.
The molecular geometries generated by the cir@demnutations can be brought back to the initial one
again by an internal rotation, those generatedhikypermutation-inversion operations also require a
rotation bytt about an axis normal to the HCO planeirfyFigure 2). The operations of the CNPI
group containing permutations of a methyl hydrogéth the hydrogen of the HCO group, the
permutation of the two carbon atoms, the permutatid?2), (13) and (23), the permutation-inversion
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operations (123)* and (132)*, and the inversiorotlgh the mass center E* have been disregarded as
"non feasible", leading to geometries that the ke cannot actually attain. The character table of
the G molecular symmetry group is reported in Table 4.

Figure 2. The acetaldehyde molecule in a staggered confamdaiee text.

Z
Zp
Z pam
Hf\./ 7o
N p
X
s 6@C 1 X,
“--.‘\'
HH 2 H o Xpam

Table 4.Character table of theg@nolecular symmetry group, see Figure 2.

(123) (12)*
E (132) (13)*
Ge (23)*
A, 1 1 1 > T, J,
A 1 1 -1 T Jo & Jore
E 2 -1 0

If the internal rotation would become no longersibde, one can verify that the molecular
symmetry group would contain only E and (23)*, widierence to a "rigid" geometry as in Figure 2.
This group is isomorphic with the point groug, @ith (23)* corresponding to the reflection thrdug
the symmetry plane. In fact, the energy levels olerules with only small amplitude vibrational
modes can be classified under the appropriate godauip.

Molecular symmetry groups are fully adequate foplaption to all floppy molecules, if the
allowed inter-conversions of different geometries @pnformations are completely free from
hindrance. If these inter-conversions are someWwimatered, additional information on the vibrational
dynamics of the molecule can be obtained by theetadion of the vibrational energy levels (and thei
symmetries), with the levels (and their point graymmetries) of the molecule vibrating about given
supposedly stable geometries. This may requirecaamsion of the molecular symmetry group.

In the next section we examine the case of typmalecules with internal rotation, such as
methanol or acetaldehyde, nitromethane, and ethane.
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6. Gsand G;, Molecules with Internal Rotation

Let us consider the acetaldehyde molecule, an@git®iolecular symmetry group in Table 4. If the
methyl group rotates from O tat2adians about the C-C bond, with respect to th©Hilane, the
molecule will assume six times a geometry gfsgmmetry, where HCO is a symmetry plane. The H
atom of the aldehyde group is staggered with regpeihe hydrogens of the methyl group in three of
the G geometries, and eclipsed to one of them in therdtiree, see Figure 3.

Figure 3. The H-C-O and methyl groups of acetaldehyde, ptegeon a plane normal to

the internal rotation axis C-C, in six differentsimnal G conformations. The orientations

of the components normal to the C-C axis of vilorzai modes of A and B symmetries are
shown at the bottom of the figure.

H—C—0 H—C—0 H—C—0 H—C—0 H—C—0 H—C—O
3 /1 1 2 2 / 3
2 2 3 3 1 1
=0, 2n T=27/6 1=21/3 =N =4m/3 =5m/3
A) 0,0 0 0 0 0 0
B) 0,3n /2 m 3n/2 2m S5n/2

In the case of free internal rotation, the intamacbetween the methyl group (top) and the aldehyde
group (frame) vanishes, therefore the mechanidad\der of the molecule is independent of the angle
of internal rotationt, being identical at any conformation. Thus thereation of the vibrational
modes of the floppy molecule with corresponding gsdf the "semirigid" molecule, vibrating with
small amplitudes about any@oint group geometry, is meaningless. Thereforéeoubar symmetry
groups are fully adequate to classify the energglseof molecules with free internal rotation, even
they contain no elements that could make the abwmioned correlations feasible. When the internal
rotation is not free, the vibrational deformatiafshead and tail interact with each other in a neann
which depends on the torsional angleand the molecular motion behaves as if it had efww
"memory" of how it would be in the limit semi-rigigeometries. In this case it is instructive, and in
general helpful, to establish a correlation of thbrational symmetry species in the molecular
symmetry group with those of point groups corresjog to characteristic symmetries attained at
particular values of (e.g., the staggered and eclipsed conformationacefaldehyde in Figure 3).
Thus it may be convenient to extend the molecwannsetry group, if it contains no elements that
could make the desired correlations feasible.

This problem actually occurs with the vibrationafamations normal to the internal rotation axis.

Particularly convenient coordinates for these \tibres are those that have fixed directions in what
we call "molecular axis system", the system of roolar axes whose orientation in space defines the
rotational variables or coordinates (direction nesiand/or Euler angles). A clear advantage okthes
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rotational coordinates is due to the fact thatrtbeection in the laboratory space does not depend
T, but only on the Euler angles. Therefore the Istrgentributions to vibrational transitions moments
allow for transitions without change of the torsabstate.

For acetaldehyde, it is convenient to choose a cantde axis system fixed in the HCO aldehyde
group (frame or b-unit), with z parallel to theamal rotation axis, see Figure 2. Thus the angle of
rotation of the methyl group (top or a-unit) wiesspect to the frame.

Representing b)S‘;’(‘ andS? two equivalent orthogonal components of a deftionan the methyl
a ya
group, we can build up the new coordinates orieatedg x and y:

Si (A1) = cox Si -sint S? (14)

ya
S?(Ay) = sinr Si‘ + cosr S2 (15)
y a ya

In the absence of interaction between top and frdngecoordinates in equations (14) and (15) form a
degenerate E-pair, and can be expressed in thdariform

StE). = ¢'7(S? 45 Y42 = €'t () (16)

where the symbol Ewill become clear later, with reference to theanged molecular groupsEM).
In the presence of interaction between top anddtahe coordinatesil (A1) andS? (Ay), spanning A
y

and A symmetry species under the molecular symmetry mrGsi respectively, are no longer
degenerate and can mix with deformations of theéraf the same symmetries. As their orientation is
fixed in an axis system fixed at the HCO plang,cAordinates are always symmetric’ (fader @)
and A coordinates are always anti-symmetric’ (Ander @) when the molecule passes through the
conformations shown in Figure 3, where the HCO @larcomes a symmetry plane. Other typical

coordinates obtained by combini@ andS?* witht-dependent coefficients are the following:
a ya

S? (B1) = cos(/2) Sia+ sin(r/2) Sja (17)
S?(B,) = -sin(r/2) Sia+ cos(/2) Sja (18)

These coordinates are obtained by projecS@gand S? on the axes’»and y, which rotate about the
a Vi

a

internal rotation axis z at the angular velocjrt'y, see Figure 4. Thus these coordinates, orientetal
2

x" and y’, change direction by 90° when the torsibrangle changes by 60°, therefore their
representation changes from A' to A", or from A"A} at each step illustrated in Figure 3.(B)
coordinates are A'(A") in the staggered confornratiand A"(A") in the eclipsed conformations.

In the absence of interaction between top and frainese coordinates form a degenerate E-pair and
can be expressed in the circular form

S(E. = 777 (S] 1S Y V2= &2 S (E) (19)



Symmetry01Q 2 225

B: and B coordinates rotate by 180°, that is they change, si the torsional angle changes by an odd
multiple of 120°, therefore they change sign urttieroperatiork’, consisting of a complete internal
rotation by 360° (double valued coordinates). Tfueeeif B; and B coordinates occur in a given
treatment,E' can no longer be considered equal to the ideljtpand the @ molecular symmetry

group has to be multiplied byE( E') yielding the extended molecular symmetry grougE®),
see Table 5.

Figure 4. Top-fixed axes (xYys) and (X,y')-axes, rotating at angular velocitigsand 3t /2
with respect to the molecular axis system (x,ykedixto the frame. The directions of
vibrational coordinates of specieg, A, B; and B under G(EM) are also shown.

Y Ao
N X' B4
ya
Xa
2 \
> X Ay
Table 5.Character Table of thes(&zM) extended molecular symmetry group.
(123)  (12)* E'(123) E'(12)*
E (132)  (13)* E' E'(132) E'(13)*
Ge(EM) (23)* E'(23)*
A 1 1 1 1 1 1 TTx J
A, 1 1 -1 1 1 -1 ¥ Jo Iy Jore
E; 2 -1 0 2 -1 0
B; 1 1 1 -1 -1 -1
B, 1 1 -1 -1 -1 1
E, 2 -1 0 -2 1 0

Apart from these geometrical and symmetry constaera about the form and properties of A and
B deformations, it can be shown that the vibratiorsion interaction terms of the Hamiltonian which
depend on deformations normal to the internal imadxis contains two leading parts. One of them is
diagonal with the adoption of single valued A cooates, the other one with the adoption of double
valued B coordinates. Thus A and B modes corresporidnit situations, the actual modes being in
general a mixture of the two, depending on the rtade of the different terms in the vibration-
torsion interaction energy and on their resonarar&itions [12—-14]. In particular, these resonance
conditions are mainly determined by the Corioli®raction of the angular momentum generated by a
pair of orthogonal vibrational components and timgudar momentum generated by the internal
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rotation (torsional Coriolis interaction) [13], atite form of the actual modes for a given degeeerat
pair is mostly determined by this mechanism.

The choices of A or B vibrational basis functionsai practical problem obviously lead to the same
results by numerical calculations, but with difieresalues of certain parameters occurring in the
vibration-rotation-torsion Hamiltonian.

The two choices also differ in the different wayseiparating the wavefunctions into a vibrational
and a torsional factor. To show this point, we lettat a torsional basis function corresponding to
free internal rotation is conveniently written é(sMS_pkp)T, whereM; is the quantum number relative to
the angular momentum of the top about the interattion axis,k, is the quantum number of the
angular momentum of the whole molecule about ghghe axis about which the whole molecule must
rotate in order to cancel the angular momentum rgéee by the rotation of the top about the internal
rotation axis z, see Figure 2), apds the ratio of the moment of inertia of the tdat z and that of
the whole molecule aboug £15,16]. Thus from equations (16) and (19) onddithat, for giverk,:

Ma(E2): = Mq(E): 71 (20)
Ma(E1): = Ma(E): £1/2 (22)
Ma(E2): = Ma(E1): F 3/2 (22)

This means that the value of the torsional quamumberM, changes with the adopted vibrational
basis, because different amounts of the torsiomglilar momentum are incorporated in the vibrational
function, for different vibrational basis sets.

The molecular symmetry groupi£ which applies to molecules like nitromethane cluéne,
contains already four non-degenerate speci¢sad A', symmetric under the permutation of the two
oxygen atoms, and;Aand A", anti-symmetric under the mentioned permutatiboan be shown that
the A, and A' coordinates are single valued and are given étiuations (14) and (15), whereas the
A;" and A" coordinates are double valued and are given éyetjuations (17) and (18). However this
molecular symmetry group does not need to be ertérnukcause it can be shown that a torsionrhy 2
applied to a nitromethane molecule distorted byaalenthat would be double valued unde(EB/),
would transform the molecule into a geometry whedhild be brought back to the initial one by the
permutation of the two oxygen atoms in the fran®.[Thus Table 3 also applies tqGnolecules if
the operatiorE' is replaced by the permutation of the two oxygemms, and the species A, By,

B,, E; and | are replaced by A Ay, Ar", A.", E' and E", respectively. Similar operations esphg
E' can be identified in toluene (permutations of atbons and hydrogens in the right half of the
benzene ring with those in the left half), and otBg molecules.

The choice of a vibrational basis unde(EM), either single valued (A) or double valued,(B)an
actual problem is a matter of convenience, andbtbéerred basis is not necessarily the one which is
closer to the eigenstates. For instance, it has foeand that the perpendicular vibrations of thehyle
group of methanol are closer to the B-limit, sed. [RE2,13,17] and references therein, but it may be
easier to work with A-vibrational bases in the nuiced treatment of an actual problem. One point for
this choice may be the handling of selection ruldsich are simpler with vibrational coordinatestwit
fixed orientation in the x,y,z-system.
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7. Ggg(EM) Molecules

In ethane-like molecules with free internal rotatishe double degenerate vibrations in the two
molecular halves, a and b, are identical sincedéfermations of a do not interact with those of b.
Thus they form modes with four degenerate compangsingle valued G-modes, called &ter the
group extension discussed hereafter). The two coms in the a-unit, in circular coordinates, are

called S; , and generate overall and torsional angular momesith the same sign. The

corresponding circular coordinat6§+ in the b-unit generate overall and torsional aagahomenta

with opposite signs.

Owing to the identity of the two molecular halvésis customary not to fix the molecular axis
system at one half of the molecule (frame), butdé@ine an x,y,z-system with z along the internal
rotation axis (asgand ), and with x and y bisecting the angles betwegiand » and y and ,
respectively. The torsional angieis set to zero when the three systems of axesa@ireident,
therefore a torsion by implies that the two moieties a and b rotate abouiy t/2 and +/2,
respectively. Often the anglet/2 is used to define the torsion. The interactiba and b causes the
mixing of their deformations, and the componentsa dik-mode in a and b mix together generating
double degenerate modes. As before, typical limutasons, with characteristic forms of degenerate
modes, can be defined.

Projecting the components of a-@ode on the x and y axes, we obtain vibrationalrdimates
with fixed orientations in the x,y,z-system [18,18heir circular components are

_ 1  +it2ca T it/2cb
S(Eld)i ——& € Sai +e Sbi) (23)
+ i1/2 T i1/2cb
S(E ) __\f (e Sa - Sbi) (24)

These coordinates are multiplied biyl/ne: -1 ast changes by 12 therefore they are double valued and
require the extension of the molecular symmetryugréo Ge(EM) = GseX(E,E), just as for G
molecules. Other typical coupled coordinates, singhlued, are obtained by projecting the
displacements in the a-unit of ag@ode on an axis system which rotates about z etatigular

velocity *t, and the displacements in the b-units on an aydtem rotating at the angular velocity
2

-21. Thus their directions in a and b rotate by 90d a@0° if T changes by 60°, showing that the

2
directions of the deformations in a and b of modescribed by these coordinates change from
cis(trans) to trans(cis) at any conversion betwessipsed and staggered conformations.
The circular components are [13,19,20]:

S(E,), T € 'Tsa et iTsgi) (25)

SE), = €S, &S ) (26)
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All modes in equations (23-26) do not generateidoed angular momentum, because the
contributions from the units a and b cancel outwkler, the interaction ofigand &y modes or of
Eisand Bs modes can generate torsional angular momentum.

Again there are terms in the Hamiltonian which favthe formation of double valued or single
valued E-modes, and the mechanism of formatiomefactual states is ruled by the torsional Coriolis
coupling, which can tune more or less to resondasts levels linked by specific head-tail interati
operators [13,20-22].

Combinations and overtones in @Gg(EM) molecules

In the numerical analysis of vibration-rotationgion spectra of ethane-like molecules it is
convenient to adoptgand Eq basis vibrational functions for the degeneratedimentals, owing to
the properties of vibrational modes with fixed atetions in the chosen X,y,z molecular axis system.
However, a complication arises in the presenceooflinations or overtones with the excitation of an
even number of degenerate vibrational quanta.dt) feom group theory it follows that the degenerat
components of these combinations and overtoneddheub s or E;15[23], see also Ref. [24]. This is
only a formal complication, because the total Miorarotation-torsion functions are always single
valued, and the problem only concerns the choicaitatheir partition into the partial factors. We do
not investigate this point in detail here, but waenthat since the above partition is arbitraryisit
possible to refer to fg or Exq basis functions also for overtones and combinatiaith an even
number of quanta of double valued degenerate vinatmodes.

We have shown that am Eor Exgfunction of circular type is a combination of germs multiplied

- 3 3 o . 3
by factors containingcos-1 orisin—1 and By terms multiplied by factors containingin—1 or
2 2 2

cosoT [20], consistently with the symmetriescmfsET (Ag) andisin>T (Asg). The presence af-
2 2 2

dependent coefficients in these transformationggigvidence to the fact that the torsional bases
associated to the single valued and double valimdtional bases are different.
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