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Abstract: Several situations of general interest, in which the symmetry groups usually 

applied to spectroscopy problems need to be extended, are reviewed. It is emphasized that 

any symmetry group of geometrical operations to be used in Molecular Spectroscopy 

should be extended for completeness by considering the time reversal operator, as far as 

the Hamiltonian is invariant with respect to the inversion of the direction of motion. This 

can explain the degeneracy of pairs of vibrational and rotational states spanning the so-

called separably degenerate irreducible representations, in symmetric tops of low 

symmetry, and Kramers degeneracy in odd electron molecules in the absence of magnetic 

fields. An extension with account of time reversal is also useful to determine relative phase 

conventions on vibration-rotation wavefunctions, which render all vibration-rotation matrix 

elements real. An extension of a molecular symmetry group may be required for molecules 

which can attain different geometries by large amplitude periodical motions, if such 

motions are hindered and are not completely free. Special cases involving the internal 

rotation are discussed in detail. It is observed that the symmetry classification of 

vibrational modes involving displacements normal to the internal rotation axis is not 

univocal, but can be done in several ways, which actually correspond to different 

conventions on the separation of vibration and internal rotation in the adopted basis 

functions. The symmetry species of the separate vibrational and torsional factors of these 

functions depend on the adopted convention. 

Keywords: molecular symmetry; groups and representations; time reversal; Kramers 

degeneracy; internal rotation 

 

OPEN ACCESS 



Symmetry 2010, 2 
 

214 

1. Introduction 

It is usual, among researchers dealing with vibrational and rotational Spectroscopy, to classify the 

energy levels according to the irreducible representations of a group determined by the molecular 

geometry. Point groups, consisting of the operations related to all symmetry elements of a molecule, 

are in general adopted in the case of molecules undergoing only small amplitude vibrational 

deformations with respect to an unique reference geometry [1–3]. Permutation-inversion groups, 

consisting of permutations of identical nuclei and permutations followed by inversion through the 

mass centre, are used in the presence of large amplitude deformations, which may involve changes in 

the molecular conformation [4]. In any case, groups consisting only of geometrical operations are 

usually employed. 

One should remember that what really matters, in order to choose the group suitable to the 

classification of energy states, is the symmetry of the Hamiltonian and not of the molecule. For 

instance, pure rotational states can be classified according to the irreducible representations of a group 

formed by the symmetry operations of the ellipsoid of inertia of the molecule, which has a higher 

symmetry than the molecule itself. However, when vibrational modes have to be considered too, the 

geometrical symmetry of the Hamiltonian matches the symmetry of the molecule.  

In the absence of magnetic fields, the Hamiltonian is also invariant with respect to the inversion of 

the direction of motion, that is the inversion of all momenta and angular momenta, including spin. 

Such inversion implies the change of sign of the time derivatives of all coordinates, therefore the 

inversion of the direction of motion is usually referred to as "time reversal" [5,6]. Time reversal can be 

expressed as the product of a linear operator times the complex conjugation operator, therefore it 

transforms all constants, scalars and wavefunctions into their complex conjugates. In fact, the quantum 

mechanical operators corresponding to observables which imply a time derivative in their classical 

definition (e.g., the components of linear and angular momenta), contain the factor i which multiplies a 

coordinate derivative, and change sign under time reversal because of their imaginary nature. Thus, in 

principle, time reversal should be considered as well as the geometrical symmetry operations forming 

the groups usually applied in Spectroscopy, and this may require appropriate extensions of these 

groups. We shall see that other types of extensions might be required for symmetry groups applied to 

molecules with large amplitude periodical motions. 

2. Double Degenerate Vibrational Modes 

Double degenerate vibrational modes occur in molecules having one symmetry axis (z-axis) with 

order larger than two, or one four-fold or higher order rotation-reflection axis (alternating z-axis). Such 

modes consist of two orthogonal components oscillating at the same frequency, which we call Qa and 

Qb. The respective harmonic Hamiltonians, in terms of normal coordinates and associated momenta, 

are 

Ha = )( 222
aa2

1
PQ +ω       (1a) 

Hb = )( 222
bb2

1
PQ +ω       (1b) 
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where ω=2πν, ν is the vibrational frequency, and Q and P represent the operators corresponding to a 

normal vibrational coordinate and its conjugate momentum. 

The total Hamiltonian is 

H = Ha + Hb       (2) 

The two components can generate an angular momentum about the top axis z, whose operator is 

L= 
abba

PQPQ − .      (3) 

Figure 1 shows that H, Ha and Hb commute with each other, but L  commutes only with the total 

Hamiltonian H. The figure also shows the quantum numbers associated with the eigenvalue of each 

operator. Thus, representing a general vibrational state as lv,,v,av b , with v=va+vb, the states of a 

degenerate fundamental pair can be taken either as -1,,0,1  and -1,,1,0  (for short 
a

1  and 
b

1  ) or 

as 1,1,-,-  and 1,-1,-,-  (for short 11  and 1-1  ). 

Figure 1. Commutativity of energy and momentum operators for an isotropic two-

dimensional harmonic oscillator. 

 

With the first choice, one knows the total energy and the excitation in each of the two components, 

but the angular momentum is not defined. With the second choice, one knows the total energy and the 

angular momentum generated by the vibrational pairs (ζl ℏ , that is ±ζℏ  in fundamentals, where ζ is 

the Coriolis coupling coefficient of the pair under consideration). The relation between the two sets of 

components is: 

11±  = (
a

1 ±i
b

1 )/ 2      (4) 

The states 
a

1  and 
b

1  are mixed under rotation about the z-axis (they would not be mixed only 

under a rotation by a multiple of π). On the contrary, the functions 11±  are only multiplied by a 

unitary factor under the top axis rotation. They can be mixed only by a reflection through a plane 
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containing the top axis or by a rotation about an axis normal to it, an operation called "second 
orientating operation" by Henry and Amat [7]. We call this operation RRRR' , reserving the symbol RRRR    for 

the top axis operation ("first orientating operation"). Thus, in the absence of symmetry planes 

containing the top axis and of axes normal to it (that is, for molecular geometries corresponding to the 

point groups Cn , Cnh , Sn), each of two 11±  functions would constitute the basis of a one-

dimensional irreducible representation. In spite of this group theoretical conclusion, the physical 

intuition and the equivalence of the directions normal to z in the case of high rotational symmetry 

about the z-axis still suggest that the a and b vibrational modes should occur in degenerate pairs. This 

is even more evident for the rotational states, because the moments of inertia about x and y would be 

equal anyway. It is for this reason that the one-dimensional symmetry species spanned by the 

components of a 11±  pair in the mentioned class of molecules are called by Herzberg "separably 

degenerate irreducible representations" [2]. This odd situation is clarified if the time reversal operation 

is applied, and this can be understood without entering any mathematical treatment. In fact, the 

components of a 11±  pair differ from each other by the sign of the vibrationally generated angular 

momentum, then they are interchanged if the direction of motion is inverted, and must form the basis 

of a two-dimensional corepresentation, in a group which includes the time reversal operation. 
We show as an example the extension of the point group C3 through direct multiplication by (E, ΘΘΘΘ). 

Table 1. Character table and symmetry species of the point group C3. Although E+ and E- 

are uni-dimensional representations under C3, the vibrational modes of these symmetries 

occur in pairs of the same energy, behaving as components of a two-dimensional 

corepresentation E. 

C3 E 1
3C  

2

3C    

A 1 1 1 Tz Rz 

E+ 

Ε 

E- 

1 exp(2πi/3) exp(-2πi/3)  Tx+iTy Rx+iRy 

1 xp(-2πi/3) exp(2πi/3) Tx-iTy Rx-iRy 

 

Table 1 shows the irreducible representations and their characters for the point group C3, and the 

behavior of the components of typical polar vectors (linear displacement T) and axial vectors (angular 

displacement R). Polar and axial vectors describing motion (linear momentum P and angular 

momentum J) also behave as T and R, respectively, since the group contains only geometrical 

symmetry operations. Note that the "separably degenerate" species E+ and E- are two mono-

dimensional species, and that circular vector components of the form x+iy and x-iy are basis of these 

two separate representations. On the contrary, their components along x and y are basis of a two-

dimensional reducible representation, whose characters are the sum of those of E+ and E-, that is 2,-1,-

1, and which can be completely reduced to E++E- by a transformation to circular components, such as 

that in equation (4). 
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Table 2. Characters and symmetry species of the extended group C3×(E, Θ    ), with 

Θ 2    = = = = E. The behavior of vector components, also multiplied by the imaginary unit i, is 

shown in the upper part. The lower part applies when x and y components are combined in 

the form x±iy. See text. 

C3×(E, Θ    ) E 1
3C  

2

3C  ΘΘΘΘ 1
3C  

2

3C  Bases 

A1 1 1 1 1 1 1 Tz , Rz or iPz , iJz 

A2 1 1 1 -1 -1 -1 Pz , Jz or iTz , iRz 
E1 2 -1 -1 2 -1 -1 (Tx , Ty) , (Rx , Ry) or (iPx,, iPy) , (iJx,, iJy ) 
E2 2 -1 -1 -2 1 1 (Px,, Py) , (Jx,, Jy ) or (iTx , iTy) , (iRx , iRy) 
A1 1 1 1 1 1 1 Tz , Rz or iPz , iJz 

A2 1 1 1 -1 -1 -1 Tz , Rz or iPz , iJz 

E 2 -1 -1 0 0 0 Tx±iT y�; Rx±iRy ; Px±iP y; Jx±iJ y 
 

If the symmetry operations of C3 are multiplied by (E, Θ    ), one obtains the six operations shown on 

the top of Table 2. They form a group if Θ 2    = = = = E, that is for systems with integral spin. Anyway, here 

we are dealing with vibration-rotation energy states and the resolution of spin structures is not 

considered. Also (E, Θ    ) is a group if Θ 2    = = = = E. 

Table 2 shows the characters of the transformations of vector components. The components of 

vectors that imply motion, such as P and J, or do not imply motion, such as T and R, transform with 

opposite signs under the operations containing time reversal. However, their behavior under the 

antiunitary operations (those containing Θ in Table 2) is reversed if the vectors are multiplied by the 

imaginary unity i. This can be seen in the upper part of Table 2. It is evident in this table that only the 

unitary operations have definite characters in a given corepresentation of a group containing unitary 

and antiunitary operations, whereas the characters of the antiunitary operations depend on the basis 

and can be affected also by phase choices [4,5]. More complicated characters for antiunitary operations 

would be obtained for general phases, consistently with transformations as Θ Θ Θ Θ (eiφ
q) = e

-2iφ
(e

iφ
q) and 

Θ Θ Θ Θ (eiφ
p) = - e

-2iφ
(e

iφ
p), for coordinates and momenta. 

The lower part of Table 2 applies if the x and y-components of vectors are expressed in the circular 

form x±iy. It can be easily understood that circular components of the form x±iy are switched into 

each other under the antiunitary operations, therefore they are bases of a corepresentation in which the 

characters of the antiunitary operations vanish (E-corepresentation in the lower part of Table 2). 

Comparison of the corepresentations E′, E" and E clearly shows that a change of basis can affect only 

the characters for the antiunitary operations. 

The components Qa and Qb of perpendicular vibrational modes of C3-molecules can be chosen to 

transform as Tx and Ty , therefore their circular combinations, with defined angular momentum, span 

the non-degenerate species E+ and E- of this point group, see Table 1. However, they transform 

according to the E-corepresentation of C3×( E, Θ    ), therefore they are actually degenerate. 
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3. Spin Double Groups and Kramers Degeneracy 

It is customary in several procedures of Spectroscopy to start with entities, such as operators and 

wavefunctions, classified under the full rotation group (the group of all rotations, by any angle and 

about any axis), and then to exploit the resolution of the species of this highly symmetric group into 

those of less symmetric groups, which apply to the specific cases. The sets of angular momentum 

wavefunctions are typical bases of the irreducible representations of the full rotation group, since the 

wavefunctions associated with the components of an angular momentum with principal quantum 

number j span the 2j+1-dimensional species Γ(j)
. In particular, if the orientation of the components of a 

given Γ(j)
 set is chosen in such a way that they are simultaneous eigenfunctions of j2 and jz, with good 

quantum numbers j and k, they transform under a rotation by φ about z as: 

Rz(φ) kj,±  = exp(±ikφ) kj,±     (5) 

It is evident that kj,±  is invariant under a rotation by 2π, that is replacing φ by φ+2π, if k (and j) 

has an integral value. 

Applying this machinery to functions with half integral angular momentum, which actually occur in 

the presence of half integral spin, one finds from (5) that these functions change sign under a rotation 

by 2π. Thus, it is customary to add to the operations of the full rotation group, or of the symmetry 

group of the molecule, a somewhat fictitious element R, and to extend the group by direct 

multiplication by (E, R) [4,8]. The species symmetric under R occur in integral spin states and are 

called single valued, those anti-symmetric under R occur with half integral spin and are called double 

valued. It can be shown that states corresponding to double valued representations of the extended 

group occur always at the least in degenerate pairs (Kramers degenerate doublets). In low-symmetry 

groups, some or all spin functions may span non-degenerate species, but in this case, for half integral 

spin, each non-degenerate species occurs at least twice, corresponding to Kramers doublets of the same 

energy. However, Kramers degeneracy can be lifted by the presence of a magnetic field. 

In these considerations, one is faced with two difficult points. One point is that, in spite of the 

previous considerations, R is a new operation, distinct from any operation R(2π) of the extended full 

rotation group (see table 55 of Ref. [8], where the operations R(2π) are included under the symbol φ∞C , 

with φ=2π, and the new operation R occurs as well). Another point is that we cannot explain why a 

magnetic field could lift the Kramers degeneracy. Both points are clarified if the fictitious operation R 

is replaced by the square of time reversal operator, Θ Θ Θ Θ 2 [4]. This will also make the understanding of 

Kramers degeneracy in the absence of fields easier. One has to remember that all components of the 

spin operators, as for angular momenta, change sign under time reversal. 

The spin functions with defined values of the z-component are written as ΣS, . In the absence of 

external magnetic fields, it is convenient to choice a quantization z-axis fixed to the molecule. We 

adopt the phase conventions that the functions with Σ = 0 or +1/2 transform under time reversal as 

ΘΘΘΘ    S,0  = (-1) S    S,0  for integral S   (6) 

Θ Θ Θ Θ /21S,+  = (-1) S-1/2    1/2S,−  for half integral S .  (7) 
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We also adopt the widespread convention that the matrix elements of the ladder operators S± are 

real and positive. With these conventions, building up the spin function 1/2S,−  by applying S- to 

/21S,+  and operating with time reversal, we also find from (7): 

                                                                         Θ  Θ  Θ  Θ /21S,±  = 1/21)( ∓S− 1/2S,∓  for half integral S .   (8) 

Then, building up spin functions Σ±S,  by applying Σ
±

S  to S,0  or 1/2Σ −
±

S  to /21S,± , whatever 

applies, one finds: 

                         Θ                          Θ                          Θ                          Θ ΣS,  = Σ−− S1)( Σ−S,    for any S .  (9) 

Note that equations (6-8) are special cases of equation (9). 

Operating by ΘΘΘΘ on both sides of equation (9), one finds eventually: 

                         Θ                          Θ                          Θ                          Θ 2 ΣS,  = (-1)2S ΣS,    for any S .  (10) 

Equation (10) shows that function with integral spin are invariant under Θ Θ Θ Θ 2, but those with half 

integral spin change sign, just as for the operation R. 

Moreover, using combinations of spin functions with Σ and – Σ , one finds: 

                    Θ Θ Θ Θ ( ΣS, ± Σ−S, )/ 2 = [ Σ−− S1)( Σ−S,  ± Σ+− S1)( Σ+S, ]/ 2   (11) 

Since S-Σ and S+Σ have the same parity for integral S, but opposite parities for half integral S, 

one finds that 

                Θ Θ Θ Θ ( ΣS, ± Σ−S, )/ 2 = ± Σ+− S1)( ( Σ+S,  ±( ΣS,- )/ 2  for integral S   (12) 

and 

    Θ     Θ     Θ     Θ ( ΣS, ± Σ−S, )/ 2 = ± Σ+− S1)( ( Σ+S,  ∓ ( ΣS,- )/ 2  for half integral S (13) 

Equations (12,13) show that for integral S time reversal transforms the spin functions of above into 

themselves, with a change of sign at the most, whereas for half integral S ΘΘΘΘ       transforms the above spin 

functions into different functions, orthogonal to them. Now if the Hamiltonian is invariant under time 

reversal, the eigenstates ψ and ΘΘΘΘψ (inclusive of spin) have the same energy (in fact, in this case the 

equation ΘΘΘΘΗΗΗΗψ = ΘΘΘΘE    ψ becomes ΗΗΗΗΘΘΘΘψ = EΘΘΘΘ     ψ), therefore they must be degenerate if they are different 

functions, that is if S is half integral. On the other hand, in the presence of a magnetic field the 

Hamiltonian is not invariant under time reversal, and ΘΘΘΘ    ψ  and ψ are no longer bound to have the same 

energy. This explain why a magnetic field can lift the Kramers degeneracy.  

Thus an extended spin double group is actually the unitary subgroup of the group obtained by direct 

product of the original symmetry group and the group (E,Θ,Θ 2,Θ 3), see Ref. [4]. 

4. The Extended Symmetry Group (E,    R R R R ')×(E,ΘΘΘΘ    ), With Θ Θ Θ Θ 2 2 2 2 = = = = E 

The point groups possessing an RRRR'  symmetry element, consisting of either a binary rotation axis 

normal to the main axis (chosen as the angular momentum quantization axis z) or of a reflection plane 

containing z, always have a subgroup (E,    RRRR    ') . The ensemble of operations (E,    RRRR')     ×(E,Θ Θ Θ Θ ) is also a 

group, as (E,Θ Θ Θ Θ ) does, if Θ 2    = = = = E. This group can be effectively employed to classify vibration-rotation 
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coordinates, operators and wavefunctions, including their real or imaginary nature [9]. Spin structure is 

not considered and one can assume that Θ 2    = = = = E. It is a subgroup of the extended group resulting by the 

multiplication of the point group or molecular group by (E,Θ Θ Θ Θ ). Table 3 shows the characters of the 

corepresentations of this group, which apply to bases of Cartesian components of vectors, with either 

real or imaginary coefficients, see also the upper part of Table 2. 

Table 3. Character table and symmetry species of the group (E, R ')×(E,Θ ), with Θ 2    = = = = E. 
See text. 

(E,    R R R R ')×(E,Θ Θ Θ Θ ) E R R R R ' Θ Θ Θ Θ  ΘΘΘΘR R R R ' 
1
1Γ  1 1 1 1 

1
1−Γ  1 -1 1 -1 

1−
1Γ  1 1 -1 -1 

1−
1−Γ  1 -1 -1 1 

 
The upper index in the species symbols are associated with the invariance or change of sign with 

respect to time reversal, whereas the lower index refers to the behavior under RRRR' . Hamiltonian 

operators with real coefficients containing even or odd powers of momenta are invariant or change 

sign under time reversal. 

In order to determine the relative phases of the rotational basis functions Mk,J, , we only need to 

define a phase angle δk relative to the shift of k, since in the absence of external fields the Hamiltonian 

is diagonal in J and M. For non-degenerate oscillators, the values of the phase angles δv(s) and δv(a), 

relative to the shift in the vibrational quanta of modes symmetric or anti-symmetric under RRRR' , have to 

be defined. For two-dimensional oscillators, using circular components, the value of δvt±δlt, where δlt 

is the phase angle relative to the shift of lt, the quantum number related to the angular momentum 

generated by the degenerate vibrational modes, has to be defined. For three-dimensional oscillators, 

using spherical components, one has to define the phase angles δvt(s) ±δlt(s), δmt(s), δvt(a) ±δlt(a) and 

δmt(a), where l and m apply to the angular momentum generated by the three-dimensional mode and 

its z-component, and (s) and (a) apply to three-dimensional modes with character 1 or -1 under RRRR' . 
Classifying the vibration-rotation operators according to the symmetry species of the group in Table 3, 

and exploiting the property that the rotational and vibrational factors in the Hamiltonian must have the 

same symmetry, we have shown that it is possible to determine values of δk and of all the vibrational 

phase angles in such a way that all vibration-rotation matrix elements are real [9,10].  

The calculation of vibration-rotation transition moments also requires to define two additional 

phase angles ληJ  and δM, relative to the shifts of J and M [9–11]. We have also shown that with the 

phase conventions leading to real vibration-rotation matrix elements, and with ληJ  either 0 or π 

(modulo 2π) the matrix elements of vibration-rotation transition moment operators are all real if RRRR'  is a 

reflection and all imaginary if RRRR'  is a rotation [9,10]. 

The problem of defining convenient phase conventions for vibration-rotation spectroscopy was of 

actual interest already in the early sixties. We believe that a general satisfactory definition took so long 

time to be found, because of the little attention paid to the convenience of extending the geometrical 

symmetry groups applied to molecules, to account for time reversal. 
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5. Symmetry Groups for Floppy Molecules 

There are molecules undergoing one or more periodic deformations of large amplitude, with a 

potential surface with several minima. They can assume different inter-converting geometries or 

conformations, and are usually referred to as "floppy molecules".  

It is obvious that the energy levels of floppy molecules cannot be classified according to a point 

group. In fact, a suitable point group consists of the operations related to the symmetry elements of a 

molecule in a unique reference geometry. 

The most general group for a molecule consists of all permutations of nuclei of the same species, 

followed or not by the inversion of all particles through the molecular mass centre, and of their 

combinations, and is called "complete nuclear permutation inversion group" (CNPI) [4]. It can be 

easily understood that a given CNPI implies only the knowledge of the number of nuclei of each 

species present in a molecule, that is of its brute chemical formula, without any knowledge about the 

permitted molecular geometry (or geometries). In principle, this is the group that should be considered 

by a theoretician "ab-initioist", searching to find how could all the nuclei assemble together in the 

formation of the molecule, without making use of any experimental evidence and then without any 

assumption about preferred geometries. 

In practical cases, when not all permutations of identical nuclei can occur in the vibrational 

molecular motion, the use of a CNPI group would generate plenty of useless labels, that would allow 

one to distinguish components of energy levels whose splitting will never be observable. Thus it is 

convenient to select from a CNPI group those elements which bring the molecule into geometries that 

can actually be attained, and can be brought back to the initial geometry by allowed large amplitude 

deformations and overall rotations (feasible operations). The ensemble of these feasible operations 

forms the molecular symmetry group. 

As an example, we examine the acetaldehyde molecule (Figure 2). Three system of axes, all with 

the y-axis normal to the plane of the page, are shown in the figure. The axis z is parallel to the internal 

rotation axis za, xpam and zpam are principal inertia axes, zρ is the axis about which the whole 

molecule must rotate to compensate for the angular momentum caused by the internal rotation of the 

methyl group (top) with respect to the aldehyde group H-C-O. We also shall make use of a coordinate 

system xa, ya, za, fixed to the internally rotating top (methyl group), with xa and ya parallel to x and y 

in the reference conformation with the internal rotation angle τ equal to zero.  

This molecule can assume three conformations with one hydrogen of the methyl group eclipsed 

with the hydrogen of the HCO group (we call them eclipsed), and three conformations with one methyl 

hydrogen eclipsed with the oxygen of the HCO group (we call them staggered). They can be inter-

converted by the internal rotation of the methyl group with respect to the HCO group, about the C-C 

axis. The molecular symmetry group of acetaldehyde, G6, consists of the identity, the two circular 

permutations (123) and (132), and the three permutation-inversion operations (12)*, (13)* and (23)*. 

The molecular geometries generated by the circular permutations can be brought back to the initial one 

again by an internal rotation, those generated by the permutation-inversion operations also require a 

rotation by π about an axis normal to the HCO plane (yt in Figure 2). The operations of the CNPI 

group containing permutations of a methyl hydrogen with the hydrogen of the HCO group, the 

permutation of the two carbon atoms, the permutations (12), (13) and (23), the permutation-inversion 
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operations (123)* and (132)*, and the inversion through the mass center E* have been disregarded as 

"non feasible", leading to geometries that the molecule cannot actually attain. The character table of 

the G6 molecular symmetry group is reported in Table 4. 

Figure 2. The acetaldehyde molecule in a staggered conformation. See text.  

 

Table 4. Character table of the G6 molecular symmetry group, see Figure 2.  

  (123) (12)*  
 E (132) (13)*  

G6   (23)*  
A1 1 1 1 Tz, Tx, Jy 
A2 1 1 -1 Ty, Jx, Jz, Jtors 
E 2 -1 0  

 

If the internal rotation would become no longer feasible, one can verify that the molecular 

symmetry group would contain only E and (23)*, with reference to a "rigid" geometry as in Figure 2. 

This group is isomorphic with the point group Cs, with (23)* corresponding to the reflection through 

the symmetry plane. In fact, the energy levels of molecules with only small amplitude vibrational 

modes can be classified under the appropriate point group. 

Molecular symmetry groups are fully adequate for application to all floppy molecules, if the 

allowed inter-conversions of different geometries or conformations are completely free from 

hindrance. If these inter-conversions are somewhat hindered, additional information on the vibrational 

dynamics of the molecule can be obtained by the correlation of the vibrational energy levels (and their 

symmetries), with the levels (and their point group symmetries) of the molecule vibrating about given 

supposedly stable geometries. This may require an extension of the molecular symmetry group. 

In the next section we examine the case of typical molecules with internal rotation, such as 

methanol or acetaldehyde, nitromethane, and ethane. 
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6. G6 and G12 Molecules with Internal Rotation 

Let us consider the acetaldehyde molecule, and its G6 molecular symmetry group in Table 4. If the 

methyl group rotates from 0 to 2π radians about the C-C bond, with respect to the HCO plane, the 

molecule will assume six times a geometry of Cs symmetry, where HCO is a symmetry plane. The H 

atom of the aldehyde group is staggered with respect to the hydrogens of the methyl group in three of 

the Cs geometries, and eclipsed to one of them in the other three, see Figure 3.  

Figure 3. The H-C-O and methyl groups of acetaldehyde, projected on a plane normal to 

the internal rotation axis C-C, in six different torsional Cs conformations. The orientations 

of the components normal to the C-C axis of vibrational modes of A and B symmetries are 

shown at the bottom of the figure. 

 

In the case of free internal rotation, the interaction between the methyl group (top) and the aldehyde 

group (frame) vanishes, therefore the mechanical behavior of the molecule is independent of the angle 

of internal rotation τ, being identical at any conformation. Thus the correlation of the vibrational 

modes of the floppy molecule with corresponding modes of the "semirigid" molecule, vibrating with 

small amplitudes about any Cs point group geometry, is meaningless. Therefore molecular symmetry 

groups are fully adequate to classify the energy levels of molecules with free internal rotation, even if 

they contain no elements that could make the above mentioned correlations feasible. When the internal 

rotation is not free, the vibrational deformations of head and tail interact with each other in a manner 

which depends on the torsional angle τ, and the molecular motion behaves as if it had somehow 

"memory" of how it would be in the limit semi-rigid geometries. In this case it is instructive, and in 

general helpful, to establish a correlation of the vibrational symmetry species in the molecular 

symmetry group with those of point groups corresponding to characteristic symmetries attained at 

particular values of τ (e.g., the staggered and eclipsed conformations of acetaldehyde in Figure 3). 

Thus it may be convenient to extend the molecular symmetry group, if it contains no elements that 

could make the desired correlations feasible. 

This problem actually occurs with the vibrational deformations normal to the internal rotation axis.  

Particularly convenient coordinates for these vibrations are those that have fixed directions in what 

we call "molecular axis system", the system of molecular axes whose orientation in space defines the 

rotational variables or coordinates (direction cosines and/or Euler angles). A clear advantage of these 
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rotational coordinates is due to the fact that their direction in the laboratory space does not depend on 

τ, but only on the Euler angles. Therefore the largest contributions to vibrational transitions moments 

allow for transitions without change of the torsional state. 

For acetaldehyde, it is convenient to choose a molecular axis system fixed in the HCO aldehyde 

group (frame or b-unit), with z parallel to the internal rotation axis, see Figure 2. Thus τ is the angle of 

rotation of the methyl group (top or a-unit) with respect to the frame. 

Representing by a
xa

S  and a
ya

S  two equivalent orthogonal components of a deformation in the methyl 

group, we can build up the new coordinates oriented along x and y: 

a
x

S (A1) = cosτ a
xa

S - sinτ a
ya

S       (14) 

a
y

S (A2) = sinτ a
xa

S + cosτ a
ya

S       (15) 

In the absence of interaction between top and frame, the coordinates in equations (14) and (15) form a 

degenerate E-pair, and can be expressed in the circular form 

Sa(E2)± = e
±iτ

 ( a
xa

S ±i a
ya

S )/ 2  = e
±iτ a

aS (E)±    (16) 

where the symbol E2 will become clear later, with reference to the expanded molecular group G6(EM). 

In the presence of interaction between top and frame, the coordinates a
x

S (A1) and a
y

S (A2), spanning A1 

and A2 symmetry species under the molecular symmetry group G6, respectively, are no longer 

degenerate and can mix with deformations of the frame of the same symmetries. As their orientation is 

fixed in an axis system fixed at the HCO plane, A1 coordinates are always symmetric (A′ under Cs) 

and A2 coordinates are always anti-symmetric (A″ under Cs) when the molecule passes through the 

conformations shown in Figure 3, where the HCO plane becomes a symmetry plane. Other typical 

coordinates obtained by combining a
xa

S  and a
ya

S  with τ-dependent coefficients are the following: 

aS (B1) = cos(τ /2) a
xa

S + sin(τ /2) a
ya

S     (17) 

aS (B2) = -sin(τ /2) a
xa

S + cos(τ /2) a
ya

S     (18) 

These coordinates are obtained by projecting a
xa

S and a
ya

S  on the axes x′ and y′, which rotate about the 

internal rotation axis z at the angular velocity τ
2

3
ɺ , see Figure 4. Thus these coordinates, oriented along 

x’ and y’, change direction by 90° when the torsional angle changes by 60°, therefore their 

representation changes from A' to A", or from A" to A', at each step illustrated in Figure 3. B1(B2) 

coordinates are A'(A") in the staggered conformations and A"(A') in the eclipsed conformations. 
In the absence of interaction between top and frame, these coordinates form a degenerate E-pair and 

can be expressed in the circular form 

Sa(E1)± = 2/ie τ∓  ( a
xa

S ±i a
ya

S )/ 2 = 2/ie τ∓ a
aS (E)±    (19) 
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B1 and B2 coordinates rotate by 180°, that is they change sign, if the torsional angle changes by an odd 

multiple of 120°, therefore they change sign under the operation E' , consisting of a complete internal 

rotation by 360° (double valued coordinates). Therefore if B1 and B2 coordinates occur in a given 

treatment, E'  can no longer be considered equal to the identity E, and the G6 molecular symmetry 

group has to be multiplied by (E, E') yielding the extended molecular symmetry group G6(EM),  

see Table 5. 

Figure 4. Top-fixed axes (xa,ya) and (x′,y′)-axes, rotating at angular velocities τɺ  and 3τɺ /2 

with respect to the molecular axis system (x,y) fixed to the frame. The directions of 

vibrational coordinates of species A1, A2, B1 and B2 under G6(EM) are also shown. 

 

Table 5. Character Table of the G6(EM) extended molecular symmetry group. 

  (123) (12)*  E'(123) E'(12)*  
 E (132) (13)* E' E'(132) E'(13)*  

G6(EM)   (23)*   E'(23)*  
A1 1 1 1 1 1 1 Tz, Tx, Jy 
A2 1 1 -1 1 1 -1 Ty, Jx, Jz, Jtors 
E2 2 -1 0 2 -1 0  
B1 1 1 1 -1 -1 -1  
B2 1 1 -1 -1 -1 1  
E1 2 -1 0 -2 1 0  

 

Apart from these geometrical and symmetry considerations about the form and properties of A and 

B deformations, it can be shown that the vibration-torsion interaction terms of the Hamiltonian which 

depend on deformations normal to the internal rotation axis contains two leading parts. One of them is 

diagonal with the adoption of single valued A coordinates, the other one with the adoption of double 

valued B coordinates. Thus A and B modes correspond to limit situations, the actual modes being in 

general a mixture of the two, depending on the magnitude of the different terms in the vibration-

torsion interaction energy and on their resonance conditions [12–14]. In particular, these resonance 

conditions are mainly determined by the Coriolis interaction of the angular momentum generated by a 

pair of orthogonal vibrational components and the angular momentum generated by the internal 
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rotation (torsional Coriolis interaction) [13], and the form of the actual modes for a given degenerate 

pair is mostly determined by this mechanism.  

The choices of A or B vibrational basis functions in a practical problem obviously lead to the same 

results by numerical calculations, but with different values of certain parameters occurring in the 

vibration-rotation-torsion Hamiltonian. 

The two choices also differ in the different way of separating the wavefunctions into a vibrational 

and a torsional factor. To show this point, we recall that a torsional basis function corresponding to 

free internal rotation is conveniently written as e
i(Ma-ρkρ)τ

, where Ma is the quantum number relative to 

the angular momentum of the top about the internal rotation axis, kρ is the quantum number of the 

angular momentum of the whole molecule about the zρ (the axis about which the whole molecule must 

rotate in order to cancel the angular momentum generated by the rotation of the top about the internal 

rotation axis z, see Figure 2), and ρ is the ratio of the moment of inertia of the top about z and that of 

the whole molecule about zρ [15,16]. Thus from equations (16) and (19) one finds that, for given kρ:  

Ma(E2)± = Ma(E)± ∓ 1      (20) 

Ma(E1)± = Ma(E)± ±1/2     (21) 

Ma(E2)± = Ma(E1)± ∓ 3/2     (22) 

This means that the value of the torsional quantum number Ma changes with the adopted vibrational 

basis, because different amounts of the torsional angular momentum are incorporated in the vibrational 

function, for different vibrational basis sets. 

The molecular symmetry group G12, which applies to molecules like nitromethane or toluene, 

contains already four non-degenerate species: A1' and A2', symmetric under the permutation of the two 

oxygen atoms, and A1" and A2", anti-symmetric under the mentioned permutation. It can be shown that 

the A1' and A2' coordinates are single valued and are given by the equations (14) and (15), whereas the 

A1" and A2" coordinates are double valued and are given by the equations (17) and (18). However this 

molecular symmetry group does not need to be extended, because it can be shown that a torsion by 2π, 

applied to a nitromethane molecule distorted by a mode that would be double valued under G6(EM), 

would transform the molecule into a geometry which could be brought back to the initial one by the 

permutation of the two oxygen atoms in the frame [13]. Thus Table 3 also applies to G12 molecules if 

the operation E'  is replaced by the permutation of the two oxygen atoms, and the species A1, A2, B1, 

B2, E2 and E1 are replaced by A1', A2', A1", A2", E' and E", respectively. Similar operations replacing 

E'  can be identified in toluene (permutations of all carbons and hydrogens in the right half of the 

benzene ring with those in the left half), and other G12 molecules. 

The choice of a vibrational basis under G6(EM), either single valued (A) or double valued (B), in an 

actual problem is a matter of convenience, and the preferred basis is not necessarily the one which is 

closer to the eigenstates. For instance, it has been found that the perpendicular vibrations of the methyl 

group of methanol are closer to the B-limit, see Ref. [12,13,17] and references therein, but it may be 

easier to work with A-vibrational bases in the numerical treatment of an actual problem. One point for 

this choice may be the handling of selection rules, which are simpler with vibrational coordinates with 

fixed orientation in the x,y,z-system. 
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7. G36(EM) Molecules  

In ethane-like molecules with free internal rotation, the double degenerate vibrations in the two 

molecular halves, a and b, are identical since the deformations of a do not interact with those of b. 

Thus they form modes with four degenerate components (single valued G-modes, called Gs after the 

group extension discussed hereafter). The two components in the a-unit, in circular coordinates, are 

called a
a

S
±

, and generate overall and torsional angular momenta with the same sign. The 

corresponding circular coordinates b
b

S
±

 in the b-unit generate overall and torsional angular momenta 

with opposite signs. 
Owing to the identity of the two molecular halves, it is customary not to fix the molecular axis 

system at one half of the molecule (frame), but to define an x,y,z-system with z along the internal 

rotation axis (as za and zb), and with x and y bisecting the angles between xa and xb and ya and yb, 

respectively. The torsional angle τ is set to zero when the three systems of axes are coincident, 

therefore a torsion by τ implies that the two moieties a and b rotate about z by τ/2 and –τ/2, 

respectively. Often the angle γ=τ/2 is used to define the torsion. The interaction of a and b causes the 

mixing of their deformations, and the components of a Gs-mode in a and b mix together generating 

double degenerate modes. As before, typical limit situations, with characteristic forms of degenerate 

modes, can be defined. 

Projecting the components of a Gs-mode on the x and y axes, we obtain vibrational coordinates 

with fixed orientations in the x,y,z-system [18,19]. Their circular components are 

)SeSe()S(E b
b

/2ia
a

/2i

2

1

1d ±
τ

±
τ± +=±

∓     (23) 

)SeSe()S(E b
b

/2ia
a

/2i

2

1

2d ±
τ−

±
τ±=±

∓     (24) 

These coordinates are multiplied by e
±iπ

 = -1 as τ changes by 2π, therefore they are double valued and 

require the extension of the molecular symmetry group to G36(EM) = G36×(E,E′), just as for G6 

molecules. Other typical coupled coordinates, single valued, are obtained by projecting the 

displacements in the a-unit of a Gs-mode on an axis system which rotates about z at the angular 

velocity τ
2

3
ɺ , and the displacements in the b-units on an axis system rotating at the angular velocity  

- τ
2

3
ɺ . Thus their directions in a and b rotate by 90° and -90° if τ changes by 60°, showing that the 

directions of the deformations in a and b of modes described by these coordinates change from 

cis(trans) to trans(cis) at any conversion between eclipsed and staggered conformations. 

The circular components are [13,19,20]: 

)SeSe()S(E b
b

ia
a

i

2

1

2s ±
τ±−

±
τ=±

∓      (25) 

)SeSe()S(E b
b

ia
a

i

2

1

1s ±
τ±+

±
τ=±

∓     (26) 
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All modes in equations (23–26) do not generate torsional angular momentum, because the 

contributions from the units a and b cancel out. However, the interaction of E1d and E2d modes or of 

E1s and E2s modes can generate torsional angular momentum. 

Again there are terms in the Hamiltonian which favour the formation of double valued or single 

valued E-modes, and the mechanism of formation of the actual states is ruled by the torsional Coriolis 

coupling, which can tune more or less to resonance basis levels linked by specific head-tail interaction 

operators [13,20–22]. 

Combinations and overtones in G36(EM) molecules  

In the numerical analysis of vibration-rotation-torsion spectra of ethane-like molecules it is 

convenient to adopt E1d and E2d basis vibrational functions for the degenerate fundamentals, owing to 

the properties of vibrational modes with fixed orientations in the chosen x,y,z molecular axis system. 

However, a complication arises in the presence of combinations or overtones with the excitation of an 

even number of degenerate vibrational quanta. In fact, from group theory it follows that the degenerate 

components of these combinations and overtones should be E2s or E1s [23], see also Ref. [24]. This is 

only a formal complication, because the total vibration-rotation-torsion functions are always single 

valued, and the problem only concerns the choice about their partition into the partial factors. We do 

not investigate this point in detail here, but we note that since the above partition is arbitrary, it is 

possible to refer to E1d or E2d basis functions also for overtones and combinations with an even 

number of quanta of double valued degenerate vibrational modes. 

We have shown that an E1s or E2s function of circular type is a combination of E1d terms multiplied 

by factors containing τ
2

3
cos  or τ

2

3
sini  and E2d terms multiplied by factors containing τ

2

3
sini  or 

τ
2

3
cos  [20], consistently with the symmetries of τ

2

3
cos  (A1d) and τ

2

3
sini  (A3d). The presence of τ-

dependent coefficients in these transformations gives evidence to the fact that the torsional bases 

associated to the single valued and double valued vibrational bases are different. 
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