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1. Introduction

This paper deals with generating functions that define unitary operators. Problems of this kind were
discussed first by Bargmann [1]. He constructed a unitary operator given by an integral operator whose
kernel is a generating function of the Hermite polynomials. He also gave a similar construction for
the Laguerre polynomials without proof, and noticed as follows ([1], p.203). “It is worth noting that a
similar interpretation may be given to other classical generating functions.”

We turned our interest to the Gegenbauer polynomials which give the zonal spherical functions on the
pair (SO(n), SO(n—1)), and in [2] we showed that a similar construction is possible for them. Following
this, in [3] we gave a similar construction for the zonal spherical functions on the pair (U(n),U(n —1)).
On the other hand, A. Essadiq and A. Intissar gave a g-analog of Laguerre’s case (the result is introduced
in [4]), and Essadiq [4] gave a g-analog of Gegenbauer’s case.

In the two cases that we constructed, we should remark that there is a similarity in the forms of the

generating functions. We shall give an explanation in detail. Let Ny be the set of nonnegative integers,
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and let B be the unit open disk |z| < 1 in C. It is known that the set of all the zonal spherical functions
on (SO(n),SO(n — 1)) is parametrized by Ny. Denote the set by {¢,, | m € Ny}. Further, we denote
by d,, the degree of the representation corresponding to ¢,,. Then, the generating function given as the

integral kernel of the unitary operator that we constructed is written as a series of the following form:

Z dmom(9)z™, g€ S0(n), z€ B
mENo

On the other hand, it is known that the set of all the zonal spherical functions on (U(n),U(n — 1))
is parametrized by N3. As in the first case, we define {(,, |m € N3} and d,, (m € N3). Then, the

generating function in this case is written as a series of the following form:

S dppm(9)2™, gEUm), 2 € B?

2
melN,

where 2™ = 27" 25" for z = (21, 22) and m = (my, ms).

In this way, the question naturally arises whether similar situations occur in the case of general
Gelfand pair (G, K) of the compact type. More precisely, let G be a compact group, and let K be
a closed subgroup, such that (G, K) is a Gelfand pair. Further, assume that the set of all the zonal
spherical functions on (G, K) is parametrized by N, where ¢ is a positive integer. And as in the case
above, define {¢,, |m € N5} and d,,, (m € N§). Then our question can be formulated as follows. Does
there exist a generating function of the following form such that it is the kernel of an integral operator

which is unitary?

Y dupmlg)z™, gE€G, z€ B @)
meN
where 2™ = 2" - - 2" for z = (z1,...,2¢) and m = (my, ..., my). For this question, we proposed the

following theorem in [5].

Theorem 1 Let G be a compact connected Lie group, and let K be a closed subgroup of G. If the pair
(G, K) is a Riemannian symmetric pair of rank { such that G / K is simply connected, then there exists a

generating function of the form of (1) which defines a unitary operator.

We should remark that there is a difference between our viewpoint and that of Bargmann. In fact,
Bargmann was interested in an operator solution of a commutation rule, which Fock introduced in [6].
Bargmann constructed a function space F on which Fock’s solution is realized, and a unitary operator
to study the connection between the space F and the usual L?-space. In his discussion, he used the well
known generating function of the Hermite polynomials, but he did not use their other properties. That is,
he derived from the unitarity of the operator that the Hermite polynomials form a complete orthogonal
system. In contrast, we positively used not only the well known generating functions of the orthogonal
polynomials, but also their orthogonality and completeness, and showed the unitarity of the operators.

The purpose of this paper is to present a survey on generating functions that define unitary operators.
In Section 3, we give an outline of Bargmann’s discussion on the Hermite polynomials. In Section 4, we

deal with the case of the Laguerre polynomials. Bargmann gave the construction for them, but he did not
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give its proof. In this section, we shall give our proof that borrows Bargmann’s viewpoint. In Sections
5 and 6, we shall give surveys on the case of the Gegenbauer polynomials, and the case of the zonal
spherical functions on the pair (U(n), U(n — 1)), respectively. In Section 7, we shall give an outline of

the proof of Theorem 1.
2. Notation and Preliminaries

We will explain the notation and the terms which will be used throughout this paper.
2.1. General Notation

Firstly, we shall use the notation Ny, R, C for the set of nonnegative integers, the field of real numbers

and the field of complex numbers, respectively. For a fixed positive integer ¢, we denote by C’ the

complex /- dimensional space, and denote by Nf; the set of all multi-indices m = (my, ..., my) with
each m; € No. Form = (mq,...,my) € Nfand z = (z1,...,2) € C’ we write 2™ = 2z
For z = (z1,...,2) € C'and w = (wy,...,w;) € C* we denote (2w, ..., zw,) € C' by zw. We

denote by B the unit open disk in C, and denote by B’ the open polydisk of z = (zy,...,2) € C*
with each z; € B. For a subset A C R or C we define A’ in the same way. We shall use the notation
[a,b], [a,b) and (a,b) for the interval {x € R|a < x < b}, the interval {z € R|a < z < b} and
the interval {x € R|a < x < b}, respectively. For ( € C let Re( be the real part of ¢, and ¢ + C
the usual conjugation in C. We denote the Gamma function by I'(z), the hypergeometric function by
F(a, B;7; x), the binomial coefficient by (}) and I'(a + k)/I'(a) by (a)). The minimum value of a and

b is denoted by min(a, b). A function is assumed to be complex-valued.
2.2.  Gelfand Pairs

A compact group is a topological group whose underlying topology is compact Hausdorff. Let G
be a compact group, and let K be a closed subgroup of GG. A representation of the compact group ¢
means a continuous homomorphism of G to the group GL(V') of invertible linear transformations on a
finite-dimensional complex vector space V. Since G is compact, for an arbitrary representation of G
there exists a G-invariant inner product on the representation space V, that is, V' admits an inner product
such that the representation is unitary.

Given an irreducible representation p of G, let V,, denote the representation space of p, and VpK the
subspace of V,, consisting of elements w € V|, which satisfy p(k)w = w for any k € K. If an irreducible
representation p of GG satisfies VpK # {0}, p is called a spherical representation of G with respect to the
subgroup K. Let D(G, K) denote the set of all the equivalence classes of spherical representations of G
with respect to K.

Let dg denote the normalized Haar measure on G, that is, it has the property that |, o dg = 1. For two
continuous functions ¢, 1) on G the convolution ¢ * 1 is defined by

(0% 9)(g) = / (g )lg)lg, o €C

G
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The pair (G, K) is called a Gelfand pair if the convolution algebra of continuous functions on G which
are bi-invariant under K is commutative. The pair (G, K) is a Gelfand pair if and only if dim V* = 1
forall p € D(G, K).

Let (G, K) be a Gelfand pair, and let p € D(G, K). Choose a G-invariant inner product ( , ) on the
representation space V),, and take an orthonormal basis {e; } of V,* with respect to ( , ). Define

©(g) = (e1, p(g)er), g€G

The function ¢ is called the zonal spherical function associated with p.
2.3.  Riemannian Symmetric Pairs

Let G be a compact connected Lie group, and let K be a closed subgroup of GG. The pair (G, K)
is called a Riemannian symmetric pair if there exists an involutive C'* automorphism 6 of G such that
GY C K C Gy, where Gy is the set of fixed points of § and GY is the identity component of G.

Let (G, K) be a Riemannian symmetric pair. Let g and € be the Lie algebras of G and K, respectively.
The automorphism of g which is the differential of the automorphism 6 of GG will also be denoted by 6.
Then we have

t={Xegl|lX)=X}

We define the subspace m of g by
m={Xeg|0(X)=-X}
Then the Lie algebra g is decomposed into a direct sum of vector spaces as
g=t+m

The subspace m is called the canonical complement of the pair (G, K'). A maximal abelian subalgebra,
which is contained in m is called a Cartan subalgebra of the pair (G, K'). The Cartan subalgebras have
the same dimension, which is called the rank of the Riemannian symmetric pair (G, K).

3. Generating Function that Defines Unitary Operator—The Case of Hermite Polynomials

Bargmann [1] constructed a unitary operator given by an integral operator whose kernel is a generating

function of the Hermite polynomials. In fact, he was interested in the operator solution

0

5k:8_77]g

of the commutation rule [, 7] = 1, which Fock introduced in [6]. He constructed a function space F
on which Fock’s solution is realized. This space F is a Hilbert space associated with the unitary operator
introduced above. In this section, we shall summarize Bargmann’s discussion, that is: how to construct

the space F and the unitary operator. For the sake of simplicity we only consider the one variable case.
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3.1.  L*-Space Associated with the Hermite Polynomials

The Hermite polynomials H,,(x), m = 0,1,2,..., have the following generating function:

$Z—Z2 Zm
e? = ZHm(x)m, 2ze€C,zeR
mGNo
Let dz be the Lebesgue measure on R, and let L*(R, dz) be the Hilbert space of Lebesgue measurable

functions ¢ on R with

lioll =y [ ota)Pds < oo
R

The inner product is given by

(o) = /R )@ dr, o € IR, da)
Set ) ( )
e ™ ?PH, (z
Pm(7) = NG

Then it is known that {¢,, | m € Ny} is a complete orthonormal system of L?(R, dx). But, as described

m € Np, x € R

in the Introduction, Bargmann did not use this fact in his discussion.
3.2.  Hilbert Space F of Analytic Functions
Let F be the space of entire functions f on C with

wm=¢£uvwmmwu<m

e~t, and dz is the Lebesgue measure on C induced from the identification C = R?.

where p(t) = 7!

For f € F, the following inequality holds:
FEI< 2L 2eC 2)

which implies that F is a Hilbert space with inner product

<ﬁmzlﬂdﬁﬁwww,fgef

Notice that Bargmann determined the weight p(|z|?) in order to satisfy the relation

G =(1 )

for functions f, g that do not grow too fast at infinity. Set

m € Ng, z€ C

Um(2) = m,
Then the system {u,, | m € Ny} is a complete orthonormal system of F. It also follows from (2) that the
space JF has the reproducing kernel. The kernel is given by
gw(2) = Z U (W)U (2), z,w e C
meNo
that is, g, (2) = €”% and f(w) = (f, g,,) for f € F and w € C.
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3.3.  Unitary Operator Associated with the Hermite Polynomials
A unitary operator on L?(R, dz) to F is defined as follows. First, set
1
B(z,2) =7V exp {—§(z2 + 2%) + 2”%2} , z€C,zeR

This has the following expansion:

D(z,x) = Z Um(2)pm(z), 2€C,z€R
meNo

which means that the function @(z, x) can be regarded as a generating function of the Hermite polyno-
mials.
For ¢ € L*(R, dr) define
(Pp)(z) = / O(z,x)p(x)dx, ze€C
R
Then @ € F and the following holds.
Theorem 2 The operator ® on L*(R, dx) to F is unitary.

Notice that Bargmann determined the integral kernel &(z, ) in order to satisfy the following conditions:

if ¢ is sufficiently smooth and vanishes sufficiently fast at infinity, then

D) = (), (ep) = 107

d d
_9—1/2 v — 9—1/2 -
n=2 <x dx) , £€=2 (Jc + dx)

In what follows, we shall state an outline of Bargmann’s proof that @ is unitary. Let ¢ be a continuous

where

function on R with compact support, and let f = @¢. Define
f(2)=f(rz). 0<r<1

Then the square of the norm || f,|| can be rewritten as follows.
IF7 = (@) [ e N s)as
R

/e_t2 o(s — et)p(s + et)dt

1—1r2 1/2
= (52)
. 2 2 _ 2
ti 14 = | fo(o)Pde = o]

It follows from this result that the norms || f,||, 0 < r < 1 are uniformly bounded, which means that
f € Fand

N.(s) =

-

where

These relations imply that

tin |11, = |1/
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Remark 1 As stated in the Introduction, Bargmann did not use in his proof the fact that the system
{pm |m € No} is a complete orthonormal system of L*(R, dz). He conversely defined the function ¢,,
by ¢, = D 'u,,, and derived from the unitarity of ® that {p,, | m € Ny} is a complete orthonormal
system of L*(R, dx).

4. Generating Function that Defines Unitary Operator—The Case of Laguerre Polynomials

As stated in the Introduction, Bargmann [1] gave a construction similar to Hermite’s case for the
Laguerre polynomials, but he did not prove this fact. In this section, we shall give our proof for it. Our
proof follows Bargmann’s viewpoint. That is, we use the well known generating function of the Laguerre
polynomials, but we do not use their other properties except some properties that are easily derived from
the generating function.

Let -y be a positive real number. The Laguerre polynomials L7, (z), m = 0, 1,2, ..., have the follow-

ing generating function:

1 —
eXp{(lgfé - NS @, ceBo<r<oo (3)
mENo

The orthogonality relation easily follows from (3) (cf. [7]):

> r 1 ! — o/
[ B e sas = { T+ D/ m
’ 07 m # m/

4.1. L2-Space Associated with the Laguerre Polynomials

Set
d = v d
vy (z) NEEY T

and let L*((0, 00), dv,(z)) be the Hilbert space of Lebesgue measurable functions ¢ on the open interval

(0, 00) with
ol = \/ | tetan @) < o0

(o)) = / " (@)@ (2), o0 € L2((0,00), dus(2)

The inner product is given by

¢From the orthogonality relation of the Laguerre polynomials, we see that the functions e~*/2 L (x), m =
0,1,2,..., form an orthogonal system of L?((0,0), dv,(x)). Denote by ¢7 (x) the normalization of
e~®/2LY () with respect to the norm of this space. That is,

—1/2
o (x) = (”m) 2L (2)

m

Then the system {¢], | m € No} is an orthonormal system of L*((0, c0), dv,(z)).
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4.2.  Hilbert Space of Analytic Functions
Let dz be the Lebesgue measure on B induced from the identification C = R?, and set
diy(2) = L(1 = |22
() = 21— |2z

Let F, be the space of analytic functions f on B with

1l = \/ /B ()2 (2) < oo

In the following, we shall show some properties of the space .

Lemmal For f € F,, let f(z) = ZmGNo 2™ be the power series expansion of f in B. Then we

-1
7= (75 e

mGNo

have

Proof. Let 0 < 0 < 1,and set B, = {z € C| |z| < o}. Itis easy to see that

2

T t"(1 =) tdt, m=m'
| ) - [ e
7 0, m #m’

Hence, we have

| P = 3 ol / (1= eyt

mENo

B v4+m\ 2 2
=y . Cm(0)|am|” < 1]
mENU

(o) = (7 ;m>7 /0 . (1 — ¢y Ldt

Since 0 < ¢,,(0) < 1 and lim,_; ¢,,(0) = 1, we obtain

—1
112 = tim [ 1P = 3 (T0) el

mGNO

where

(Note that we used 1a. Preliminary remarks in Bargmann [1].)

Lemma 2 Let f € F,. Then we have

FEI <IN = [2)70F02, 2 eB
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Proof. Let f(z) = ZmeNo ., 2™ be the power series expansion of f in B. By the Schwarz inequality

and Lemma 1, we have

o = [ {080

mENo

< 11 5 (7 E e = - ey
meNo

which implies our assertion.

It follows from Lemma 2 that £ is a Hilbert space with inner product

/f 9(2)du,(z), f.g€F,

Set

+m 1/2
u) (z) = (’y ) 2", méeNy, z€B
m

Then we have
Lemma 3 The system {u], | m € Ny} is a complete orthonormal system of F.,.

Proof. In the same way as in the proof of Lemma 1, we see that {u) | m € Ny} is an orthonormal
system of F.,. Next we show the completeness of the system. Let f be an element of F., with power
series expansion f(z) = ZmeNg a,2™". From Lemma 1, the power series expansion of f converges

with respect to the norm of . Hence, we have

(f,ul) = <7+m)—1/2a

m

By Lemma 1, we obtain

AP =D 1(ful,

mENo
which implies the completeness of the system.

It follows from Lemma 2 that F, has the reproducing kernel. The kernel is given by

gu(z) = Y wh(@u,(z), zweB
mGNo

that is, g7 (z) = (1 — w2)~0* Y and f(w) = (f,g)) for f € F, and w € B.
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4.3.  Unitary Operator Associated with the Laguerre Polynomials

A unitary operator on L*((0, 00), dv,(z)) to F, is defined as follows. First, set

1 z(l+ 2)

mexp{‘m

This has the following expansion:

D(z,x) = }, z€B,0<z <00

D(z,x) = Y ul(2)¢),(z), 2€B,0<z <00 4)
mENo

which means that the function @(z, x) is a generating function of the Laguerre polynomials.
For ¢ € L*((0,00), dv.(x)) we define

@) = [ o)el@n ). zeB ©)
Then ¢ € F, and the following holds.
Theorem 3 The operator @ on L*((0, ), dv.,(x)) to F., is unitary.
In what follows, we shall prove this theorem.
Lemma 4 The operator @ is a bounded operator on L*((0, ), dv.,(x)) to F.,.
Proof. Let ¢ € L*((0,00), dv,(x)). It follows from (4), (5) and )= N, [u7,(2)[> < oo that

@96 = (v ¥ @E0) = ¥ e b, se B

mGNo mENo

Since {¢},|m € No} is an orthonormal system of L*((0,00), dv,(x)), we have > N [(¢, %)
< 00. Hence, we see that ¢ € F, and

1Del* = > (e, 60)1 < llell®
mENo

which means that @ is an operator on L*((0, 00), dv,(z)) to F,, and bounded.
Lemma 5 The operator @ is surjective.

Proof. If we take ¢ = ¢, in the proof of Lemma 4, we have
o) =u) ., meN (6)

Further, {u], | m € Ny} is a complete orthonormal system of F., and the operator ¢ is bounded. These

facts imply that @ is surjective.

Lemma 6 The operator @ is injective.
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Proof. Let ¢ € L*((0,00), dv,(z)), and assume that o = 0. It is clear that

Awﬁ¢@mm{—ﬂiiﬁ}mzo 0

2(1 - 2)
for each z € B. Let us consider the following linear fractional transformation
142
w =
1—=z

This transformation maps the unit open disk B in the z-plane onto {w € C|Rew > 0} in the w-plane.

Therefore, the condition (7) is equivalent to the following.
/ e~ &2y (1) dx = 0 (8)
0
for each positive real number ¢ and each 7 € R. Take £ = 1 and set
—x/2,.v

e *xVp(x), >0

() = @
0, <0

It follows from (8) that ¢» € L'(R, dz) and

/ h Y(x)e @ 2dr = 0 )

forall ) € R, where L'(R, dz) is the space of Lebesgue measurable functions ¢ on R with [*°_|é(z)|dx
< oo. Since the Fourier transformation on L'(R,dx) is injective, by (9) we obtain ¢» = 0. By the

definition of ¢/, we see that ¢ = 0, which implies that @ is injective.
Lemma 7 The operator @ is an isometry.

Proof. Let p € L*((0,00), dv,(x)), and set

DPp = Z Q)

mENo
Then we have

2ol = > laml’ (10)
mGNo
On the other hand, by Lemma 4 and (6), we see that

to= 3 ants =0 3 a0y
mENo mENo
It follows from this fact and Lemma 6 that

o= and],
mENo
which implies

lel* = > laml (11)

(From (10) and (11), we have the assertion.

As a result of these lemmas, we can conclude that @ is unitary.

Corollary 1 The system {¢], | m € Ny} is complete.
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5. Generating Function that Defines Unitary Operator — The Case of Gegenbauer Polynomials

Let A be a positive real number. The Gegenbauer polynomials C’;}T(x), m = 0,1,2,..., have the

following generating function:

1
(1 —2zz+ 22)

S = Z CMz)z™, 2€B, -1<z<1
mENo

In this section, we deal with a generating function of {C} | m € Ny} that defines a unitary operator. For

more details, refer to [2].
5.1. L2-Space Associated with the Gegenbauer Polynomials

Let L?((—1,1), (1 — 22)*~Y/2dx) be the Hilbert space of Lebesgue measurable functions ¢ on the
open interval (—1, 1) with

el = \//1 lo(x)[2(1 — 22)12dx < oo

The inner product is given by

(p,9) = / p(2) (@) (1 — 2P Vdx, .0 € L((=1,1), (1 — 2”)2dw)

1

As is well known, the Gegenbauer polynomials C (z), m = 0,1,2,..., form a complete orthogonal
system of L?((—1,1), (1—22)*~/2dx). Denote by ¢, the normalization of C}\ with respect to the norm

of this space. That is,

ml(m + 2)) ()

) — \/22A—1<m+x>m!<r<x>>2 )

Then the system {¢), | m € Ny} is a complete orthonormal system of L?((—1,1), (1 — 22)*~1/2dz).
5.2.  Hilbert Space of Analytic Functions

For 0 < t < 1 we define

1 1
—t)\fl - 1 — 2)\72d A 1/2
F(Q)\ _ 1) /; S ( S) 87 > /

o (T =) 1 - 272
t ( o0 _F(Z)\—l)/os (1—ys) ds), 0<A<1/2

paA(t) =

Let F) be the space of analytic functions f on B with

1f]l = \//B 1£(2)2px(]2]2)dz < o0
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where dz is the Lebesgue measure on B induced from the identification C = R?. For f € F\, we have

the following inequality

Z (m 4+ MN)T(m + 2X)

mm!

[f <A |z[>m, z€ B (12)

mGNO

which implies that F) is a Hilbert space with inner product

(f.9) = /f 9()pa|zP)dz, .9 € Fa

Set

A 2\
/\(Z)_\/(mjL zm(ﬁl—i_ >zm, mé€ENy, z€ B

Then the system {u., | m € Ny} is a complete orthonormal system of F. It also follows from (12) that
the space F), has the reproducing kernel. The kernel is given by

ga(z)= Y up(@uy(z), zweB
mENo
that is, f(w) = (f, g,) for f € Fyand w € B.

5.3.  Unitary Operator Associated with the Gegenbauer Polynomials

A unitary operator on L*((—1,1), (1 — 2%)*%/2dz) to F, is defined as follows. First, set

222N+ 1) 1— 22

Pz ) = m (1 = 2xz 4 221

ze€B, —-1l<z<1

This has the following expansion:

&(z,x) = Z ur (2)r(z), z€B, ~1l<z<1 (13)
meNg
which means that the function &(z, x) is a generating function of the Gegenbauer polynomials.
For p € L*((—1,1), (1 — 2%)*~1/2dx) we define

(Pp)(z) = / O(z,x)p(x)(1 — x2)’\_1/2dx, z€B (14)

1
Then ¢ € F) and we have

Theorem 4 The operator ® on L*((—1,1), (1 — 22)*~'2dz) to Fy is unitary.

We positively use in our proof the fact that the system {¢ | m € Ny} is a complete orthonormal system
of L2((—1,1), (1—22)*~Y/2dx). It follows from (13) and (14) that for ¢ € L?((—1,1), (1—22)*"'/2dz)

(Pe)(z) = > (o, ¢n)up(z), z€B
mGNo
Hence, we have
Dol = D (e, om)* = llell,  D¢), = up
mENo
which imply that @ is unitary.
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Remark 2 Letn be a positive integer that n > 3, and let S"~! be the (n—1)-dimensional unit sphere. Set
e; = '(1,0,...,0) € S"~L. Then the identification SO(n)/SO(n — 1) = S"~! is given by the mapping
gSO(n — 1) — gey, g € SO(n). On the other hand, in the case of A\ = (n — 2)/2, the Gegenbauer
polynomials C\, m = 0,1,2,..., give the zonal spherical functions on (SO(n), SO(n — 1)). More
precisely, for each m € N define

_ Ch((ger,en))

Pm(g) = o) g € SO(n)

where (, ) denotes the canonical inner product on the real vector space R". Then {p,, |m € Ny} is
equal to the set of all the zonal spherical functions on (SO(n), SO(n —1)). Let d,,, denote the degree of
the representation corresponding to p,,. Then the following holds.

1— 22

(1 —2z(ge1,e1) + z2)%

Z dmom(g)z™ = , g€850(n), z€B

mENo

which does not equal to ®(z,x). But, since these functions differ only by a constant, the difference

between them is not essential.

Remark 3 We can generalize Theorem 4 to the case of the Jacobi polynomials pled (),m=0,1,2,...,
which have the following generating function (cf. [8]) :

z:@m+a+@i?$+5+”mH%W@ﬂ

mGN()
_(a+ﬂ+1)(2+1)F a+pB+2 a+ﬂ+3.a+1_2z(x—1)
(1= p)ats2 2 2 ’ T (1 - 2)2

), zeB, —-1l<z<l1
Let o, B > 0. If we replace L*((—1,1), (1 — 2*)*Y/2dx) by L?>((—1,1), (1 — 2)*(1 + x)%dx), px(t) by

1 1
Pap(t) = U / u (1-— u)’g_ldu/ i (1—v)"tdv
¢ t

and O(z,x) by

(a+B+ DI (a+p+1)(z+1) F(a+ﬁ+2a+ﬁ+3_
V20820 T (o + 1)T(B) (1 — 2)otB+2 2 72 7

then we can obtain the desired result. For more details, refer to [9].

a+y24x_m>

TSE

6. Generating Function that Defines Unitary Operator — The Case of Zonal Spherical Functions
on (U(n),U(n —1))

Let n be a positive integer that n > 3. Denote by S(C") the unit sphere in C" and set ¢; =
®(1,0,...,0) € S(C"™). Then we have the identification U(n)/U(n — 1) = S(C") by the mapping
gU(n — 1) — gey, g € U(n). The zonal spherical functions on (U(n),U(n — 1)) are concerned with

the functions G . p,q € Ny which have the following generating function (see Theorem 1.1. in [10]):

(1 —2Re(z2) + 2| = Z G;jq_l(x)zpiq, r,z € B

paquO
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More precisely, for each p, g € Ny define

Gt ((gers )
©pel9) = Gy

g€U(n)

where (, ) denotes the canonical inner product on the complex vector space C". Then {¢,, | p,q € Ny} is
equal to the set of all the zonal spherical functions on (U(n), U(n—1)). For the functions ¢,,, p, ¢ € Ny,
refer to [11]. In this section, we deal with a generating function of {¢,, | p, ¢ € Ny} that defines a unitary

operator. For more details, refer to [3].
6.1. L?-Space Associated with the Zonal Spherical Functions on (U(n),U(n — 1))

In what follows, x is an element of the unit open disk B in C, and dz is the Lebesgue measure on B
induced from the identification C = R?. Let L?(B, (1 — |z|?)"~2dx) be the Hilbert space of Lebesgue
measurable functions ¢ on B with

[l = \//B lo(z)[2(1 — |z]2)"2dz < oo

The inner product is given by
(o) = [ G ey e, € 2B, (1~ a2y =)
B

The functions G, p, ¢ € Ny form a complete orthogonal system of L*(B, (1 — |z|*)"*dx). Denote

by ¢}, the normalization of G}, ! with respect to the norm of this space. That is,

" _ Jlp+q+n—10plg(T(n—-1))2
pal >_\/ mlp+n—1)I(qg+n—1) G

(z)
Then the system {7 | p, ¢ € Ny} is a complete orthonormal system of L*(B, (1 — |z|*)"*dx).
6.2. Hilbert Space of Analytic Functions

Let p,, be the function on the direct product of the open interval (0, 1) with itself defined by

min(t/w1/v) £ (o
pn(u, U) _ (uv)(n—:’))/?/ %
1

dt

where
fulu,v) = (uo) ™72 {1 =) (1 —0)}

Let F,, be the space of analytic functions f on B2 in C? with

1fll = \//2 |f (21, 22) Ppon(|21]?, |22]?)dz1d 2 < 00
B

where dzi, dzs are the Lebesgue measures on B induced from the identification C = R% For f € F,,

we have the following inequality

p+gq+n—DI'(p+n—-—1C(qg+n—1)

m2plg!(T'(n — 2))? 272", 2= (21,2) € B* (15)

PRI AL DS

p»q€N0
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which implies that F,, is a Hilbert space with inner product

<f> 9> = , f(Zh22)9(31,22)%(|31|2a |Z2’2)d21d22, f,9€F,
B
Set
n prgq+n—1Ip+n—-1)I(@¢+n—1
) = \/< WQZz!qE(F(n - 2)))2 ( >Z%’ Pa €N, 2= (a1, 7) € B

Then the system {uy, | p,q € No} is a complete orthonormal system of F,,. It also follows from (15) that
the space F,, has the reproducing kernel. The kernel is given by

gn(z) =Y up@ul(z), zwe B
pvquO

that is, f(w) = (f,g") for f € F,, and w € B2
6.3.  Unitary Operator Associated with the Zonal Spherical Functions on (U(n),U(n — 1))

A unitary operator on L?(B, (1 — |z|?)"2dz) to F,, is defined as follows. First, set

(n—2)(n—-1) 1 — 2129
73/2 (1 — 22y —Tzg + 2129)"

D(z,x) = , z=(2,0)€EB* v€B

This has the following expansion:
&(z,z) = Z ur (2)dn,(x), z€B* z€B (16)
p.a€No

which means that the function @(z,x) is a generating function of the zonal spherical functions on
(U(n),U(n —1)).
For ¢ € L*(B, (1 — |z|?)"?dz) we define

@0)(:) = [ B )pl@)(1 - o) e, 2 B a7
B
Then ¢¢ € F,, and we have
Theorem 5 The operator  on L*(B, (1 — |x|*)""2dx) to F, is unitary.

As in Gegenbauer’s case, we positively use in our proof the fact that the system {¢7 |p,q € No} is a

complete orthonormal system of L*(B, (1 —|xz|*)"*dx). It follows from (16), (17) and ¢7 (z) = ¢}, (x)
that for ¢ € L*(B, (1 — |z|*)"*dz)

(D) (2) = Y (.ol ul(2), =€ B
IL(IGNO

Hence, we have
Del* = > (e, o)1 = llell*, Doy, =ul,
IMIENO

which imply that @ is unitary.
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Remark 4 Let d,,, denote the degree of the representation corresponding to p,,. Then the following
holds.
1-— 2179

1 — z1(ger, e1) — za(eq, ger) + z122)™

Z dpqPpq(9)21 75 = ( geU(n), 21,22 € B

p7q€N0

which does not equal to ®(z,x). But, since these functions differ only by a constant, the difference

between them is not essential.
7. Group Theoretical Approach to Generating Functions that Define Unitary Operators

Let G be a compact connected Lie group, K a closed subgroup of G, and (G, K) a Riemannian
symmetric pair of rank ¢ such that G/ K is simply connected. Then it is known (cf. [12]) that the set of
all the zonal spherical functions on (G, K) can be parametrized by Nj;. Denote the set by {(,, | m € N{},
and by d,,, the degree of the representation corresponding to ¢,,. Further, we can assume that there exists

a measure iy on [0, 1)* such that
dl= / t™duo(t), m € N§. (18)
[0,1)¢

See Lemma 2 in [5]. Weyl’s dimension formula and Theorem 1 in [13] play important roles in the proof
of (18). (Note that Theorem 1 in [13] gives a necessary and sufficient condition for a multisequence
{am}mGNé to have a measure z; on [0, 1] such that o, = f[O,lV t™du(t), m € N§.) Furthermore,
it follows from (18) that we can construct a generating function of the form of (1) which defines a

unitary operator.
7.1.  L*-Space Associated with the Zonal Spherical Functions on (G, K )

Let dg be the normalized Haar measure on G, that is, it has the property that | cdg = 1. Let L*(G)

denote the Hilbert space of measurable functions ¢ on G with

loll = /G o(g)[2dg < oo

The inner product is given by
(0, 9) = /Gsf)(g)w(g)dg (19)

Let L?(G, K) be the space of functions ¢ € L?*(G) which are bi-invariant under K. Then L*(G, K) is a
closed subspace of L*(G), thatis, L?(G, K) is also a Hilbert space with inner product (19). As is well
known (cf. [12], [14]), the system {p,, | m € Né} is a complete orthogonal system of L?(G, K'), and has

the following orthogonality relation:

- A=t m=m'
m m/ dg = Y
/Gw (9)em (9)dg { 0. mAm
Set
¢m =V dmgoma m e Nf)

Then the system {@,, | m € Nj} is a complete orthonormal system of L?(G, K).
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7.2.  Hilbert Space of Analytic Functions

It follows from (18) that we can construct a measure y on B such that

- dfl — /
/ 2 dp(z) = mo ML=
Bt 0, m#m

Let F be the space of analytic functions f on B’ with

wu=¢LJﬂmmma<m

For f € F, we have the following inequality

IFE) < /] (20)

Note that ) N’ dm|2™|> < oo for all z € BY, because d,, is a polynomial of my,...,m,. The
meiNg
inequality (20) implies that F is a Hilbert space with inner product

{f.9) = B[f(Z)g(Z)du(Z)y fgeF

It also follows from (20) that the space F has the reproducing kernel. That is, for each w € B’ there
exists a unique g,, € F such that f(w) = (f, g,,) for f € F. Set

U (2) = \/dp2™, meN, z € B

Then the system {u,, |m € Nj} is a complete orthonormal system of F. Note that the reproducing

kernel of F has the following expansion:

Guw(z) = Z U (W)t (2),  2,w € B
meNj

7.3. Unitary Operator Associated with the Zonal Spherical Functions on (G, K)

A unitary operator on L*(G, K) to F is defined as follows. First, set

D(z,9) = Y dmpm(9)?", 2€B, geq

meN,
This has the following expansion:
B(z,9)= Y um(2)0m(g), z€B’ geC 21)
meN;
For ¢ € L*(G, K) we define
@):) = [ @97 Velo)dg. =€ B @2)
e}

Then ¢ € F and we have
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Theorem 6 The operator  on L*(G, K) to F is unitary.

As stated above, the system {u,, | € N§} is a complete orthonormal system of F. Thus, it follows

from (21), (22) and ©,,(g7!) = ¢, (g) that for p € L*(G, K)

(De)(2) = > (¢ bm)tim(2), 2 € B

14
melN,

Hence, we have
1Del* = > 1, om)* = lel”, P = tm
meN,

which imply that @ is unitary.
Remark 5 The pair (SO(n), SO(n — 1)) is a typical example of Theorem 6.

Remark 6 Suppose that a pair (G, K) is a Gelfand pair of the compact type, and that the set of all the
zonal spherical functions on (G, K) is parametrized by N¢, where ( is a positive integer. And as in the
first part of this section, define {p,, |m € Ny} and d,,, (m € N§). If the pair (G, K) has a measure i
on [0, 1)* which satisfies (18), and the series ZmeNﬁ dn|2™[? converges for each z € B, then Theorem

6 also holds. The pair (U(n),U(n — 1)) is such an example.
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