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1. Introduction

It is generally accepted that phase transitions are related to symmetry changes, so that the transfor-
mation from a disordered to an ordered phase is accompanied by spontaneous symmetry breaking [1–3].
There also exist more complicated cases, when the symmetry, being broken in the major part of the sam-
ple, at the same time, is restored in other parts of the same system, which is called symmetry restoration
[4]. Reciprocally, in the generally disordered phase, there can appear local regions with broken sym-
metry. In dynamical modeling, the arising regions of symmetry that differs from the symmetry of the
surrounding matrix are related to the generation of solitonic clusters and local coherent structures [5–19].
It turns out that the systems with such local structures are more stable, as compared to homogeneous sys-
tems. Generally, the systems that become more stable by spontaneously changing their properties pertain
to the class of self-optimizing systems [20]. There are numerous examples of condensed matter, where
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the sample is not homogeneous, but consists of regions of different symmetry. One tells that such sys-
tems display mesoscopic phase separation, and they are termed heterophase. This, for instance, concerns
many high-temperature superconductors, in which superconducting regions coexist with normal regions
[21–25], and some low-temperature superconductors [26, 27]. Such a coexistence of superconducting
and normal phases can occur even in atomic nuclei [28]. In many magnetic materials, magnetically or-
dered phase includes paramagnetic clusters [29–33]. Around the points of structural phase transitions,
there exist regions, where phases with different symmetry coexist [34–40]. A number of ferroelectric
materials displays the coexistence of ferroelectric and paraelectric phases [41–54], which also concerns
such novel materials as relaxor ferroelectrics [55–58]. Much more examples of heterophase matter can
be found in the review articles [59, 60].

The basic difficulty in the description of heterophase systems is the necessity of dealing with two or
more different phases, possessing principally different symmetry properties, but coexisting inside the
same volume. The problem is aggravated by the fact that the location of the germs of different phases
in space is chaotic. The situation is drastically different from the case of a sample consisting of several
domains with well defined spatial locations and structure [61]. A typical heterophase system is a mixture
of regions, randomly located in space and having various and often very irregular shapes. Moreover, in
many cases, the heterophase regions are not static, but can move in space, vary their shapes, and even
appear and disappear.

To describe such a complicated matter, it has been necessary to develop an approach allowing for
the treatment of these inhomogeneous and nonequilibrium systems. More precisely, such systems are
to be locally equilibrium, since the notion of phase requires the existence of at least local equilibrium.
A general approach for treating heterophase systems has been advanced [62–66] and summarized in
reviews [59, 60].

One of the main problems in treating the systems with coexisting regions of different symmetry is
how to separate the states, corresponding to different symmetry properties, in the space of microscopic
quantum states. The standard situation is when the system as a whole is characterized by a given Hilbert
space, with a prescribed symmetry. Then how would it be possible to describe subsystems of different
symmetry in the frame of the same Hilbert space? This can be done, for instance, by imposing different
conditions on the equations characterizing different phases [62, 67] or by invoking the method of re-
stricted trace [68]. Probably, the most powerful, convenient, and rigorous method of separating different
phases is the approach based on the notion of weighted Hilbert spaces, advanced in Refs. [59, 60]. In the
latter publications, however, this method was not formulated in the most mathematically general way.
The aim of the present paper is to further develop the method of weighted Hilbert spaces, formulating it
in the most general form. As an illustration, the method will be applied to deriving a general model of a
heterophase ferroelectric. The choice of ferroelectrics for illustration is caused by several reasons. First,
there are numerous examples of the heterophase systems of this type [41–60], hence their correct de-
scription is of great importance. Second, the general model related to these materials is generic for many
other substances, hence it serves as a good example for extending the approach to other heterophase
systems.
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2. Single-Phase Systems

Before developing an approach for treating multiphase systems, it is necessary to briefly recall the
main points of describing the standard case of a single-phase system, which will be used in what follows.
For generality, quantum systems are considered throughout the paper.

Let us have a set {φn} of states forming a basis for the closed linear envelope

E ≡ Spann{φn} . (1)

Here the index n implies a multi-index that can pertain to either discrete or continuous set. The discrete
set can be infinite. Let the scalar product< f |h > be defined for each pair f, h ∈ E . The norm, generated
by the scalar product, is

||f || ≡
√
⟨f | f⟩ (f ∈ E) . (2)

Completing the linear envelope (1) by the norm yields the complete normed space, that is, the Hilbert
space

H ≡ { E , ||f || } . (3)

The so-defined Hilbert space can be separable or not, depending on the physics of a concrete problem
and, respectively, on the nature of the multi-index n enumerating the basis {φn}. The existence of a
Hilbert space, associated with the considered physical system, is the necessary prerequisite for charac-
terizing the system.

The basis {φn} can be taken to be orthonormalized, such that

⟨ φm | φn ⟩ = δmn . (4)

And let it be complete. Then for each f, h ∈ E , one can write their expansions over the basis,

f =
∑
n

fnφn , h =
∑
n

hnφn , (5)

with the expansion coefficients

fn = ⟨ φn | f ⟩ , hn = ⟨ φn | h ⟩ .

Therefore, the scalar product can be represented as

⟨ f | h ⟩ =
∑
n

f ∗
nhn . (6)

Suppose the algebra A of local observables, represented by Hermitian operators Â ∈ A, be given on
H. The matrix elements of Â over the basis {φn} are

Amn ≡ ⟨ φm | Â | φn ⟩ . (7)

The system statistics are characterized by a statistical operator ρ̂ that is a trace-one operator, acting on
H. The operator averages are defined as

⟨Â⟩ ≡ TrH ρ̂Â =
∑
n

⟨ φn | ρ̂Â | φn ⟩ . (8)
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The set of all available averages is termed the statistical state:

⟨A⟩ = {⟨Â⟩} . (9)

Characterizing thermodynamics phases, a special role is played by the order operator η̂ ∈ A, whose
average defines the system order parameter

η = ⟨ η̂ ⟩ . (10)

In general, this can be a scalar, vector, or matrix quantity, so that one talks of an order parameter just for
short. The main point is that this order parameter is specific for each thermodynamic phase, such that
different phases, possessing different symmetries, enjoy different order parameters.

3. Symmetry Breaking

In the language of symmetries, the existence of phase transitions assumes the following. If there is
a statistical state that is invariant with respect to a symmetry group, then it can be decomposed into a
sum of several terms describing different pure phases [1, 69, 70]. To select a state with a particular type
of symmetry, one employs one of the variants of the quasiaveraging techniques [1, 67, 71]. When the
state with a broken symmetry is thermodynamically more stable than the invariant state, one calls this
the spontaneous breaking of symmetry.

The methods of quasiaverages allow one to select a particular state with the desired symmetry only in
the case of thermodynamically equilibrium systems, when all the system is characterized by one and the
same symmetry. But our aim is to describe the situation, when inside the considered system there appear
regions with different types of symmetry. How could we proceed in such a principally different case?
For this purpose, it is necessary to develop a more general method of symmetry breaking, which could
be used not only for equilibrium systems, but also for quasiequilibrium, metastable, or even for arbitrary
nonequilibrium systems. Such a general method is developed below.

Let us consider a statistical system that, under different thermodynamic conditions, could be in dif-
ferent thermodynamic phases, enumerated by the index ν = 1, 2, . . .. We keep in mind that the space
of microscopic states, related to the considered system, is the Hilbert space (3), with a basis {φn}, as
described in Sec. 2. Let us put into correspondence to a vector φn a probability

pνn ≡ pν(φn) . (11)

The set {pνn} of these probabilities forms a probability measure with the standard normalization property

∑
n

pνn = 1 (0 ≤ pνn ≤ 1) . (12)

Now, let us introduce the weighting operator

Ŵν ≡
∑
n

pνn | φn⟩⟨φn | . (13)

Using this, we define the weighted scalar product

⟨ f | h ⟩ν ≡ ⟨ f | Ŵν | h ⟩ . (14)
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With the weighting operator (13), we have

⟨ f | h ⟩ν =
∑
n

pνn ⟨ f | φn ⟩⟨ φn | h ⟩ . (15)

Under expansions (5), the latter reads as

⟨ f | h ⟩ν =
∑
n

pνnf
∗
nhn . (16)

The scalar product (15) generates the norm

||f ||ν ≡
√
⟨ f | f ⟩ν (f ∈ E) , (17)

which, in view of form (16), can be written as

||f ||ν ≡
√∑

n

pνn |fn|2 . (18)

The closed linear envelope (1), equipped with norm (17), is the weighted Hilbert space

Hν ≡ {E , ||f ||ν} . (19)

The representation Aν of the algebra of local observables A, acting on the weighted Hilbert space
(19), consists of the operators Âν defined through their matrix elements

⟨ φm | Âν | φn ⟩ ≡ ⟨ φm

∣∣∣∣ 12 [Â, Ŵν

]
+

∣∣∣∣ φn ⟩ . (20)

Taking into account the weighting operator (13) gives

⟨ φm | Âν | φn ⟩ = 1

2
( pνm + pνn ) ⟨ φm | Â | φn ⟩ . (21)

The operator averages are

⟨Âν⟩ ≡ TrHν

(
ρ̂Â
)
ν
=
∑
n

⟨ φn |
(
ρ̂Â
)
ν
| φn ⟩ . (22)

With the matrix elements (21), we get

⟨Âν⟩ =
∑
n

pνn ⟨ φn | ρ̂Â | φn ⟩ . (23)

Similarly, the average of the order operator η̂ν ∈ Aν becomes

⟨ η̂ν ⟩ =
∑
n

pνn ⟨ φn | η̂ | φn ⟩ . (24)

Respectively, the order parameter is
ην ≡ ⟨ η̂ν ⟩ . (25)

The probability measure {pνn} is to be defined so that to guarantee the order parameter, specifying the
chosen thermodynamics phase. This means that the probabilities (11) should select the states typical of
the considered phase [72, 73], which does not need to be equilibrium. By this construction, it is clear that
the scheme, based on the weighted Hilbert spaces, includes as a particular case the selection of phases by
means of the quasiaveraging method, since the latter also chooses the states typical of the desired phase,
but provided this phase corresponds to a stable equilibrium system.



Symmetry 2010, 2 45

4. Multiphase Systems

First of all, let us stress the difference of the case we try to describe, as compared to the Gibbs phase
mixture [74]. In the latter case, the system is spatially separated into several macroscopic regions filled
by different thermodynamics phases. But in the case we are interested in, the system is a heterophase
mixture, comprising the mesoscopic germs of several thermodynamic phases, which are randomly inter-
mixed and coexist in a region of thermodynamic parameters in the same volume [59, 60]. The space of
states for such a heterophase system is the fiber space

F̃ ≡
⊗
ν

Hν . (26)

The basis of the latter, {φ̃n}, is made of the tensor products

φ̃n ≡
⊗
ν

φnν , (27)

in which the notation for the multi-index

n ≡ {n1, n2, n3, . . .}

is used. Any state f̃ ∈ F̃ can be decomposed over this basis:

f̃ =
∑
n

fnφ̃n

(
fn = ⟨ φ̃n | f̃ ⟩

)
.

Then the scalar product of any pair f̃ , h̃ ∈ F̃ is given by

⟨ f̃ | h̃ ⟩ =
∑
n

f ∗
nhn . (28)

The scalar product generates the norm

||f̃ || ≡
√

⟨ f̃ | f̃ ⟩ . (29)

The fiber space (26) can be equivalently represented as the closed linear envelope

F̃ =
{
Spann{φ̃n}, ||f̃ ||

}
, (30)

equipped with norm (29).
The operators of observables Ã, acting on F̃ , are defined as the direct sums

Ã =
⊕
ν

Âν . (31)

The related matrix elements are given by the expressions

⟨ φ̃m | Ã | φ̃n ⟩ =
∑
ν

⟨ φmν | Âν | φnν ⟩
∏
µ( ̸=ν)

δmµnµ . (32)
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The operator averages are defined as

⟨Ã⟩ ≡ TrF̃ ρ̃Ã =
∑
n

⟨φ̃n | ρ̃Ã | φ̃n ⟩ . (33)

This, in view of form (27), yields

⟨Ã⟩ =
∑
ν

∑
n

⟨ φn | (ρ̂Â)ν | φn ⟩ . (34)

Comparing this with (22), we obtain
⟨Ã⟩ =

∑
ν

⟨Ãν⟩ . (35)

The set {< Ã >} of all observable averages is the statistical state of the heterophase system.

5. Phase Configurations

When the system is inhomogeneous, being composed of many mesoscopic regions of different phases,
we need, first of all, to describe the spatial distribution of these regions inside the system. For this
purpose, the space V, occupied by the system, can be decomposed into the subregions, whose set {Vν}
forms an orthogonal covering:

V =
∪
ν

Vν , V =
∑
ν

Vν , (36)

such that
Vµ

∩
Vν = δµνVν , (37)

where
V ≡

∫
V
dr , Vν ≡

∫
Vν

dr . (38)

The set of the regions, occupied by a ν-phase is described by the manifold characteristic function [75],
or manifold indicator

ξν(r) ≡

{
1, r ∈ Vν

0, r ̸∈ Vν

. (39)

These functions satisfy the properties∑
ν

ξν(r) = 1 (r ∈ V) (40)

and ∫
V
ξν(r) dr = Vν . (41)

The collection of all manifold indicators defines the phase configuration

ξ ≡ {ξν(r) : ν = 1, 2, . . . ; r ∈ V} . (42)
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In turn, the space, occupied by a ν-phase, can be decomposed into subregions Vν , forming an orthog-
onal subcovering {Vν}, such that

Vν =
zν∪
i=1

Vνi , (43)

and
Vµi

∩
Vνj = δµνδijVνi . (44)

Each subregion Vνi is described by its manifold indicator

ξνi(r− aνi) ≡

{
1, r ∈ Vνi

0, r ̸∈ Vνi

, (45)

in which aνi is a fixed vector pertaining to Vνi. Then the manifold indicator (39) writes as

ξν(r) =
zν∑
i=1

ξνi(r− aνi) . (46)

Under a given configuration, the relative volume, occupied by a ν-phase, is characterized by its geo-
metrical fraction

xν ≡ 1

V

∫
V
ξν(r) dr =

Vν
V

. (47)

As is clear, the latter satisfy the normalization condition∑
ν

xν = 1 (0 ≤ xν ≤ 1) . (48)

This shows that the set {xν} of all admissible geometrical fractions, with the given normalization condi-
tion, can be regarded as a probability measure.

Since the the phase regions are randomly distributed inside the considered system, the configuration
(42) is to be treated as a random variable. The related differential measure can be defined as

Dξ = lim
{zν→∞}

δ

(∑
ν

xν − 1

)∏
ν

dxν
∏
ν

zν∏
i=1

daνi

V
. (49)

All possible configurations constitute a topological space

X ≡ {ξ, Dξ} . (50)

The above constructions describe the situation, when the system is separated into several regions filled
by different phases, and these regions are randomly distributed in space.

6. Configuration Averaging

An inhomogeneous heterophase system is not necessarily in complete equilibrium. But it must be
at least quasi-equilibrium in order that it would be admissible to talk about the germs of phases. As
is known, the notion of phases is not strictly defined for finite systems. The mathematically rigorous
definition of phases assumes the introduction of thermodynamic limit [2, 3, 72, 74, 76]. However, in
practice, it is possible to speak about germs of phases already when each of such germs consists of a
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large number of particles N ≫ 1. Monte Carlo simulations show that thermodynamics phases can be
well defined already for 10 − 100 particles in a finite cluster [77]. Respectively, though the symmetry,
related to a phase, may be not strictly defined for a finite cluster, but it is possible to talk about an
asymptotic symmetry that is approximately defined for a large number of particles N ≫ 1, keeping in
mind that the symmetry becomes exact in the thermodynamic limit.

A quasi-equilibrium system is described by a quasi-Hamiltonian [59] depending on a given phase
configuration and having the operator structure as in (31):

Q̂(ξ) =
⊕
ν

Q̂ν(ξν) . (51)

The partition function

Z ≡ TrF̃

∫
exp

{
−Q̂(ξ)

}
Dξ (52)

includes the quantum averaging over the given quantum variables and the averaging over phase configu-
rations. This function defines the quasi-equilibrium thermodynamic potential

y ≡ − 1

N
lnZ . (53)

Considering asymptotically large systems, we, as usual, keep in mind the thermodynamic limit

N → ∞ , V → ∞ ,
N

V
→ const . (54)

Similarly to (31), the operators of observables, under the given phase configuration, have the form

Â(ξ) =
⊕
ν

Âν(ξν) . (55)

And for what follows, it is convenient to introduce the notation

Âν(xν) ≡ lim
ξν→xν

Âν(ξν) . (56)

The statistical operator of a multi-phase system, with a fixed phase configuration, is

ρ̂(ξ) =
1

Z
exp

{
−Q̂(ξ)

}
. (57)

The observable quantities, related to the operators (55), are given by the averages

⟨Ã⟩ ≡ TrF̃

∫
ρ̂(ξ)Â(ξ) Dξ . (58)

The following theorem is valid [59, 78, 79].

Theorem 1.

If Q̂ν(ξν) can be represented as an expansion in powers of ξν , then the thermodynamic potential (53),
in the thermodynamic limit (54), asymptotically equals

y = abs min
w

y(w) , (59)



Symmetry 2010, 2 49

with the set
w ≡ {w1, w2, . . .} (60)

forming the probability measure enjoying the standard properties∑
ν

wν = 1 (0 ≤ wν ≤ 1) , (61)

and where
y(w) =

∑
ν

yν(wν) (62)

is the sum of the terms
yν(wν) = − 1

N
lnTr Zν , (63)

in which
Zν = TrHν exp

{
−Q̂ν(wν)

}
. (64)

The quantities wν are the phase geometric probabilities, showing the corresponding weights of the
coexisting thermodynamic phases.

Corollary 1

From this theorem, it follows that the thermodynamic potential (59) can also be represented in the
form

y = − 1

N
lnTr Z̃ , (65)

where
Z̃ ≡

∏
ν

Zν .

The above theorem defines the thermodynamic potential of a heterophase system. The observable
quantities, corresponding to the averages of the operators from the algebra of local observables, are
given by the following theorem [59, 78, 79].

Theorem 2.

Assume that Q̂ν(ξν) and Âν(ξν) can be expanded in powers of ξν , then the averages (58), for asymp-
totically large N , take the form of the sum

⟨Ã⟩ =
∑
ν

⟨Âν⟩ , (66)

with the terms
⟨Âν⟩ = TrHν ρ̂ν Âν , (67)

in which
ρ̂ν =

1

Zν

exp
{
−Q̂ν(wν)

}
, (68)

and where the notation Âν ≡ Âν(wν) is used.
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Corollary 2.

Equivalently, the averages (66) can be represented in another way by introducing the operators

Ã ≡
⊕
ν

Âν , (69)

for which
⟨Ã⟩ = TrF̃ ρ̃Ã , (70)

where
ρ̃ =

⊗
ν

ρ̂ν .

The second theorem defines the method of calculating the averages for a heterophase system.

7. Effective Hamiltonians

The quasi-Hamiltonian Q̂ν(ξν) is connected with the local Hamiltonian Ĥν(r, ξν) through the relation

Q̂ν(ξν) =

∫
βν(r, ξν)Ĥν(r, ξν) dr , (71)

in which the inverse local temperatures βν(r, ξν) play the role of the Lagrange multipliers.
If the considered system is such that the phase fluctuations can appear randomly in any part of the

system, the latter is called phase-uniform on average [59]. For such a system, the configuration averaging
of the inverse temperatures gives

βν ≡
∫
βν(r, ξν) Dξ . (72)

The mixture of different phases is in thermal equilibrium, when the temperatures of these phases coin-
cide:

βν = β =
1

T
(∀ν) . (73)

Then the quasi-Hamiltonian Q̂ν(wν), entering the partition function (64), becomes

Q̂ν(wν) = βĤν , (74)

with the renormalized Hamiltonian

Ĥν ≡
∫
Ĥν(r, wν) dr . (75)

The partial statistical operators (68) acquire the form

ρ̂ν =
1

Zν

exp
(
−βĤν

)
, (76)

with the partition functions
Zν = TrHν exp

(
−βĤν

)
. (77)

It is convenient to introduce the effective Hamiltonian

H̃ ≡
⊕
ν

Ĥν , (78)
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using which, the thermodynamic potential (65) can be represented as

y = − 1

N
ln Tr e−βH̃ . (79)

The terms of sum (78) are called the phase-replica Hamiltonians, since they have a similar mathematical
structure, but are associated with different phases.

In order to connect the thermodynamic potential (79) with the free energy, let us recall that the latter
is defined as

F ≡ −T ln Tr e−βH̃ . (80)

Therefore, the potential y is directly connected to the free energy by means of the relations

F = NTy =
∑
ν

Fν

and
Fν = −T ln Tr Zν = NTyν .

To specify the consideration, let us take the local Hamiltonians in the usual form

Ĥν(r, ξν) = ξν(r)ψ
†
ν(r)

(
− ∇2

2m
+ U

)
ψν(r) +

+
1

2

∫
ξν(r)ξν(r

′)ψ†
ν(r)ψ

†
ν(r

′)Φ(r− r′)ψν(r
′)ψν(r) dr . (81)

Here U = U(r) is an external potential and ψν(r) are the field operators of the particles forming the
system.

Then the phase-replica Hamiltonians are

Ĥν = wν

∫
ψ†
ν(r)

(
− ∇2

2m
+ U

)
ψν(r) dr +

+
w2

ν

2

∫
ψ†
ν(r)ψ

†
ν(r

′)Φ(r− r′)ψν(r
′)ψν(r) drdr

′ . (82)

Introducing the notation for the kinetic-energy operator

K̂ν ≡
∫
ψ†
ν(r)

(
− ∇2

2m
+ U

)
ψν(r) dr (83)

and for the operator

Φ̂ν ≡
∫
ψ†
ν(r)ψ

†
ν(r

′)Φ(r− r′)ψν(r
′)ψν(r) drdr

′ , (84)

related to the potential energy part of the Hamiltonian (82), we have for the latter

Ĥν = wνK̂ν +
w2

ν

2
Φ̂ν . (85)

In this way, we have derived all basic equations for treating heterophase systems. The derivation
has been based on the following three major points making it possible to separate different thermody-
namic phases. First, to distinguish the phases in the space of microscopic states, the notion of weighted
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Hilbert spaces is introduced. Second, to separate the phases in real space, the manifold indicators were
employed. And, finally, the procedure of averaging over phase configurations is accomplished, leading
to the set of equations for equilibrium on average phase replicas. The idea of the averaging procedure
reminds the method of averaging [80] and the scale separation approach [81–83], used for nonlinear
equations in dynamical theory. The main difference from the latter is that here we have averaged out
slow heterophase fluctuations, slow with respect to the fast microscopic motion of particles, while in dy-
namical theory one usually averages out fast fluctuations, leaving at the end the slow motion of guiding
centers.

8. Stability Conditions

The developed theory should be complimented by an important addition discussing the stability of
heterophase systems. Thermodynamic stability is characterized by the minimization of a thermodynamic
potential. For concreteness, let us consider the case of a heterophase system, where two phases coexist,
so that ν = 1, 2. And let us denote

w1 ≡ w , w2 = 1− w . (86)

Minimizing the thermodynamic potential (79) with respect to w implies

∂y

∂w
= 0 ,

∂2y

∂w2
> 0 . (87)

The first of these equations gives

⟨ ∂H̃
∂w

⟩ = 0 . (88)

And the second condition leads to the inequality

⟨ ∂
2H̃

∂w2
⟩ > β⟨

(
∂H̃

∂w

)2

⟩ . (89)

Since the right-hand side in the above inequality is nonnegative, the necessary condition of heterophase
stability is

⟨ ∂
2H̃

∂w2
⟩ > 0 . (90)

To specify these conditions, let us take the effective Hamiltonian (78), with the replica Hamiltonians
(85). And let us use the notations for the averages

Kν ≡ ⟨K̂ν⟩ , Φν ≡ ⟨Φ̂ν⟩ . (91)

Then we have
1

N
⟨ ∂H̃
∂w

⟩ = K1 + wΦ1 −K2 − (1− w)Φ2

and
1

N
⟨ ∂

2H̃

∂w2
⟩ = Φ1 + Φ2 .



Symmetry 2010, 2 53

This yields the equation for the phase probability

w =
Φ2 +K2 −K1

Φ1 + Φ2

. (92)

The stability condition (89) gives

Φ1 + Φ2 >
β

N
⟨

(
∂H̃

∂w

)2

⟩ , (93)

and from the stability condition (90), we get

Φ1 + Φ2 > 0 . (94)

One more condition, follows from the definition of wν as of phase probabilities, according to which

0 ≤ w ≤ 1 .

This, with the use of (92), results in the inequalities

−Φ1 ≤ K1 −K2 ≤ Φ2 . (95)

The stability conditions must be valid in order that the considered heterophase system could really
exist. Note that the stability condition (90) is analogous to the condition of diffusion stability [84].

9. Heterophase Ferroelectrics

To illustrate how the developed theory works, let us consider ferroelectric materials. Ferroelectrics
are known to be a good example of matter demonstrating heterophase properties. In many ferroelectrics,
above the transition point from the disordered into the ordered state, there exist small polarized clusters
[37]. These fluctuational embryos of the ordered phase inside the disordered phase where termed by
Cook [36] antiphase fluctuations, emphasizing that they where a particular case of heterophase fluctua-
tions, whose existence was predicted by Frenkel [85]. Such embryos of one phase inside another phase
can exist in a whole region around the phase-transition point Tc. At temperatures below Tc, the em-
bryos of the paraelectric phase inside the ferroelectric phase arise at a temperature Tn called the lower
nucleation point [86]. And above Tc, there is another temperature T ∗

n , called the upper nucleation point
[86], where the embryos of the ferroelectric phase appear inside the paraelectric phase. Thus, around the
phase transition temperature, there can exist a region of temperatures

Tn < Tc < T ∗
n ,

where the embryos of two phases coexist. The phase transition, generically, can be either of first or
of second order, but the appearance of heterophase fluctuations, usually smears it into a continuous
crossover [41–44].

Heterophase fluctuations were observed, for instance, in such well known ferroelectrics as HCl, DCl,
mixed crystals HCl1−xDClx, and RbCaF3, where they were intensively studied by Brookeman and Rig-
amonti using nuclear quadrupole resonance [42, 43] and nuclear magnetic resonance [44]. Heterophase
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fluctuations in these ferroelectrics arise in a finite region around the phase transition point. The ap-
pearance of these fluctuations occurs even without external defects, although the presence of defects
intensifies their nucleation [41].

Such heterophase fluctuations have also been observed in many other ferroelectrics, e.g., in C4O4H2

[41], in KH2As4 [46], in Rbx(ND4)1−xD2PO4 [47], in NaxBi1−xTiO3 [49], and others. They also arise in
such novel materials as relaxor ferroelectrics, for example, in (PbZnxNb1−xO3) [55], in Ba2NdTi2Nb3O15

and Ba2La0.5Nd0.5Ti2Nb3O15 [56, 58], and, with a high probability, in many other relaxors, such as
PbMg1/3Nb2/3O3, (BaxPb1−x)(Zn1/3Nb2/3)O3, (SrxPb1−x)(Zn1/3Nb2/3)O3, (BaxPb1−x)(Yb0.5Nb0.5)O3,
Pb1−xBax(Yb1/2Ta1/2)O3, (Fe1/2Nb1/2)O3, Pb(Fe1/2Ta1/2)O3, Pb(Yb1/2Ta1/2)O3-Pb(Fe1/2Ta1/2)O3, and
Pb(Mg1/3Nb2/3)O3-PbTiO3, [58].

A simple model of a heterophase ferroelectric has been considered in Refs. [50, 87, 88]. In this model,
phonon degrees of freedom were not taken into account. However, the latter are important because of
two reasons. First, the appearance of heterophase fluctuations is frequently accompanied by heterostruc-
tural fluctuations [89, 90], which are connected with phonon excitations. Second, the occurrence of the
paraelectric-ferroelectric phase transition is intimately related with phonon characteristics that can be
directly measured. In the present paper, we derive a generalized model of a heterophase ferroelectric,
taking into account the phonon degrees of freedom. This makes it possible to find out the influence of the
heterophase fluctuations on such observable quantities as the Debye-Waller factor and sound velocity.
This influence is especially pronounced in the phase-transition region.

10. Basic Hamiltonian

Let us consider a ferroelectric, in which there can arise the embryos of the competing phase. So that
the sample can house two coexisting phases, ferroelectric and paraelectric, being randomly intermixed
with each other. The ferroelectric phase will be indexed by ν = 1 and the paraelectric phase will be
labeled by the index ν = 2. For concreteness, we shall study the model of a ferroelectric, in which the
order is characterized by the pseudospin operator Sz

j describing the shift of a charged particle into one
of the wells of a double-well potential at the cite j of the crystalline lattice [91, 92]. Then the ordered
ferroelectric phase corresponds to the nonzero order parameter

⟨Sz
j1⟩ ̸= 0 . (96)

On the contrary, the disordered paraelectric phase is characterized by the zero order parameter

⟨Sz
j2⟩ ≡ 0 . (97)

Starting with the ferroelectric Hamiltonian, having the mathematical structure characterized by the
pseudospin variables [91, 92], we follow the general scheme described above, and after averaging over
the random phase configurations, we come to the effective Hamiltonian (78) with the replica Hamiltoni-
ans

Ĥν = wν

∑
j

p2
j

2m
+

w2
ν

2

∑
i̸=j

A(rij) − wνΩ
∑
j

Sx
jν +

+ w2
ν

∑
i̸=j

B(rij)S
x
iνS

x
jν − w2

ν

∑
i̸=j

I(rij)S
z
iνS

z
jν . (98)
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Here, the first term represents kinetic energy, A(r),B(r), and I(r) are particle interactions, Ω is the
tunneling frequency, and the abbreviated notation

rij ≡ ri − rj . (99)

is employed.
The phonon variables can be introduced in the standard way by defining the deviation uj from the

lattice site with the lattice vector aj as
rj = aj + uj . (100)

The lattice vectors are assumed to form an equilibrium lattice, being defined as the averages

aj ≡ ⟨rj⟩ . (101)

Hence the average deviation, by definition, is zero,

⟨uj⟩ = 0 . (102)

The interactions, as usual, are supposed to be symmetric with respect to the spatial coordinate inver-
sion:

A(−rij) = A(rij) , B(−rij) = B(rij) , I(−rij) = I(rij) . (103)

In what follows, we shall also use the short-hand notation for the vector differences

aij ≡ ai − aj . (104)

and
uij ≡ ui − uj . (105)

The interactions are expanded in powers of the deviations as

A(rij) ∼= Aij +
∑
α

Aα
iju

α
ij +

1

2

∑
αβ

Aαβ
ij u

α
iju

β
ij , (106)

where

Aij ≡ A(aij) , Aα
ij ≡

∂Aij

∂aαi
, Aαβ

ij ≡ ∂2Aij

∂aαi ∂a
β
i

. (107)

The same expansions are made for B(r) and I(r). Owing to the symmetry properties (103), we have

Aij ≡ Aji , Aα
ij = −Aα

ji , Aαβ
ij = Aβα

ij = Aβα
ji = Aαβ

ji . (108)

In the Hamiltonian (98), the double summation over the lattice excludes the self-action terms with
i = j. In order to simplify the notation, we can sum over all lattice sites, setting the diagonal elements

Aii = Bii = Iii ≡ 0 . (109)

The lattice is treated as ideal, because of which

A ≡
∑
j

Aij = const (110)
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does not depend on the index i. Using the ideality of the lattice, we get∑
j

Aα
ij =

∂A

∂aαi
= 0 . (111)

and ∑
j

Aαβ
ij =

∂2A

∂aαi ∂a
β
i

= 0 . (112)

Consequently, ∑
ij

Aα
iju

α
ij = 0 . (113)

The same type of expansions is accomplished for both the ferroelectric and paraelectric phases. There-
fore, in what follows, we shall consider the resulting transformations only for the ferroelectric phase,
keeping in mind that the same is done for the paraelectric phase. And to simplify the notation, we shall
not write explicitly the index ν = 1. Then, substituting the above expansions into Hamiltonian (98), with
ν = 1, and invoking the notation

Sα
ij ≡ Sα

i S
α
j , (114)

we obtain the Hamiltonian

Ĥ1 = w
∑
j

p2
j

2m
+

w2

2
NA +

w2

4

∑
ij

∑
αβ

Aαβ
ij u

α
iju

β
ij − wΩ

∑
j

Sx
j +

+ w2
∑
ij

(
Bij +

∑
α

Bα
iju

α
ij +

1

2

∑
αβ

Bαβ
ij u

α
iju

β
ij

)
Sx
ij −

− w2
∑
ij

(
Iij +

∑
α

Iαiju
α
ij +

1

2

∑
αβ

Iαβij u
α
iju

β
ij

)
Sz
ij , (115)

in which w ≡ w1.

11. Pseudospin-Phonon Decoupling

The obtained Hamiltonian is yet too complicated to be treated, and some approximation is required.
For any approximation, we have to keep in mind that

⟨ uαij ⟩ = ⟨ uαi ⟩ − ⟨ uαj ⟩ = 0 . (116)

Because the phonon and pseudospin operators are of different nature, it is reasonable to decouple
them in the second-order, with respect to the deviations, terms as

uαiju
β
ijS

γ
ij = ⟨ uαiju

β
ij ⟩ S

γ
ij + uαiju

β
ij ⟨ S

γ
ij ⟩ − ⟨ uαiju

β
ij ⟩ ⟨ S

γ
ij ⟩ . (117)

At the same time, the terms linear in the deviations can be left for a while, since later they can be dealt
with by using canonical transformations.

Using again the lattice ideality, we see that∑
ij

Aαβ
ij u

α
iju

β
ij = 2

∑
ij

Aαβ
ij u

α
i u

β
j . (118)
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The average < Sij > depends on the difference aij. Thence∑
j

Bαβ
ij ⟨ Sx

ij ⟩ =
∂2

∂aαi ∂a
β
i

∑
j

Bij ⟨ Sx
ij ⟩ = 0 ,

∑
j

Iαβij ⟨ Sz
ij ⟩ =

∂2

∂aαi ∂a
β
i

∑
j

Iij ⟨ Sz
ij ⟩ = 0 . (119)

Similarly, ∑
ij

Bαβ
ij u

α
iju

β
ij ⟨ Sx

ij ⟩ = 2
∑
ij

Bαβ
ij ⟨ Sx

ij ⟩ uαi u
β
j ,

∑
ij

Iαβij u
α
iju

β
ij ⟨ Sz

ij ⟩ = 2
∑
ij

Iαβij ⟨ Sz
ij ⟩ uαi u

β
j . (120)

Let us introduce the notation for the dynamical matrix

Φαβ
ij ≡ Aαβ

ij + 2Bαβ
ij ⟨ Sx

ij ⟩ − 2Iαβij ⟨ Sz
ij ⟩ (121)

and for the renormalized interactions

B̃ij ≡ Bij +
∑
αβ

Bαβ
ij ⟨ uαi u

β
j ⟩ . (122)

and
Ĩij ≡ Iij +

∑
αβ

Iαβij ⟨ uαi u
β
j ⟩ . (123)

Separating the non-operator energy part

E1 ≡
w2

2
NA + w2

∑
ij

∑
αβ

(
Iαβij ⟨ Sz

ij ⟩ − Bαβ
ij ⟨Sx

ij ⟩
)
⟨ uαi u

β
j ⟩ , (124)

we reduce Hamiltonian (115) to the sum

Ĥ1 = E1 + Ĥph + Ĥps + Ĥlin . (125)

The second term here is the effective phonon Hamiltonian

Ĥph = w
∑
j

p2
j

2m
+

w2

2

∑
ij

∑
αβ

Φαβ
ij u

α
i u

β
j . (126)

The third term is the effective pseudospin Hamiltonian

Ĥps = −wΩ
∑
j

Sx
j + w2

∑
ij

(
B̃ijS

x
ij − ĨijS

z
ij

)
. (127)

And the last term is the linear pseudospin-phonon interaction Hamiltonian. The latter is obtained by
invoking the properties ∑

ij

Bα
iju

α
ijS

x
ij = 2

∑
ij

Bα
ijS

x
iju

α
i = −2

∑
ij

Bα
ijS

x
iju

α
j ,
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∑
ij

Iαiju
α
ijS

z
ij = 2

∑
ij

IαijS
z
iju

α
i = −2

∑
ij

IαijS
z
iju

α
j (128)

and denoting
Kα

ij ≡ Bα
ijS

x
ij − IαijS

z
ij , (129)

which yields
Ĥlin = −2w2

∑
ij

∑
α

Kα
iju

α
j . (130)

Thus, the Hamiltonian parameters are renormalized due to the interactions between pseudospins and
phonons.

12. Dressed Phonons

The quantization of the phonon degrees of freedom can be done in the way, similar to how it is done
for pure crystalline phases. However, here we have to be careful, taking into account the presence of the
factors w = w1, characterizing the weight of the related phase. Thus, the eigenproblem equation for the
phonon frequencies and polarization vectors takes the form

w

m

∑
αβ

Φαβ
ij exp (ik · aij) e

β
ks = ω2

kse
α
ks . (131)

The phonon frequencies and polarization vectors can be chosen to be symmetric with respect to the
momentum inversion,

ω−ks = ωks , e−ks = eks .

The polarization vectors are orthonormalized, such that

eks · eks′ = δss′ ,
∑
s

eαkse
β
ks = δαβ ,

with the momentum summation over the Brillouin zone. The eigenproblem (131) can be rewritten as

w

m

∑
β

Φαβ
k eβks = ω2

kse
α
ks , (132)

where
Φαβ

k ≡
∑
j

Φαβ
ij e

ik·aij .

The phonon quantization, in the presence of the linear pseudospin-phonon interactions, differs from
the standard case by the necessity to involve a nonuniform canonical transformation

pj = − i√
N

∑
ks

√
m

2
ωks eks

(
bks − b†−ks

)
eik·aj ,

uj = vj +
1√
N

∑
ks

eks√
2mωks

(
bks + b†−ks

)
eik·aj . (133)

The nonuniformity comes through an additional term in the expression for uj .
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Hamiltonian (125) transforms to

Ĥ1 = E1 + Ĥ ′
ph + Ĥps + Ĥ ′

lin . (134)

The effective phonon Hamiltonian is

Ĥ ′
ph = w

∑
ks

ωks

(
b†ksbks +

1

2

)
, (135)

with the phonon frequency given by the equation

ω2
ks =

w

m

∑
j

∑
αβ

Φαβ
ij e

α
kse

β
ks e

ik·aij . (136)

The latter equation can also be written as

ω2
ks =

w

m

∑
αβ

Φαβ
k eαkse

β
ks .

The momentum k pertains to the Brillouin zone.
After transformation (133), the term, remaining from the renormalized linear pseudospin-phonon

interaction, reads as
Ĥ ′

lin = −2w2
∑
ij

∑
α

Kα
ijv

α
j , (137)

with
vαf =

1

2N

∑
ij

∑
β

γαβjf K
β
ij , (138)

where the notation

γαβij ≡ 4w
∑
ks

eαkse
β
ks

mω2
ks

exp (ik · aij) (139)

is used. The latter quantity possesses the properties

γαβij = γαβji = γβαji = γβαij .

Combining (137) and (138) gives

Ĥ ′
lin = − w2

N

∑
ij

∑
fg

∑
αβ

Kα
ijγ

αβ
jf K

β
fg , (140)

which shows that this is an effective four-pseudospin interaction.
In the summation over momenta in (139), the main contribution comes from the term with k = 0

because of the fast oscillations of the exponential. Therefore, expression (139) can be well approximated
as

γαβij
∼= γαβ ≡ 4w

∑
ks

eαkse
β
ks

mω2
ks

. (141)

Then (138) becomes

vαf
∼=

1

2N

∑
ij

∑
β

γαβKβ
ij . (142)
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Owing to the property ∑
ij

Kβ
ij = −

∑
ij

Kβ
ij = 0 ,

we have
Ĥ ′

lin = 0 , vαf = 0 . (143)

Consequently, the term H ′
lin in Hamiltonian (134) can be omitted.

This is in agreement with the following. The existence of the linear, in the deviations, terms in Hamil-
tonian (130), formally, leads to the fact that, according to (133), the average < uj > could be nonzero,
which, however would be in contradiction with condition (102). Therefore, the linear in deviations terms
should be zero, as in Eqs. (143). Also, the appearance of the linear terms in Hamiltonian (130) breaks
the symmetry of the initial Hamiltonian with respect to the inversion uj → −uj . Generally, such linear
terms should either be zero, due to symmetry properties, or are to be canceled by counterterms preserving
the equilibrium condition (102).

The same conclusion could be obtained, if, when decoupling the pseudospin and phonon degrees of
freedom, we would employ the decoupling

uαijS
β
ij = ⟨ uαij ⟩S

β
ij + uαij⟨ S

β
ij ⟩ − ⟨ uαij ⟩⟨ S

β
ij ⟩ , (144)

which, in view of (116), yields
uαijS

β
ij = uαij ⟨ S

β
ij ⟩ . (145)

Then, employing the properties∑
j

Bα
ij ⟨ Sx

ij ⟩ =
∂

∂aαi

∑
j

Bij ⟨ Sx
ij ⟩ = 0 ,

∑
j

Iαij ⟨ Sz
ij ⟩ =

∂

∂aαi

∑
j

Iij ⟨ Sz
ij ⟩ = 0 (146)

and ∑
ij

Bα
iju

α
ij ⟨ Sx

ij ⟩ = 0 ,
∑
ij

Iαiju
α
ij ⟨ Sz

ij ⟩ = 0 , (147)

following from the ideality of the lattice, results in the Hamiltonian

Ĥ1 = E1 + Ĥph + Ĥps . (148)

The first term here is the nonoperator part (124), the second term is the effective phonon Hamiltonian

Ĥph = w
∑
ks

ωks

(
b†ksbks +

1

2

)
. (149)

And the effective pseudospin Hamiltonian is

Ĥps = −wΩ
∑
j

Sx
j + w2

∑
ij

B̃ijS
x
i S

x
j − w2

∑
ij

ĨijS
z
i S

z
j . (150)

The pseudospin interactions are renormalized by the existence of the phonon vibrations. And the
phonon characteristics are renormalized due to the phonon interactions with pseudospins. In addition,
all quantities are renormalized by the presence of the heterophase fluctuations. It is, therefore, possible
to call the resulting effective phonons as dressed phonons.
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13. Heterophase Fluctuations

With the derived effective Hamiltonian (148), we can explicitly calculate all phonon characteristics.
For instance, the phonon distribution is

nks ≡ ⟨ b†ksbks ⟩ =
[
exp

(wωks

T

)
− 1
]−1

. (151)

The deviation-deviation correlation function read as

⟨ uαj u
β
j ⟩ =

1

2N

∑
ks

eαkse
β
ks

mωks

coth
(wωks

2T

)
. (152)

The mean kinetic energy becomes

⟨ p2

2m
⟩ =

1

4N

∑
ks

ωks coth
(wωks

2T

)
. (153)

In order to treat the pseudospin variables, we can use the mean-field approximation for the products
Sα
i S

β
j . This is possible because the critical region in ferroelectrics is known [91, 92] to be narrow due to

the smallness of the Ginzburg number. Then, in the mean-field approximation for the pseudospins, we
find the averages for the x-component

⟨ Sx
j ⟩ = w

Ωj

2Hj

tanh

(
Hj

2T

)
, (154)

for the y-component
⟨ Sy

j ⟩ = 0 , (155)

and for the z-component

⟨ Sz
j ⟩ = w2⟨ Sz

j ⟩ Ĩ

Hj

tanh

(
Hj

2T

)
. (156)

Here, the notations are used for the effective tunneling frequency

Ωj = Ω− 2wB̃ ⟨ Sx
j ⟩ (157)

and the effective field
Hj = w

√
Ω2

j + 4w2Ĩ2 ⟨ Sz
j ⟩ , (158)

in which
B̃ ≡

∑
j

B̃ij , Ĩ ≡
∑
j

Ĩij . (159)

To deal further with considering the properties of the heterophase ferroelectric, we need to restore the
phase indices ν = 1, 2. The effective Hamiltonian of the heterophase system is

H̃ = Ĥ1

⊕
Ĥ2 . (160)

The conditions, distinguishing the ordered and disordered phases are

⟨ Sz
j1 ⟩ ̸= 0 , ⟨ Sz

j2 ⟩ = 0 .

All necessary equations for the ferroelectric phase are written above. The equations for the paraelectric
phase can be obtained from the above expressions by setting there the order parameter < Sz

j >= 0. The
equations for the phase probabilities are given in Sec. 8.
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14. Phase Transition

The total system of equations, defining the heterophase ferroelectric, can be solved numerically. Be-
low, we present some of the most interesting conclusions describing the influence of the heterophase
fluctuations on the system properties. The strongest influence of these fluctuations occurs in the vicinity
of the phase transition point, that is represented by the temperature

T̃c =
(1− b̃)ω̃

4artanh(2ω̃)
, (161)

where

b̃ ≡ B̃

Ĩ + B̃
, ω̃ ≡ Ω̃

Ĩ + B̃
.

The existence of the heterophase fluctuations can be noticed and their influence measured by studying,
e.g., the Debye-Waller factor fDW and sound velocity s. It is convenient to characterize the influence of
the heterophase fluctuations by comparing their values in the presence of the latter with the related values
without these fluctuations. For example, comparing the sound velocity s in the heterophase system with
the sound velocity s0 in a pure system without such fluctuations, it is useful to introduce the relative
sound-velocity decrease

δs ≡ s− s0
s0

. (162)

Another useful characteristic is the Debye-Waller factor fDW that can be measured by x-ray scat-
tering, coherent neutron scattering, and by Mössbauer spectroscopy. All details and definitions can be
found in the books [93–95]. We need to compare the Debye-Waller factor f̃DW for the heterophase sys-
tem and its value fDW for a pure system. Again, it is useful to employ the relative Debye-Waller factor
decrease

δfDW ≡ f̃DW − fDW

fDW

. (163)

It is interesting that, as follows from numerical calculations, these quantities, the relative sound ve-
locity decrease and the relative Debye-Waller factor decrease, are universal, weakly depending on the
considered materials. For the relative sound velocity decrease at the critical transition point, we get

δs ≈ −0.3 (T = Tc) (164)

and for the relative Debye-Waller factor decrease at this point,

δfDW ≈ −0.3 . (165)

This decrease of the sound velocity and of the Debye-Waller factor is due to the scattering caused by
heterophase fluctuations.

15. Conclusion

The systems are addressed, exhibiting phase transitions between thermodynamic phases with different
symmetry, in which spontaneous symmetry breaking can be accompanied by local spontaneous symme-
try restoration, caused by the appearance of heterophase fluctuations. In such systems, above the phase
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transition point, where a disordered phase dominates, there appear the germs of the ordered phase. And
below the transition point, where an ordered phase prevails, there arise the embryos of the disordered
phase. Thus, around the phase transition point there is a region, where the phases with higher and lower
symmetries coexist. The embryonic regions of a competing phase are distributed randomly in space.
Their characteristic sizes are mesoscopic, so that the typical size rf of such an embryo is much larger
than the mean interparticle distance a, but much smaller than the characteristic size of the whole system
L, that is,

a≪ rf ≪ L .

The typical size rf should be understood as an average size, since the shapes of the embryonic het-
erophase fluctuations are not necessarily regular, but can be rather ramified. Therefore, terming these
germs mesoscopic could be better applied to the average number of particlesNf composing each of such
embryos, as compared to the total number N of particles in the system, so that

1 ≪ Nf ≪ N .

This type of heterophase fluctuations is common for a number of substances.
The general approach for treating these heterophase systems is developed, being based on the notion

of weighted Hilbert spaces. The real-space distribution of the phases is described by means of manifold
indicators. The averaging over random phase configurations reduces the problem to the consideration
of an effective renormalized Hamiltonian composed of the phase-replica Hamiltonians representing the
phases of different symmetry. Stability conditions define the geometric phase probabilities in a self-
consistent way.

The method is illustrated by applying it to heterophase ferroelectrics that are the typical materials
exhibiting the appearance of such heterophase fluctuations around their phase transition points between
the paraelectric and ferroelectric phases. The influence of the heterophase fluctuations is the strongest
in the vicinity of the phase transition point. Numerical calculations show that the occurrence of such
fluctuations leads to the noticeable decrease of the sound velocity and Debye-Walle factor at the transi-
tion point. The relative values of this decrease turn out to be universal, only weakly depending on the
material parameters.

In conclusion, it is worth mentioning that thermodynamic phases and phase transitions between them
can be conveniently characterized not only by order parameters but also by order indices [96]. Another
important characteristic is the measure of entanglement in the considered physical system [97]. These
three characteristics are interrelated with each other [98–100]. The usual situation is when the increas-
ing order is accompanied by the decreasing entanglement [100]. Since a mesoscopic mixture is a system
that is between an absolutely disordered and a completely ordered phases, its entanglement should be
between these two limiting cases. An additional entanglement arises in mesoscopic mixtures because
a heterophase system consists of several spatially separated regions with different symmetry, and these
mesoscopic regions are mutually entangled. This increases the system entanglement, as compared to
the completely ordered case. The problem of studying the entanglement level of mesoscopic mixtures
is extremely interesting. Since the mixture properties can be regulated by means of thermodynamic
parameters, this gives an additional possibility of governing the level of entanglement in such meso-
scopic mixtures, which does not exist in the case of pure systems. This novel possibility of regulating
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entanglement is really exciting, but it is a separate problem that goes out of the scope of the present
paper. It is clear that the mesoscopic mixtures provide a nontrivial possibility for regulating the system
entanglement, which can be used for quantum information processing.
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