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Abstract: Significant cases of time-evolution equations, the linear Schrödinger and the
Fokker–Planck equation are considered. It is known that equations of this type can be trans-
formed, in some cases, into a highly simplified form. The properties of these equations in
their initial and their simplified form are compared, showing in particular that this trans-
formation partially prevents a clear understanding and a full application of the (physically
relevant) notion of the so-called step up/down operators. These operators are shown to be
recursion operators, related to the Lie point symmetries of the equations, which are also
carefully discussed.
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1. Introduction

In this paper we examine in detail some significant cases of two linear evolution equations, namely the
linear Schrödinger equation (Sect. 3) and the Fokker–Planck equation (Sect. 4), which can be considered
as the prototypes of linear time-evolution partial differential equations (PDE). It is known that, by means
of suitable transformations of both the independent and the dependent variables, equations of this type
can be put, in some cases, into a highly simplified form; we will discuss this point, comparing the
properties of the equations in their initial and in their simplified form. Although the latter form is clearly
useful to find, e.g., the Lie point symmetries and the solutions as well, we will show that transforming the
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equations into simplified form partially prevents and in some sense “hides” a clear understanding and a
full application of the notion of the so-called step up/down operators. These “ladder” operators not only
produce families of solutions of higher and higher degree (starting e.g. from some elementary solution)
but also possess a neat physical interpretation: they indeed connect different solutions with a well-defined
behaviour, by increasing/decreasing by a fixed amount some characterizing physical property (e.g., the
energy in the case of Schrödinger equation, the time-decay rate in the case of Fokker–Planck one).

The step up/down operators are a simple class of linear recursion operators, related to the symmetries
of the differential equations: their relevant properties will be preliminarily presented in Sect. 2.

In this paper we will be concerned only with the usual notion of Lie point symmetries; we refer to
standard books (e.g., [1–6]) for any detail about their properties and their determination. We will denote
by X (or Y ) the infinitesimal generators of such a symmetry; with a little but commonly accepted abuse
of language, we will call X (or Y ) both the symmetry and its generator.

2. The recursion and the step up/down operators

First of all, let us point out some general results, which will be particularly useful in the following.

Let u = u(xi) be a function of the p real variables xi, and X a vector field of the form (sum over i)

X = ξi(x)
∂

∂xi
+B(x)u

∂

∂u
;

it is very convenient to introduce the linear differential operator Q associated to X defined by

Q := −ξiDxi +B (1)

where Dxi denotes the total derivative. Notice that, putting

Q := Q(u) = −ξiuxi +B u

the operator XQ defined by

XQ := Q
∂

∂u

is the so-called evolutionary operator, related to the above vector field X and essentially equivalent to it,
as is well known [3], meaning thatX is a symmetry for a differential equation ∆ = ∆(xi, u, uxi , . . .) = 0

if and only if the same is true for XQ.
We then have [3]:

Proposition 1 Let ∆ = 0 be a linear PDE and X one of its symmetries; then the operator Q is a
“recursion operator”: i.e., given any symmetry X0, with its associated operator Q0, then also

XQ1 := Q1
∂

∂u
where Q1 := Q

(
Q0(u)

)
is a symmetry for the PDE.

Some relevant properties of the operator Q are described by the following (see also [3,6]):
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Proposition 2 Let ∆ = 0 be a differential equation and X one of its symmetries; then looking for the
solution w0 to ∆ = 0 which is left invariant by X amounts to solve the equation

Q(w0) = 0

where Q is the operator defined in (1). If ∆ = 0 is linear and u0 is any of its solutions, then also

u1 := Q(u0) , . . . , un+1 := Q(un)

for all n = 1, 2, . . ., solve the equation ∆ = 0. If X0 is another symmetry for ∆ = 0, then also

Q1(u0) = Q
(
Q0(u0)

)
solves the equation, and so on.

Proof. The first statement is standard. For the second part, let us write the linear differential equation in
the form

∆ =
∑
J

αJ(x)DJu = 0

where DJ stand for all possible differentiations of u. If X is any symmetry for this equation, then
X∗∆|∆=0 = 0 where X∗ is the appropriate prolongation of X; on the other hand, recalling that the
prolongation of Q = Q(u) is DJQ, this becomes

X∗∆|∆=0 =
∑
J

αJ(x)DJQ(u)|∆=0 = 0

which expresses just the fact that Q(u) solves the equation whenever u is a solution. The final assertion
follows from Proposition 1. �

The notion of ladder or step up/down operators (also called creation/annihilation operators) is con-
tained in the following Proposition.

Proposition 3 LetA be a linear operator having an eigenfunction u with eigenvalue σ; a linear operator
S satisfying

[A , S ] = κS

where κ is a constant, is a step up/down operator for A, meaning that

A(S u) = (σ + κ)(S u) .

Indeed, A(Su) = S(Au) + κSu = (σ + κ)(S u). �

The idea of introducing various classes of recursion operators has been often and successfully used in
the study of differential equations in many different contexts. We refer to [3] for a general introduction;
recursion operators of pseudodifferential or integro-differential type have been applied e.g. to nonlinear
evolution equations

(
see [7–9] and references therein

)
; a different hierarchy of operators related to

nonclassical symmetries has been proposed in [10] and references therein. Much more simply, the
recursion operators considered in this paper are linear operators directly related to the classical Lie point
symmetries of the equations, and more specifically to the physically relevant notion of step up/down
operators.
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3. The Schrödinger equation

We start considering the parabolic partial differential equation for u = u(x, t)

ut = uxx +W (x)u (2)

where W (x) is a given smooth function. For this equation, Ovsjannikov [1] has shown the following
result.

Theorem 4 Apart from the infinite-dimensional algebra of symmetriesXw=w ∂/∂u, where w = w(x, t)

is any solution to (2), eq. (2) admits a 6-dimensional algebra of Lie point symmetries which is generated
by the two trivial symmetries

Xt =
∂

∂t
, Xu = u

∂

∂u
(3)

and by 4 other linearly independent symmetries, if and only if W (x) has the form

W (x) = αx2 + βx+ γ (4)

(α , β , γ = const.); in this case there is a point transformation

x→ y = y(x, t) , t→ s = s(x, t) , u→ v = ω(x, t)u (5)

such that in these variables eq. (2) takes the form of the heat equation

vs = vyy . (6)

Eq. (2) admits instead, in addition to the trivial ones as above, 2 linearly independent symmetries if and
only if

W (x) = αx2 + βx+ γ +
δ

(x+ x0)2
(7)

where δ = const 6= 0, and in this case it can be transformed into an equation where α = β = γ =

x0 = 0. No nontrivial symmetry is admitted for other W (x).

This result can be deduced by means of explicit calculations based on the symmetry determining
equations; the symmetry analysis of equations of the form (2) can be also performed using a direct
“geometric” approach valid for more general quasi-linear PDE’s [11,12].

Notice that, as shown in [13], for any point or contact transformation between two evolution equations,
the transformation component for t depends only on t; then, it is enough to consider in eq. (5) only
t→ s = s(t). We refer to [13] for a full discussion about point transformations of the very general form
y = y(x, t, u), s = s(x, t, u), v = v(x, t, u), including also discrete symmetries, which connect a wide
class of linear and nonlinear PDE’s.

3.1. The Schrödinger equation for the harmonic oscillator and for the free particle

We are here interested in the 1-dimensional linear Schrödinger equation for a quantum particle moving
in a given potential V = V (x), i.e.

i ut = −1

2
uxx + V (x)u .
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The extension of Theorem 4 to cover this equation requires some care for what concerns the symmetry
properties, due to the presence of the imaginary factor i, as we shall see; but it is easily seen that this
theorem implies that if V (x) is as W (x) in (4), which is the case of the quantum harmonic oscillator
(let us assume α > 0), then the equation can be transformed into the Schrödinger equation for the free
particle (i.e. V = 0)

i vs = −1

2
vyy . (8)

We shall first consider in detail this special case.
Following again Ovsjannikov results, we can give the explicit expression of the needed transformation

(5) in this case: first of all, it is not restrictive to put in (4) β = γ = 0
(
these constants can be reabsorbed

by a translation of x and changing u into u exp(iγt)
)
, let also α = 1/2; then, the Schrödinger equation

i ut = −1

2
uxx +

1

2
x2 u (9)

is transformed into eq. (8) by means of the transformation (involving the imaginary factor i)

x→ y = exp(−it)x , t→ s =
i

2
exp(−2it) , u→ v = exp(x2/2) exp(it/2)u(x, t) . (10)

However, despite this connection among the two equations (cf. also [14,15]), the physical properties
of the solutions of the free Schrödinger equation (8) are strongly different from those of the harmonic
oscillator (9). For instance, the spectrum of the energy operator i∂/∂t is continuous for the free particle,
in contrast with the case of the harmonic oscillator; in addition, the solutions which are eigenfunctions
of i∂/∂t are not normalizable

(
i.e. /∈ L2(R)

)
in the first case, differently from the other one, and so on.

So, some care must be used also when transforming solutions from one to the other equation.
Incidentally, also the transformation

x→ y = exp(it)x , t→ s = − i
2

exp(2it) , u→ v = exp(−x2/2) exp(−it/2)u(x, t)

does map eq. (9) into (8), but this is scarcely useful: it transforms indeed, for instance, the obvious
solution v(s, y) = 1 of (8) into the divergent solution u = exp(x2/2) exp(it/2) of (9), with no interest
from the physical point of view.

It is particularly important, instead, to anticipate (this point will be considered in detail in the follow-
ing) that the solution v = 1 is transformed by (10) into

u0(x, t) = exp(−x2/2) exp(−it/2)

which is just the solution of (9) describing the first stationary state (with the lowest eigenvalue of the
energy E0 = 1/2) of the quantum harmonic oscillator.

Apart from the infinite-dimensional algebra Yw = w ∂/∂v as in the general case (2), the algebra
of symmetries admitted by eq. (8) becomes in this case 7-dimensional: it is generated by the trivial
symmetries

Yv = v
∂

∂v
, Y ′v = i v

∂

∂v
, Ys =

∂

∂s
(11)

and by these 4 other (linearly independent) symmetries
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Y1 =
∂

∂y
, Y2 = s

∂

∂y
+ y
(
i v

∂

∂v

)
, Y3 = y

∂

∂y
+ 2s

∂

∂s
,

(12)

Y4 = 2sy
∂

∂y
+ 2s2 ∂

∂s
+ (iy2 − s)v ∂

∂v
.

We are now using operators and transformations involving simultaneously real and complex quanti-
ties. This would require in principle to introduce a suitable prolongation of the equations to the complex
plane. Actually, the operators (11-12) are real in their parts associated with the independent variables,
and this guarantees that they remain real under the transformations generated by these operators. Notice
also that the two generators Yv and Y ′v in (11) are to be considered as different operators, indeed under
a finite transformation with a real parameter they generate respectively a multiplication by a real coeffi-
cient and by a phase factor. On the other hand, this is a common situation which is met whenever one
deals with symmetries of (linear and nonlinear) Schrödinger equation: see e.g. [6,14–18]; see also [19]
for a full discussion about the symmetry properties of the equations in Quantum Mechanics.

It can be interesting to compare the above symmetries of the free linear Schrödinger equation with
the nonlinear cubic version

i vs +
1

2
vyy + |v|2v = 0 . (13)

As shown in [18], the algebra of symmetries of this equation is generated by (in our notations)

Ys =
∂

∂s
, Y ′v = iv

∂

∂v
, Y1 =

∂

∂y
, Y2 = s

∂

∂y
+ y
(
i v

∂

∂v

)
, Y3 = y

∂

∂y
+ 2s

∂

∂s
− v ∂

∂v
.

Not surprisingly, the generators Ys, Y ′v , Y1, Y2 survive, whereas Yv is lost, and Y3 , Y4 are replaced by Y3.

Coming back to our free Schrödinger equation (8), we now apply to it the ideas and the results
presented in Sect. 2. We start from the solution v = v0(y, s) = 1, which is clearly invariant under the
symmetry operator Y1; if one applies repeatedly to this solution the operator Q2 = −sDy + iy

(
we are

denoting byQi the differential operators associated to the symmetries Yi given in (11-12)
)
, the following

sequence of solutions to (8)

v0 = 1 , v1 = iy , v2 = −is− y2 , v3 = 3ys− iy3 , . . . (14)

are obtained, according to Proposition 2. Notice that the operators Q4 and Qs satisfy

Q4 = −i(Q2)2 , Qs = − i
2

(Q1)2 ;

this is shown observing in particular that Dyy = −2iDs along all solutions to (8), thereforeQ4(v0) = v2,
etc., whereas Q1 = −Dy satisfies

Q1(vn) = λnvn−1 , Q1(v0) = 0 .

Similarly, one has, e.g., Q3(vn) = µnvn (where µn, λn are suitable constants), and Q1Q2 = i(Q3 − 1),
[Q1,Q2] = −i.

Other solutions to (8) could be obtained in this way, and/or applying Propositions 1 and 2, of course,
but they are less relevant for our present purposes (see also below).



Symmetry 2010, 2 104

Alternatively, we can also look for the orbit of the solution v0 = 1 under the (finite) action of the
symmetry generator Y2: it is obtained integrating the Lie equation (denoting by ε the real Lie parameter)

dy

dε
= s

dv

dε
= iyv

with the “initial” condition (i.e., for ε = 0) v = v0 = 1; this gives

v(y, s, ε) = v0 exp(iεy − i

2
ε2s) = 1 + ε iy +

ε2

2
(−is− y2) +

ε3

6
(3ys− iy3) + . . .

The coefficients of the powers εn are just the solutions obtained before.

The main interest in the symmetries and the particular solutions (14) found above for the free Schrödin-
ger equation stems from the fact that they can be easily transformed into solutions of the Schrödinger
equation for the harmonic oscillator (9). Indeed, using the transformation (10), one immediately obtains
that the solutions (14) to the free equation become

u0 = exp(−x2/2) exp(−it/2) , u1 = exp(−x2/2) exp(−3it/2)x , . . . ,

(15)
un = exp(−x2/2) exp

(
− (n+ 1/2)t

)
Hn(x) , . . .

where Hn(x) are the n−degree Hermite polynomials, which are indeed solutions to the Schrödinger
equation for the harmonic oscillator. More specifically, these are the solutions describing the stationary
states of the quantum harmonic oscillator, which are eigenfunctions of the energy operator i∂/∂t with
eigenvalues (i.e., with energy) En = n + 1/2, n = 0, 1, 2, . . .. Let us recall that all normalizable

(
i.e.,

∈ L2(R)
)

solutions of this equation can be expressed as convergent series
(
in the L2(R) norm

)
of the

above set of solutions (15).
In the same way, one could directly obtain from the symmetry operators Yi (11) and (12) for the

free equation (8) the expressions of the Lie point symmetries Xi for the harmonic oscillator; however,
using the transformation (10) which maps real into complex variables, we obtain the following “hybrid”
expression for the generators where real and complex quantities are involved

(
see the remark following

eqs. (11,12); factors i, i/2 are put here just in order to obtain more convenient expressions for the
generators Xi

)
Yv → Xu = u

∂

∂u
, Y ′v → X ′u = i u

∂

∂u
, Y1 → X1 = exp(it)

( ∂
∂x
− xu ∂

∂u

)
,

Y2 →
i

2
X2 =

i

2
exp(−it)

( ∂
∂x

+ xu
∂

∂u

)
, Y3 → iXt −

1

2
X ′u = i

∂

∂t
− 1

2

(
i u

∂

∂u

)
, (16)

Ys → iX3 = i exp(2it)
(
x
∂

∂x
− i ∂

∂t
−
(
x2 +

1

2

)
u
∂

∂u

)
,

Y4→
i

2
X4 =

i

2
exp(−2it)

(
x
∂

∂x
+ i

∂

∂t
+
(
x2 − 1

2

)
u
∂

∂u

)
.

It is easy to transform the above operators X1, . . . , X4 in the known form (see e.g. [15,20]) which
preserves the property of x and t of remaining real variables under the transformations:
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X̃1 = cos t
∂

∂x
− x sin t

(
i u

∂

∂u

)
, X̃2 = sin t

∂

∂x
+ x cos t

(
i u

∂

∂u

)
,

X̃3 = cos(2t)x
∂

∂x
− sin(2t)

∂

∂t
+ x2 sin(2t)

(
i u

∂

∂u

)
+

1

2
cos(2t)

(
u
∂

∂u

)
,

X̃4 = sin(2t)x
∂

∂x
− cos(2t)

∂

∂t
+ x2 cos(2t)

(
i u

∂

∂u

)
− 1

2
sin(2t)

(
u
∂

∂u

)
.

For completeness and in analogy with the nonlinear free equation (13), let us also consider the non-
linear version of the Schrödinger equation in the presence of the potential V = x2/2:

i ut +
1

2
uxx −

1

2
x2u+ |u|2u = 0 . (17)

It is easy to see that the surviving symmetries are the above X ′u, Xt, X̃1 and X̃2.

Let us now introduce, as before, the linear operators Ri corresponding to the generators in the form
(16) (we adopt here the notation R instead of Q to avoid confusion). It is easily seen that, e.g. (using
2iDt = −Dxx + x2 along the solutions)

R4 =
1

2
(R2)2 R3 = −1

2
(R1)2

where R2 = exp(−i t)(−Dx + x), etc. As expected, the solution u0(x, t) is invariant under X1 (i.e.,
R1(u0) = 0) and, as already remarked, corresponds, via the transformation (10), to the solution v0 = 1

of the free eq. (8). Similarly, applying repeatedly R2 to u0 one obtains the family of solutions un(x, t)

given in (15), and
R1(un) = λn un−1 , R2(un) = νn un+1 (18)

where λn , νn are constants.
Then, the recursion operators defined by

R↓ := R1 = exp(it)(−Dx − x) , R↑ := R2 = exp(−it)(−Dx + x)

are exactly the Dirac step up/down operators well known in Quantum Mechanics [21]. These operators
indeed satisfy the assumption of Proposition 3, with A = i∂/∂t. Their peculiar property, as expressed
by eq. (18), is that of producing transitions from solutions un with energy En to the solutions un±1 with
energy En±1 = En ± 1.

Although the application of the recursion operators Qi, associated to the symmetries Yi (11-12) of
the free equation, produces solutions of higher and higher degree, as we have seen, we must emphasize
that these operators do not share with the operators R↓ ,R↑ the property of being ladder step up/down
operators, i.e. they do not produce transitions between solutions with different energy levels. This
depends not only on the fact that the energy spectrum for the free equation is a continuous one, as
already remarked, but also that the transformation (10) does not map one into the other the energy
operators Ys = ∂/∂s and Xt = ∂/∂t, as shown in (16), and this prevents the application of Proposition
3 to the case of the free equation.
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3.2. The Schrödinger equation with V (x) ∝ x2 + δ/x2

Let us now examine the case in which the potential V (x) in the Schrödinger equation has the form as
in eq. (7); now, only two nontrivial independent symmetries are expected, according to Theorem 4.

By means of exactly the same transformation (10) used for the case δ = 0, the Schrödinger equation
(as before, putting β = γ = x0 = 0 is not restrictive)

i ut = −1

2
uxx +

1

2
x2u+

δ

x2
u (19)

can be transformed into an equation where the term with x2 disappears:

i vs = −1

2
vyy +

δ

y2
v .

One could preliminarily give, proceeding as in Sect. 3.1, the symmetries and the solutions of this equa-
tion, but it is now simpler and actually much more interesting (thanks also to the final remark of the
above subsection) to study directly eq. (19).

The two nontrivial independent symmetries of this equation are
(
in the “hybrid” form as in (16); we

adopt for this case the notation Xa , Xb, andRa ,Rb for the associated operators
)

Xa = exp(2it)
(
x
∂

∂x
− i ∂

∂t
−
(
x2 +

1

2

)
u
∂

∂u

)
, Xb = exp(−2it)

(
x
∂

∂x
+ i

∂

∂t
+
(
x2− 1

2

)
u
∂

∂u

)
(20)

which coincide with the symmetries X3 , X4 found above for the case δ = 0.
We look for the solution u0(x, t) which is invariant under Xa: substituting the condition Ra(u0) = 0

into eq. (19) one obtains an ordinary differential equation, which is easily solved to get

u0 = xα exp(−x2/2) exp
(
− it(α + 1/2)

)
where α = (1 +

√
1 + 8δ)/2 .

Applying then repeatedly to this solution the operatorRb one obtains the family of solutions

u0(x, t), u1(x, t) = Rb(u0) = xα exp(−x2/2)(1 + 2α− 2x2) exp
(
− it(α + 5/2)

)
,

u2(x, t) = xα exp(−x2/2)(4x4 − 12x2 − 8αx2 + 4α2 + 8α + 3) exp
(
− it(α + 9/2)

)
and in general, for n = 0, 1, 2, . . .,

un(x, t) = (Rb)
n(u0) = xα exp(−x2/2)Pn(x) exp

(
− it(α + 1/2 + 2n)

)
(21)

where Pn(x) is a 2n-degree polynomial, with energy eigenvalues

E0 = α +
1

2
, E1 = α +

5

2
, . . . , En = α + 2n+

1

2
, . . . . (22)

Notice that, also in this case and in agreement with Proposition 3, the recursion operators Ra ,Rb cor-
responding to Xa , Xb are precisely step up/down operators which map any solution un to (19) having
energy En to solutions un±1 with energy En±1 = En ± 2.

(
Eq. (19), as far as eq. (9), admits of course

other singular or divergent solutions, with no physical relevance and not included here.
)
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3.3. The effect of a centrifugal potential in q > 1 dimensions

The term∝ x−2 in eq. (19) is reminiscent of the centrifugal potential: consider indeed the Schrödinger
equation in q > 1 dimensions and assume that the potential depends only on r = |x|, x ∈ Rq,

i ut = −1

2
∇2u+ V (r)u ;

the radial part of this equation is
(
clearly, with a little abuse of notations, here u = u(r, t)

)
i ut = −1

2

(
urr +

q − 1

r
ur −

`(`+ q − 2)

r2
u
)

+ V (r)u (23)

where `(`+ q − 2) is the eigenvalue of the angular part of the q-dimensional Laplacian operator∇2 and
` is a fixed integer number ` = 0, 1, 2, . . ., which is interpreted in Quantum Mechanics as the angular
momentum. However, in the above equation, in addition to the term ∝ r−2, there appears also a term
∝ r−1; but this one can be dropped by means of the transformation

u(r)→ w(r) = r(1−q)/2 u(r)

which indeed does transform (23) into

i wt = −1

2
wrr +

δcf
r2
w + V (r)w

where now

δcf =
`(`+ q − 2)

2
− q − 1

4
+

(q − 1)2

8
=

1

8

(
(2`+ q − 2)2 − 1

)
.

In the presence of a potential of the form V (r) = r2/2 + δ/r2, as before, the Schrödinger equation
becomes then

i wt = −1

2
wrr +

1

2
r2w +

δeff
r2

w

where δeff = δcf + δ is the “effective” coefficient which includes both the centrifugal potential δcf/r2

and the “external” one δ/r2.
It is important to point out that, in the “purely centrifugal” case, i.e. δ = 0, the above equation is the

radial part of the Schrödinger equation describing the isotropic harmonic oscillator in q dimensions. The
solutions of this equation are well known, and can be obtained of course from (21-22) observing that in
this case

α =
1

2

(
1 +

√
1 + 8δcf

)
= `+

q

2
− 1

2
;

the energy eigenvalues for the isotropic q-dimensional harmonic oscillator turn out to be

E0 =
q

2
, E1 =

q

2
+ 1 , E2 =

q

2
+ 2 , E3 =

q

2
+ 3 , . . .

having taken into account that ` may assume the values 0, 1, 2, . . .. Then, En+1 = En + 1, whereas
the step up/down operatorsRa ,Rb associated to Xa , Xb (20) are “double-step” operators, in agreement
with Proposition 3, i.e. they connect each solution un having energy En with the solutions un±2, and
not with the “consecutive” solutions un±1. This may appear surprising, but this depends on this fact: the
operators Ra ,Rb necessarily connect solutions with the same quantum numbers `, but it is well known
that for each fixed n (i.e., for a fixed value of the energy En), the admitted quantum numbers ` are either
all even or all odd numbers, and if for a given n the numbers ` are, e.g., even, then for n± 1 they are all
odd, and so on.
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4. The Fokker–Planck equation

Another very important parabolic equation which can be treated by means of the above methods is
the linear Fokker–Planck equation (see e.g. [22,23]), which may be written in a quite general form as
follows

ut = A(x)u+B(x)ux + uxx (24)

where A(x) and B(x) are some given regular functions. As well known, equations of this type can be
transformed into the prototypical form (2) by means of the transformation

u(x, t) = ω(x) v(x, t)

where ω must satisfy B ω + 2ωx = 0, and it is easy to conclude that the function W (x) in (2) is then
given by

W (x) = A+
B2

4
− Bx

2
.

Therefore, Theorem 4 states that eq. (24) admits nontrivial symmetries if (and only if) A(x) and B(x)

satisfy

A+
B2

4
− Bx

2
= αx2 + βx+ γ +

δ

(x+ x0)2

and there are four nontrivial linearly independent symmetries if δ = 0, and two symmetries if δ 6= 0.
In addition, if the above conditions are verified, the Fokker–Planck equation can be transformed, by

means of a transformation similar to (10) into the heat equation vs = vyy in the first case (see also [24]),
or into the equation vs = vyy + (δ/y2) v if δ 6= 0. We have already remarked, however, that the neat
characterization of the step up/down operators is lost under this transformation, and we limit here our
study to the equation in its original form.

Before looking for the symmetries and the solutions in this case, it is important to point out that in
the context of the Fokker–Planck equation the eigenvalues of the operator ∂/∂t are no longer interpreted
as the energy of the corresponding eigenfunctions (as it was the case of the Schrödinger equation),
but anyway we shall see that we can completely recover the idea and the procedure of the step up/down
operators simply looking for the solutions which are obtained by means of the separation of the variables,
i.e. for the solutions of the form u = T (t)χ(x) = exp(κt)χκ(x).

Several choices for the function A and B are of course possible (cf. e.g. [25–27] and references
therein). We consider just two significant cases, to illustrate our procedure.

4.1. The presence of four linearly independent nontrivial symmetries

Let us choose A = −1 , B = −x. Then one finds that the resulting equation

ut = −u− xux + uxx

admits the following nontrivial independent symmetries:

X1 = exp(t)
∂

∂x
, X2 = exp(−t)

( ∂
∂x

+ ux
∂

∂u

)
,
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X3 = exp(2t)
(
x
∂

∂x
+
∂

∂t
− ∂

∂u

)
, X4 = exp(−2t)

(
x
∂

∂x
− ∂

∂t
+ ux2 ∂

∂u

)
.

The solution u0, invariant under X1, i.e. R1(u0) = 0, with by now usual notation, is u0 = exp(−t);
applying thenR2 = exp(−t)(−Dx + x) we obtain the set of solutions (apart from inessential factors)

exp(−t) , x exp(−2t) , (1−x2) exp(−3t) , (3x−x3) exp(−4t) , (3−6x2+x4) exp(−5t) , . . . .

Notice that the recursion operatorsR1 ,R2 play here exactly the role of step up/down operators, with the
difference that here their effect is to increase/decrease the “time-decay rate” κ of the solutions.

4.2. The presence of two independent nontrivial symmetries

We now choose in the Fokker–Planck equation A = −1 , B = −2(x+ 1
x
), which gives an equation

ut = u− 2
(
x+

1

x

)
ux + uxx

admitting the two independent symmetries

Xa = exp(4t)
(

2x
∂

∂x
+
∂

∂t
− u ∂

∂u

)
, Xb = exp(−4t)

(
2x

∂

∂x
− ∂

∂t
+ u(3 + 4x2)

∂

∂u

)
.

In this case, we find two solutions to this equation which are invariant under Ra, namely u0 = exp(−t)
and u1 = x3 exp(−7t). Applying then to these the recursion operatorRb one obtains a double family of
solutions:

exp(−t) , (1 + 2x2) exp(−5t) , (1 + 4x2 − 4x4) exp(−9t) , . . .

and
x3 exp(−7t) , (2x5 − 5x3) exp(−11t) , . . . .

As in the previous case, the recursion operators Ra ,Rb play the role of step up/down operators, but
here they change by 4 units the decay rate of the solutions. Notice that these operators cannot produce
“jumps” from any solution in the first family above to any solution of the other (i.e., no change by 2
units is admitted): this is because the operators Ra ,Rb are unaltered under the change x → −x, and
therefore cannot change the parity of the solutions. A similar situation has been encountered in the case
of the Schrödinger equation in the presence of a centrifugal potential (Sect. 3.3).

5. Concluding remarks

In this paper we have considered several cases of two prototypical linear evolution equations: we have
shown that their general symmetry properties are quite similar, but not completely identical; in particu-
lar, the presence of the imaginary factor i in the Schrödinger equation requires a special care. We have
considered in detail the symmetry properties and provided families of solutions of the Schrödinger equa-
tion for the free particle, for the harmonic oscillator, and in the presence of centrifugal-like potentials.
A comparison with two nonlinear Schrödinger equations is also presented. Two significant and different
examples of the Fokker–Planck equation have been considered as well.

In all the linear cases considered, the equations can be transformed by means of a point transformation
into a simplified form. On the one hand, this simpler form is convenient for finding solutions and
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symmetry properties, on the other hand, however, we have seen that in some sense it hides the peculiar
property of these equations of admitting a set of simple linear recursion operators, which are related to
the notion of step up/down operators and which admit a specific interpretation in terms of physically
relevant quantities.
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