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Abstract: We investigate the phase diagram of the so-called Polyakov–Nambu–Jona-Lasinio
model at finite temperature and non-zero chemical potential with three quark flavors. Chiral
and deconfinement phase transitions are discussed and the relevant order-like parameters are
analyzed. The results are compared with simple thermodynamic expectations and lattice
data. We present the phase diagram in the (T, µB) plane, paying special attention to the
critical end point: as the strength of the flavor-mixing interaction becomes weaker, the
critical end point moves to low temperatures and can even disappear.

Keywords: chiral symmetry; phase transition; restoration of symmetry

Classification: PACS 11.10.Wx, 11.30.Rd, 12.40.-y

1. Introduction

Symmetries play a fundamental role in physics. In fact, the modern fundamental physics is
dominated by considerations underlying symmetries which can be exact, approximate (explicitly
broken) and (spontaneously) broken. A special role is played by gauge or local symmetries which
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lead to the description of the “real world” as the so-called local/gauge theories with spontaneously
broken symmetries.

The concept of spontaneous symmetry breaking has been transferred from condensed matter physics
to quantum field theory by Nambu [1]. It has been introduced in particle physics on the grounds of an
analogy with the breaking of (electromagnetic) gauge symmetry in the theory of superconductivity by
Bardeen, Cooper and Schrieffer (the so-called BCS theory). The application of spontaneous symmetry
breaking to particle physics in the 1960s and successive years led to profound physical consequences
and played a fundamental role in the edification of several models of elementary particles.

Spontaneous breaking of chiral symmetry, in particular, is known to govern the low-energy properties
of hadrons [2–4]. Some QCD-like models have been proposed before the advent of QCD, and
the phenomenon of spontaneous breaking of chiral symmetry and Nambu–Goldstone theorem was
established more than 40 years ago [1].

The Nambu–Jona-Lasinio (NJL) model was proposed in 1961 to explain the origin of the nucleon
mass with the help of spontaneous breaking of chiral symmetry [5,6]. At that time, the model was
formulated in terms of nucleons, pions and scalar sigma mesons. The introduction of the quark degrees
of freedom and the description of hadrons by Eguchi and Kikkawa [7,8] in the chiral limit, where the
bare quark mass is m0 = 0, and a more realistic version with m0 ̸= 0 by Volkov and Ebert [9–11],
initiate a very intensive activity by several research groups [12].

There is strong evidence that quantum chromodynamics (QCD) is the fundamental theory of strong
interactions. Its basic constituents are quarks and gluons that are confined in hadronic matter. It is
believed that at high temperatures or densities the hadronic matter should undergo a phase transition into
a new state of matter, the quark-gluon plasma (QGP). A challenge of theoretical studies based on QCD
is to predict the equation of state, the critical point and the nature of the phase transition.

As the evolution of QCD at finite density/temperature is very complicated, QCD-like models, as
for instance NJL type models, have been developed providing guidance and information relevant to
observable experimental signs of deconfinement and QGP features. In fact, there has been great progress
in the understanding of the properties of matter under extreme conditions of density and/or temperature,
where the restoration of symmetries (e.g., the chiral symmetry) and the phenomenon of deconfinement
should occur. These extreme conditions might be achieved in ultrarelativistic heavy-ion collisions or
in the interior of neutron stars. In this context, increasing attention has been devoted to the study
of the modification of particles propagating in a hot or dense medium [13,14]. The possible survival
of bound states in the deconfined phase of QCD [15–22] has also opened interesting scenarios for
the identification of the relevant degrees of freedom in the vicinity of the phase transition [23–25].
Besides lattice calculations [26–29], high temperature properties of QCD can be studied, starting from
the QCD Lagrangian, within different theoretical schemes, like the dimensional reduction [30,31] or the
hard thermal loop approximation [32–34]. Actually both the above approaches rely on a separation of
momentum scales which, strictly speaking, holds only in the weak coupling regime g ≪ 1. Hence they
cannot tell us anything about what happens in the vicinity of the phase transition. On the other hand, a
system close to a phase transition is characterized by large correlation lengths (infinite in the case of a
second order phase transition). Its behavior is mainly driven by the symmetries of the Lagrangian, rather
than by the details of the microscopic interactions.
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Confinement and chiral symmetry breaking are two of the most important features of QCD. As
already referred, chiral models like the NJL model [5,6,35,36] have been successful in explaining
the dynamics of spontaneous breaking of chiral symmetry and its restoration at high temperatures
and densities/chemical potentials. Recently, this and other type of models, together with an intense
experimental activity, are underway to construct the phase diagram of QCD.

The actual NJL type models describe interactions between constituent quarks, giving the correct
chiral properties, and offers a simple and practical illustration of the basic mechanisms that drive the
spontaneous breaking of chiral symmetry, a key feature of QCD in its low temperature and density
phase. In order to take into account features of both chiral symmetry breaking and deconfinement, static
degrees of freedom are introduced in this Lagrangian through an effective gluon potential in terms of the
Polyakov loop [37–44]. The coupling of the quarks to the Polyakov loop leads to the reduction of the
weight of the quark degrees of freedom at low temperature as a consequence of the restoration of the
ZNc symmetry associated with the color confinement.

In first approximation, the behavior of a system ruled by QCD is governed by the symmetry
properties of the Lagrangian, namely the (approximate) global symmetry SUL(Nf )×SUR(Nf ), which is
spontaneously broken to SUV (Nf ), and the (exact) SUc(Nc) local color symmetry. Indeed, in NJL type
models the mass of a constituent quark is directly related to the chiral condensate, which is the order
parameter of the chiral phase transition and, hence, is non-vanishing at zero temperature and density.
Here the system lives in the phase of spontaneously broken chiral symmetry: the strong interaction, by
polarizing the vacuum and turning it into a condensate of quark-antiquark pairs, transforms an initially
point-like quark with its small bare mass m0 into a massive quasiparticle with a finite size. Despite their
widespread use, NJL models suffer a major shortcoming: the reduction to global (rather than local) color
symmetry prevents quark confinement.

On the other hand, in a non-abelian pure gauge theory, the Polyakov loop serves as an order parameter
for the transition from the low temperature, ZNc symmetric, confined phase (the active degrees of
freedom being color-singlet states, the glueballs), to the high temperature, deconfined phase (the active
degrees of freedom being colored gluons), characterized by the spontaneous breaking of the ZNc (center
of SUc(Nc)) symmetry. With the introduction of dynamical quarks, this symmetry breaking pattern is
no longer exact: nevertheless it is still possible to distinguish a hadronic (confined) phase from a QGP
(deconfined) one.

In the PNJL model, quarks are coupled simultaneously to the chiral condensate and to the Polyakov
loop: the model includes features of both chiral and ZNc symmetry breaking. The model has proven to
be successful in reproducing lattice data concerning QCD thermodynamics [43]. The coupling to the
Polyakov loop, resulting in a suppression of the unwanted quark contributions to the thermodynamics
below the critical temperature, plays a fundamental role for the analysis of the critical behavior.

One of the important features of the QCD phase diagram is the existence of a phase boundary in
the (T, µB) that separates the chirally broken hadronic phase from the chirally symmetric QGP phase.
Arguments based on effective model calculations suggest that the QCD phase diagram can exhibit a
tricritical point (TCP)/critical end point (CEP) where the line of first order matches that of second
order/analytical crossover [45–50]. The discussion about the existence and location of such critical
points of QCD is a very important topic nowadays [51].
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This paper is organized as follows. In Section 2 we analyze the main features and symmetries of
QCD. In Section 3 we present the model and formalism starting with the deduction of the self consistent
equations. We also obtain the equations of state and the response functions. The regularization procedure
used in the model calculations is also included. Section 4 is devoted to the study of the equation of state at
finite temperature. In Section 5 we study the phase diagram and the location of the critical end point. In
Section 6 we discuss the important role of the choice of the model parameters for the correct description
of isentropic trajectories. In Section 7 we analyze the effects of strangeness and anomaly strength on
the location of the critical end point. In Section 8 we proceed to study the size of the critical region
around the critical end point and its consequences for the susceptibilities. Finally, concluding remarks
are presented in Section 9.

2. Symmetries of QCD

2.1. Quantum Chromodynamics

The Lagrangian of QCD is written as [52,53]

LQCD = q̄ ( iγµDµ − m̂ ) q − 1

4
F a
µν F

µν
a (1)

where q is the quark field with six flavors (u, d, s, c, b, t), three colors (Nc = 3) and m̂ being the
corresponding current quark mass matrix in flavor space (m̂ = diagf (mu,md, . . . )). The covariant
derivative,

Dµ = ∂µ − igtaAa
µ (2)

incorporates the color gauge field Aa
µ (a = 1, 2, ..., 8) and

F a
µν = ∂µA

a
ν − ∂ν A

a
µ + g fabcAb

µA
c
ν (3)

is the gluon field strength tensor; ta is the Gell-Mann color matrix in SU(3)
([ta, tb] = ifabct

c, tr(tatb) = δab

2
) and fabc are the corresponding antisymmetric structure constants.

Finally, g is the QCD coupling constant.
The QCD Lagrangian is by construction symmetric under SU(3) gauge transformations in color space

and because of the non-Abelian character of the gauge group QCD has some main features: it is a
renormalizable quantum field theory [54] with a single coupling constant for both, the quark–gluon
interactions and the gluonic self–couplings involving vertices with three and four gluons; it has
confinement, i.e., objects carrying color like quarks and gluons do not exist as physical degrees of
freedom in the vacuum. In addition, QCD is a theory that has asymptotic freedom [55,56], i.e., for
large momenta, Q, or wavelengths of the order of 10−1 fm (ultraviolet region) the couplings are weak
and the quarks and gluons propagate almost freely. For low momenta, or wavelengths of about 1 fm
(infrared region), it happens the opposite situation and the couplings are quite strong. The system is now
highly non perturbative. According to this property, the attraction between two quarks grows indefinitely
as they move away from each other. This implies that the interaction between quarks and gluons can not
be treated perturbatively, making the perturbative treatment of QCD not applicable to describe hadrons
with masses below ∼2 GeV.
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The low energy regime is specially interesting once it is relevant to the study of hadronic properties
as for example in low energy QCD and nuclear physics.

The non-perturbative structure of the vacuum is characterized by the existence of quark condensates,
i.e., it is expected non-zero values for the scalar density ⟨q̄q⟩, by the appearance of light pseudoscalar
particles, who are identified with (quasi) Goldstone bosons [57,58], and also by the existence of gluon
pairs [59].

On the other hand, if QCD has a mechanism that includes the confinement of quarks the mass
parameters mi are not observable quantities. However, they can be estimated in terms of the masses
of some hadronic observables through current algebra’s methods. These masses are denominated by
current quark masses to distinguish them from the constituent quark masses, which are effective masses
generated by the spontaneous breaking of chiral symmetry in phenomenological models of quarks.

2.2. Chiral Symmetry Breaking

Due to the relevant role that spontaneous breaking of chiral symmetry plays in hadronic physics at
low energies, this symmetry is one of most important symmetries of QCD. Here we will concentrate in
the Nf = 3 case. In the chiral limit, i.e. mu = md = ms = 0, QCD is chiral invariant which means that
the QCD Lagrangian (1) is invariant under the group of symmetries:

U(3)L ⊗ U(3)R=SUV (3) ⊗ SUA(3) ⊗ UV (1) ⊗ UA(1). (4)

These symmetries are presented in Table 1 where it is also possible to see the transformations under
which the Lagrangian is invariant, the currents that are conserved according to Noether’s theorem and
the respective manifestations of the symmetries in nature.

Table 1. QCD symmetries in the chiral limit.

Symmetry Transformation Current Name Manifestation in nature
SUV (3) q → exp(−iλaαa

2 )q V a
µ = q̄γµ

λa
2 q Isospin Approximately conserved

UV (1) q → exp(−iαV )q Vµ = q̄γµq Baryonic Conserved
SUA(3) q → exp(−iγ5λaθa

2 )q Aa
µ = q̄γµγ5

λa
2 q Quiral Spontaneously broken

UA(1) q → exp(−iγ5αA)q Aµ = q̄γµγ5q Axial “ UA(1) problem”

The SUV (3) and UV (1) symmetries ensure the conservation of isospin and baryon number,
respectively, while the SUA(3) and UA(1) symmetries are transformations that involve the γ5 matrix
and therefore alter the parity of the state in which they operate. For the sake of uniformity
throughout the text we will designate by chiral symmetry the SUA(3) symmetry and by axial symmetry
the UA(1) symmetry.

From the experimental point of view the manifestation of chiral symmetry would be the existence of
parity doublets, i.e., a multiplet of particles with the same mass and opposite parity for each multiplet
of isospin (the chiral partners), in the hadronic spectrum; that situation is not verified. Similarly, if the
symmetry UA(1) would manifest itself, the existence of a partner with opposite parity to each hadron
should be observed experimentally. As neither of these situations is observed in the hadron spectrum,
these symmetries must be somehow broken.
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Concerning the SUA(3) symmetry, the theory must contain a mechanism for the spontaneous breaking
of chiral symmetry, which represents a transition to an asymmetric phase. This is closely related to the
existence of non-zero quark condensates, ⟨q̄q⟩, which are not invariant under SUA(3) transformations
and therefore act as order parameters for the spontaneously broken chiral symmetry.

According to the Goldstone theorem, the spontaneous breaking of a continuous global symmetry
implies the existence of a particle with zero mass, the Goldstone boson. In the case we are considering,
the symmetry breaking is closely related to the appearance of eight degenerate Goldstone bosons with
zero mass. As matter of fact the pions where the first mesons associated to Goldstone bosons due to their
small mass. Indeed, if compared to the mass of the nucleon one has Mπ/MN = 0.15. To reproduce the
meson spectrum it is also necessary that the theory incorporates a mechanism which explicitly breaks
the chiral symmetry: the Lagrangian must include perturbative terms that break ab initio the symmetry
allowing the lifting of the degeneracy in the pseudoscalar mesons spectrum. These terms are the current
quark masses mumd and ms.

Nevertheless, the fundamentals of this process are not yet completely understood at the level of
QCD. However, the chiral symmetry breaking, the generation of the constituent quark masses and the
concomitant appearance of Goldstone bosons are explained in a very satisfactory way in certain theories
and physical models like NJL type models.

Another symmetry effect occurs in the η−η′ sector. The pseudoscalar η′ meson is not of the Goldstone
type. Classically, the QCD Lagrangian with Nf = 3 massless flavors possesses the UL(3)×UR(3)

symmetry. In fact, the Adler–Jackiw–Bell UA(1) anomaly breaks this symmetry to SUL(3)× SUR(3)

and yields a large mass for the η′ even if quark masses are zero. The origin of this anomaly are the
instantons in QCD as explained in the next subsection.

In conclusion, QCD with three massless quarks possesses the SUL(3)× SUR(3) global chiral
symmetry. At low energy, the pertinent degrees of freedom are mesons indicating that QCD experiences
a confined/deconfined phase transition when energy increases. The study of mesons give us insight on
the non-perturbative vacuum of QCD at low energy.

2.3. UA(1) Symmetry Breaking

Now we will analyze the UA(1) symmetry. It is known that in the chiral limit, and at the classical
level, LQCD is also invariant under the axial transformation (see Table 1).

As already mentioned, the absence in nature of chiral partners with the same mass, related
with the UA(1) symmetry, opens the possibility that UA(1) symmetry is also spontaneously broken,
similarly to what happens with the SUA(3) symmetry. Consequently, there should exist another
pseudoscalar Goldstone boson. S. Weinberg estimated the mass of this particle, outside the chiral limit,
at about

√
3Mπ [60].

From all hadrons known in nature, the only candidates with the correct quantum numbers were the
η(549) and η′(985). However, both violate the Weinberg estimate because their masses are too high: the
η′(985) has a mass comparable to the mass of nucleons (“η′ problem”) and, furthermore, the η(549) is
identified as belonging to the octet of pseudoscalar mesons. If a particle with the characteristics pointed
out by Weinberg does not exist, then where is the ninth Goldstone boson? If this Goldstone boson does
not exist there is no spontaneous breaking of UA(1) symmetry.
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In 1976 G. ’t Hooft suggested that the UA(1) symmetry does not exist at the quantum level, being
explicitly broken by the axial anomaly [60] which can be described at the semiclassical level by
instantons [61,62]. Instantons are 4D topologically stable soliton solutions of QCD. Other well known
solitons are 2D Abrikosov vortices in superconducting material or 3D magnetic monopole in QCD. The
instantons “transform” left handed fermions into right handed ones (and conversely). The transition
induced by this solution of QCD has a non zero axial charge variation: ∆Q5 = ±2Nf , i.e., one
left handed fermion (+1 in axial charge) transforms in a right handed fermion (−1). To mimic this
interaction in a purely fermionic effective theory, ’t Hooft proposed the following interaction Lagrangian,
the so-called “’t Hooft determinant”:

Linst = κeıθinst det
flavor

(ψ̄R(x)ψL(x)) + h.c. (5)

This interaction “absorbs” Nf left helicity fermions and converts them to right handed ones (and
conversely). In the following, we will take θinst = 0.

In this context, as suggested by ’t Hooft, the instantons can play a crucial role in breaking explicitly
the UA(1) symmetry giving to the η′ a mass of about 1 GeV outside the chiral limit. This implies that the
mass of η′ has a different origin than the other masses of the pseudoscalar mesons and can not be seen as
the missing Goldstone boson due to spontaneous breaking of UA(1) symmetry. Consequently, the UA(1)
anomaly is very important once it is responsible for the flavor mixing effect that removes the degeneracy
among several mesons.

Finally, an interesting open question also related to the symmetry that we wish to address is whether
both chiral SU(Nf )×SU(Nf ) and axial UA(1) symmetries are restored in the high temperature/density
phase and which observables could carry information about these restorations.

2.4. The Polyakov Loop and the Z3 Symmetry Breaking: Pure Gauge Sector

In this Section, following the arguments given in [38,39], we discuss how the deconfinement phase
transition in a pure SU(Nc) gauge theory can be conveniently described through the introduction of an
effective potential for the complex Polyakov loop field, which we define in the following.

Since we want to study the SU(Nc) phase structure, first of all an appropriate order parameter has to
be defined. For this purpose the Polyakov line

L (x⃗) ≡ P exp

[
i

∫ β

0

dτ A4 (x⃗, τ)

]
(6)

is introduced. In the above, A4 = iA0 is the temporal component of the Euclidean gauge field (A⃗, A4), in
which the strong coupling constant g has been absorbed, P denotes path ordering and the usual notation
β = 1/T has been introduced with the Boltzmann constant set to one (kB = 1).

The Polyakov line L (x⃗) can be described as an operator of parallel transport of the gauge field
A4 (x⃗, τ) into the direction τ . One way to understand why this quantity is indeed a parameter that
can distinguish between confined or deconfined phase is to consider the two extremal behavior of L: a
color field A4 at the point (x⃗, τ) will be transformed into the color field L × A4 after being transported
into the direction τ . If L → 1 it means that nothing affects the propagation of the field: the medium
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is in its deconfined phase. At the contrary L → 0 indicates that the color field cannot propagate in the
medium: it is confined.

Another way to see this point is to consider the variation of free energy when an infinitely massive
(hence static) quark (that acts as a test color charge) is added to the system. To this purpose let us
introduce the Polyakov loop. When the theory is regularized on the lattice, it reads:

l(x⃗) =
1

Nc

TrL(x⃗) (7)

and it is a color singlet under SU(Nc), but transforms non-trivially, like a field of charge one, under ZNc .
Its thermal expectation value can then be chosen as an order parameter for the deconfinement phase
transition [63–65]: in the usual physical interpretation [66,67], ⟨l(x⃗)⟩ is related to the change of free
energy occurring when a heavy color source in the fundamental representation is added to the system.
One has:

⟨l(x⃗)⟩ = e−β∆FQ(x⃗) (8)

In the ZNc symmetric phase, ⟨l(x⃗)⟩ = 0, implying that an infinite amount of free energy is required to
add an isolated heavy quark to the system: in this phase color is confined.

In the case of the SU(3) gauge theory, the Polyakov line L(x⃗) gets replaced by its gauge covariant
average over a finite region of space, denoted as ⟨⟨L(x⃗)⟩⟩ [38,39]. Note that ⟨⟨L(x⃗)⟩⟩ in general is not a
SU(Nc) matrix. The Polyakov loop field,

Φ(x⃗) ≡ ⟨⟨l(x⃗)⟩⟩ = 1

Nc

Trc ⟨⟨L(x⃗)⟩⟩ (9)

is then introduced.
Following the Landau-Ginzburg approach, a Z3 symmetric effective potential is defined for the

(complex) Φ field, which is conveniently chosen to reproduce, at the mean field level, results obtained in
lattice calculations [38,39,43]. In this approximation one simply sets the Polyakov loop field Φ(x⃗) equal
to its expectation value Φ = const., which minimizes the potential.

Concerning the effective potential for the (complex) field Φ, different choices are available in the
literature [68–70]; the one proposed in [69] (see Equation (10)) is known to give sensible results
[69,71,72] and will be adopted in our parametrization of the PNJL model that will be presented in
Section 3. In particular, this potential reproduces, at the mean field level, results obtained in lattice
calculations as it will be shown. The potential reads:

U
(
Φ, Φ̄;T

)
T 4

= −a (T )
2

Φ̄Φ + b(T )ln[1− 6Φ̄Φ + 4(Φ̄3 + Φ3)− 3(Φ̄Φ)2] (10)

where

a (T ) = a0 + a1

(
T0
T

)
+ a2

(
T0
T

)2

and b(T ) = b3

(
T0
T

)3

(11)

The effective potential exhibits the feature of a phase transition from color confinement (T < T0, the
minimum of the effective potential being at Φ = 0) to color deconfinement (T > T0, the minima of the
effective potential occurring at Φ ̸= 0).
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Table 2. Parameters for the effective potential in the pure gauge sector (Equation (10)).

a0 a1 a2 b3

3.51 -2.47 15.2 -1.75

The parameters of the effective potential U are given in Table 2. These parameters have been
fixed in order to reproduce the lattice data for the expectation value of the Polyakov loop and QCD
thermodynamics in the pure gauge sector [73,74].

The parameter T0 is the critical temperature for the deconfinement phase transition within a pure
gauge approach: it was fixed to 270 MeV, according to lattice findings. Different criteria for fixing
T0 may be found in the literature, like in [75], where an explicit Nf dependence of T0 is presented
by using renormalization group arguments. However, it is noticed that the Polyakov loop computed
on the lattice with (2+1) flavors and with fairly realistic quark masses is very similar to the SUf (2)
case [74]. Hence, it was chosen to keep for the effective potential U

(
Φ, Φ̄;T

)
the same parameters

which were used in SUf (2) PNJL [69], including T0 = 270 MeV. The latter choice ensures an almost
exact coincidence between chiral crossover and deconfinement at zero chemical potential, as observed in
lattice calculations. We notice, however, as it will be seen in Section 4, that a rescaling of T0 to 210 MeV
may be needed in some cases in order to get agreement between model calculations and thermodynamic
quantities obtained on the lattice. Let us stress that this modification of T0 (the only free parameter of the
Polyakov loop once the effective potential is fixed) is essentially done for rescaling reasons (an absolute
temperature scale has not a very strong meaning in these kind of Ginzburg–Landau model based on
symmetry) but does not change drastically the physics.

With the present choice of parameters, Φ and Φ̄ are always lower than 1 in the pure gauge sector. In
any case, in the range of applicability of our model, T ≤ (2− 3)Tc, there is a good agreement between
the results and the lattice data for Φ.

To conclude this section, some comments are in order on the number of parameters and the nature of
the Polyakov field.

It should be noticed that the NJL parameters and the Polyakov potential ones are not on the same
footing. Whereas the NJL parameters are directly related in a one to one correspondence with a physical
quantity, the Polyakov loop potential is there to insure that the pure gauge lattice expectations are
recovered. Hence the potential for the loop can be viewed as a unique but functional parameter. The
details of this function are not very important to study the thermodynamic as soon as the potential
reproduces the lattice results. In order to clarify this point, we remember that in a previous calculations
in the Nf = 2 case [76] we used two kind of potentials and obtained very small differences in what
concerns thermodynamics; however, if one calculates susceptibilities with respect to Φ the log potential
used here has to be preferred in order not to have unphysical results. The only true parameter is the pure
gauge critical temperature T0 that fixes the temperature scale of the system. However we would like to
point out that it is expected in the Landau-Ginzburg framework that a characteristic temperature for a
phase transition will not be a prediction: one needs to fix the correct energy scale somehow and it is the
role of this parameter. Hence we will allow ourselves to change this parameter in the calculation of some
observables in order to compare our results with lattice QCD expectations.
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Finally we want to stress that, contrarily to the full Landau-Ginzburg effective field approach, the
Polyakov loop effective field is not a dynamical degree of freedom due to the the lack of dynamical term
in the Polyakov loop potential. Hence it is a background gauge field in which quarks will propagate.
Anyway the potential mimics a pressure term that has the correct magnitude and temperature behavior in
order to get the Stefan-Boltzman limit for the gluonic degrees of freedom and that explains the success
of the model.

2.5. QCD Phase Diagram

Understanding the QCD phase structure is one of the most important topics in the physics of strong
interactions. The developed effort on both the theoretical point of view—using effective models
and lattice calculations—and the experimental point of view is one of the main goals of the heavy
ion collisions program; it has proved very fruitful, shedding light on properties of matter at finite
temperatures and densities.

From the theoretical point of view, the physics of the transition from hadronic matter to the QGP is
well established for baryonic chemical potential µB = 0. Latest lattice results for (2+1) flavors show a
crossover transition at Tc = (170− 200) MeV (using mq = 0.05ms) [77]. Near the critical temperature,
Tc, the energy density (and other thermodynamic quantities) show a strong growth, signaling the
transition from a hadronic resonance gas to a matter of deconfined quarks and gluons. As matter of fact,
the rapid rise of the energy density is usually interpreted to be due to deconfinement i.e., liberation of
many new degrees of freedom. In the limit where quark masses are infinitely heavy the order parameter
for the deconfinement phase transition is the Polyakov loop. A rapid change in this quantity is also an
indication for deconfinement even in the presence of light quarks [77].

Concerning chiral symmetry, and considering the chiral limit, it is expected a chiral transition with the
corresponding order parameter being the quark condensate: the quark condensate vanishes at the critical
temperature Tc and a genuine phase transition takes place. Even away from the chiral limit, when the
quark masses are finite, it is expected, in the transition region, a “crossover” where the quark condensates
rapidly drop indicating a partial restoration of the chiral symmetry [77].

This rises the interesting question whether the restoration of chiral symmetry and the transition to the
QGP occurs at same time. In [78] it was proposed that the evidence of restoration of chiral symmetry
is a sufficient condition to demonstrate the existence of a new state of matter, but it is not a necessary
condition for the discovery of the QGP. In fact, as already pointed out, most of lattice results shows a
tendency for the restoration of chiral symmetry to happen simultaneously with deconfinement, but this
issue is not definitively determined from a theoretical point of view.

At finite temperature and chemical potential the most common three-flavor phase diagram shows
a first order boundary of the chiral phase transition separating the hadronic and quark phases. This
first–order line starts at non-zero chemical potential and zero temperature and will finish in a point, the
critical end point (TCEP , µCEP

B ), where the phase transition is of second order. As the temperature
increases and the chemical potential decreases, the QCD phase transition becomes a crossover.

Although recent lattice QCD results by de Forcrand and Philipsen question the existence of the CEP
[79–81], this critical point of QCD, proposed at the end of the eighties [45–48], is still a very important
subject of discussion nowadays [51]. The search of the QCD CEP is one of the main goals in “Super
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Proton Synchrotron” (SPS) at CERN [82] and in the next phase of the “Relativistic Heavy Ion Collider”
(RHIC) running at BNL.

When matter at high density and low temperature is considered, it is expected that this type of
matter is a color superconductor where pairs of quarks condense (“diquark condensate”): this color
superconductor is a degenerate Fermi gas of quarks with a condensate of Cooper pairs near the Fermi
surface that induces color Meissner effects. With the color superconductivity it was realized that the
consideration of diquark condensates opened the possibility for a wealth of new phases in the QCD
phase diagram. At the highest densities/chemical potentials, where the QCD coupling is weak, the
ground state is a particularly symmetric state, the color-flavor locked (CFL) phase: up, down, and strange
quarks are paired in a so-called color-flavor locked condensate. At lower densities the CFL phase may
be disfavored in comparison with alternative new phases which may break translation and/or rotation
invariance [36,83].

Recently it was argued that some features of hadron production in relativistic nuclear collisions,
mainly at SPS–CERN energies, can be explained by the existence of a new form of matter beyond
the hadronic matter and the QGP: the so-called quarkyonic matter [70,84–86]. It was also suggested that
these different types of matter meet at a triple point in the QCD phase diagram: both the hadronic matter,
the QGP, and the quarkyonic matter all coexist [87].

From the experimental point of view, different parts of the QCD phase diagram have been investigated
for different beam energies. For high energies, corresponding to the energies of RHIC–BNL and
LHC–CERN (“Large Hadron Collider”), the matter is produced at high temperature and low baryonic
density [78,88,89]. On the other hand, intermediate energy, corresponding to the energies of “Alternating
Gradient Synchrotron” (AGS) in BNL or in SPS–CERN [82], can be studied through matter formed
at moderate temperature and baryonic density. Finally, the energies achieved in the GSI Heavy Ion
Synchrotron (SIS) [90] and “Nuclotron-based Ion Collider fAcility” (NICA) at JINR [91] will allow to
obtain matter at low temperatures and high baryonic densities. For example the main goal of the research
program on nucleus-nucleus collisions at GSI is the investigation of highly compressed nuclear matter.
Matter in this form exists in neutron stars and in the core of supernova explosions.

In Figure 1 are indicated the points where the hadrons cease to interact with each others (freeze-out
points) for the different beam energies. These points are related to final state of the expansion
of the fireball.

It should also be noted that atomic nuclei by themselves represent a system at finite density and zero
temperature. At normal nuclear density it is estimated that the quark condensate undergoes a reduction
of 30% [93] so that the resulting effects in the chiral order parameter can be measured in beams of
hadrons, electrons and photons in nuclear targets.

If the evidence for deconfinement can be found experimentally, then the search for manifestations of
chiral symmetry restoration will be, in the near future, one of the main goals once the investigation of
the properties of matter can provide a clear evidence for changes in the fundamental vacuum of QCD,
with far-reaching consequences [78].
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Figure 1. The phase diagram from the experimental point of view: freeze-out
points for the different beam energies are showed [92].
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3. The PNJL Model with Three Flavors

The Polyakov–Nambu–Jona-Lasinio (PNJL model) that we want to build is an effective model for
QCD, written in term of quark degrees of freedom. In the next paragraphs we will present the ingredients
we need to build our model namely: a massive Dirac Lagrangian together with a four quark chirally
invariant interaction (the original NJL Lagrangian with a small mass term that breaks explicitly the
chiral symmetry, has observed in the mass spectrum); the so-called ’t Hooft interaction that reproduces
the interaction of quarks with instantons and finally a Polyakov loop potential that mimic the effect of
the pure gauge (Yang-Mills) sector of QCD on the quarks.

3.1. Nambu–Jona-Lasinio Model with Anomaly and Explicit Symmetry Breaking

Phase transitions are usually characterized by large correlation lengths, i.e., much larger than the
average distance between the elementary degrees of freedom of the system. Effective field theories
then turn out to be a useful tool to describe a system near a phase transition. In particular, in the
usual Landau-Ginzburg approach, the order parameter is viewed as a field variable and for the latter
an effective potential is built, respecting the symmetries of the original Lagrangian. The existence of
a phase transition between two sectors where the chiral symmetry is spontaneously broken or restored
(transition associated to the quark condensate that acts as an order parameter) and the Ginzburg–Landau
theory suggests to use the symmetry motivated NJL Lagrangian [35,36,59,94] for the description
of the coupling between quarks and the chiral condensate in the scalar-pseudoscalar sector. The
associated Lagrangian which complies with the underlying symmetries of QCD described in the previous
section reads:
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LNJL = L0 + L4 + L6 (12)

L0 = q̄(iγµ∂µ − m̂)q (13)

L4 =
1

2
gS

8∑
a=0

[ ( q̄ λa q )2 + ( q̄ i γ5 λ
a q )2 ] (14)

L6 = gD {det [q̄ (1 + γ5) q] + det [q̄ (1− γ5) q]} (15)

In the above q = (u, d, s) is the quark field with three flavors (Nf = 3) and three colors (Nc = 3),
m̂ = diag(mu,md,ms) is the current quark mass matrix, and λa are the flavor SUf (3) Gell-Mann

matrices (a = 0, 1, . . . , 8), with λ0 =
√

2
3
I.

As it is well known, this Lagrangian is invariant under a global—and nonlocal—color symmetry
SU(Nc = 3) and lacks the confinement feature of QCD.

L4 has UL(3) × UR(3) chiral symmetry and L6 is a six quarks interaction, the ’t Hooft determinant
to reproduce UA(1) anomaly. The UL(3)× UR(3) symmetry of L0 + L4 is broken to SUL(3)× SUR(3)

by L6.
The current quark mass matrix m̂ is in general non degenerate and explicitly breaks chiral symmetry

SUL(3) × SUR(3) to SUf (3) or its subgroup. In the following we will take mu = md hence keeping
exact the isospin symmetry.

Let us notice that NJL has no build-in confinement and is non-renormalizable thus it requires the
introduction of a cutoff parameter Λ.

The parameters, obtained by following the methodology of [95], are: mu = md = 5.5 MeV,
ms = 140.7 MeV, gSΛ2 = 3.67, gDΛ5 = −12.36 and Λ = 602.3 MeV, which are fixed to reproduce the
values of the coupling constant of the pion, fπ = 92.4 MeV, and the meson masses of the pion, the kaon,
the η and η′, respectively, Mπ = 135 MeV, MK = 497.7 MeV, Mη = 514.8 MeV and Mη′ = 960.8

MeV.

3.2. Coupling between Quarks and the Gauge Sector: The PNJL Model

In the presence of dynamical quarks the Z3 symmetry is explicitly broken: the expectation value of the
Polyakov loop still serves as an indicator for the crossover between the phase where color confinement
occurs (Φ −→ 0) and the one where color is deconfined (Φ −→ 1).

The PNJL model attempts to describe in a simple way the two characteristic phenomena of QCD,
namely deconfinement and chiral symmetry breaking.

In order to describe the coupling of quarks to the chiral condensate, we start from a NJL description
of quarks; they are coupled in a minimal way to the Polyakov loop, via a covariant derivative. Hence our
calculations are performed in the framework of an extended SUf (3) PNJL Lagrangian, which includes
the ’t Hooft instanton induced interaction term that breaks the UA(1) symmetry and the quarks are
coupled to the (spatially constant) temporal background gauge field Φ [70,96,97]. The Lagrangian reads:

LPNJL = q̄(iγµDµ − m̂)q +
1

2
gS

8∑
a=0

[ ( q̄ λa q )2 + ( q̄ i γ5 λ
a q )2 ]

+ gD {det [q̄ (1 + γ5) q] + det [q̄ (1− γ5) q]} − U
(
Φ[A], Φ̄[A];T

)
(16)



Symmetry 2010, 2 1351

The covariant derivative is defined as Dµ = ∂µ − iAµ, with Aµ = δµ0A0 (Polyakov gauge); in Euclidean
notationA0 = −iA4. The strong coupling constant g is absorbed in the definition ofAµ(x) = gAµ

a(x)
λa

2
,

where Aµ
a is the (SUc(3)) gauge field and λa are the (color) Gell-Mann matrices.

At T = 0, it can be shown that the minimization of the grand potential leads to Φ = Φ̄ = 0. So, the
quark sector decouples from the gauge one, and the model is fixed as referred in the previous subsection.

Some remarks are in order concerning the applicability of the PNJL model. It should be noticed that
in this model, beyond the chiral point-like coupling between quarks, the gluon dynamics is reduced to
a simple static background field representing the Polyakov loop (see details in [44,68]). This scenario
is expected to work only within a limited range of temperatures, since at large temperatures transverse
gluons are expected to start to be thermodynamically active degrees of freedom and they are not taken
into account in the PNJL model. We can assume that the range of applicability of the model is roughly
limited to T ≤ (2 − 3)Tc, since, as concluded in [98], transverse gluons start to contribute significantly
for T > 2.5Tc, where Tc is the deconfinement temperature.

3.3. Grand Potential in the Mean Field Approximation

Our model of strongly interacting matter can simulate either a region in the interior of neutron stars or
a dense fireball created in a heavy-ion collision. In the present work, we focus our attention on the last
type of systems. Bearing in mind that in a relativistic heavy-ion collision of duration of about 10−22 s,
thermal equilibration is possible only for processes mediated by the strong interaction rather than the full
electroweak equilibrium, we impose the condition µe = 0 and use the chemical equilibrium condition
µu = µd = µs = µ. This choice allows for isospin symmetry, mu = md and approximates the physical
conditions at RHIC.

We will work in the (Hartree) mean field approximation. In this context, the quarks can be seen as
free particles whose bare current masses mi are replaced by the constituent (or dressed) masses Mi.

The quark propagator in the constant background field A4 is then:

Si(p) = −(p/−Mi + γ0(µ− iA4))
−1 (17)

In the above, p0 = iωn and ωn = (2n+ 1)πT is the Matsubara frequency for a fermion.
Within the mean field approximation, it is straightforward (see Ref. [35]) to obtain effective quark

masses from the Lagrangian (16); these masses are given by the so-called gap equations:

Mi = mi − 2g
S
⟨q̄iqi⟩ − 2g

D
⟨q̄jqj⟩ ⟨q̄kqk⟩ (18)

where the quark condensates ⟨q̄iqi⟩, with i, j, k = u, d, s (to be fixed in cyclic order), have to be
determined in a self-consistent way as explained in the Appendix.

The PNJL grand canonical potential density in the SUf (3) sector can be written as

Ω = Ω(Φ, Φ̄,Mi;T, µ) = U
(
Φ, Φ̄, T

)
+ g

S

∑
{i=u,d,s}

⟨q̄iqi⟩2 + 4g
D
⟨q̄uqu⟩ ⟨q̄dqd⟩ ⟨q̄sqs⟩

−2Nc

∑
{i=u,d,s}

∫
Λ

d3p

(2π)3
Ei − 2T

∑
{i=u,d,s}

∫
d3p

(2π)3
(
z+Φ (Ei) + z−Φ (Ei)

)
(19)
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where Ei is the quasi-particle energy for the quark i: Ei =
√
p2 +M2

i , and z+Φ and z−Φ are the partition
function densities.

The explicit expression of z+Φ and z−Φ are given by:

z+Φ (Ei) ≡ Trc ln
[
1 + L†e−β E−

p

]
= ln

{
1 + 3

(
Φ̄ + Φe−β E−

p

)
e−β E−

p + e−3β E−
p

}
(20)

z−Φ (Ei) ≡ Trc ln
[
1 + Le−β E+

p

]
= ln

{
1 + 3

(
Φ + Φ̄e−β E+

p

)
e−β E+

p + e−3β E+
p

}
(21)

where E(±)
i = Ei ∓ µ, the upper sign applying for fermions and the lower sign for anti-fermions. The

technical details are postponed to the Appendix but as a conclusion on this topic, a word is in order to
describe the role of the Polyakov loop in the present model. Almost all physical consequences of the
coupling of quarks to the background gauge field stem from the fact that in the expression of zΦ, Φ or Φ̄
appear only as a factor of the one- or two-quarks (or antiquarks) Boltzmann factor, for example e−β E+

p

and e−2β E+
p . Hence when Φ, Φ̄ → 0 (signaling what we designate as the “confined phase”) only e−3β E+

p

remains in the expression of the grand potential, leading to a thermal bath with a small quark density. At
the contrary Φ, Φ̄ → 1 (in the “deconfined phase”) gives a thermal bath with all 1-, 2- and 3-particle
contributions and a significant quark density. Other consequences of this coupling of the loop to
the 1- and 2-particles Boltzmann factor will be discussed in Section 8.

3.4. Equations of State and Response Functions

The equations of state can be derived from the thermodynamical potential Ω(T, µ). This allows for
the comparison of some of the results with observables that have become accessible in lattice QCD at
non-zero chemical potential.

As usual, the pressure p is defined such as its value is zero in the vacuum state [36] and, since the
system is uniform, we have

p(T, µ) = − 1

V
[Ω(T, µ)− Ω(0, 0)] (22)

where V is the volume of the system.
The relevant observables are the baryonic density

ρB(T, µ) = − 1

V

(
∂Ω

∂µ

)
T

(23)

and the (scaled) “pressure difference” given by

∆p(T, µ)

T 4
=
p(T, µ)− p(T, 0)

T 4
(24)

Due to the relevance for the study of the thermodynamics of matter created in relativistic heavy-ion
collisions, it is interesting to perform an analysis of the isentropic trajectories. The equation of state for
the entropy density, s, is given by

s(T, µ) =

(
∂p

∂T

)
µ

(25)

and the energy density, ϵ, comes from the following fundamental relation of thermodynamics

ϵ(T, µ) = T s(T, µ) + µ ρB(T, µ) − p(T, µ) (26)
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The energy density and the pressure are defined such that their values are zero in the vacuum
state [36].

The baryon number susceptibility, χB, and the specific heat, C, are the response of the baryon number
density, ρB(T, µ), and the entropy density, s(T, µ), to an infinitesimal variation of the quark chemical
potential µ and temperature, given respectively by:

χB =

(
∂ρB
∂µ

)
T

and C =
T

V

(
∂s

∂T

)
µ

(27)

These second order derivatives of the pressure are relevant quantities to discuss phase transitions,
mainly the second order ones.

3.5. Model Parameters and Regularization Procedure

As already seen, the pure NJL sector involves five parameters: the coupling constants gS and gD,
the current quark masses mu = md, ms and the cutoff Λ defined in Section 3. These parameters are
determined in the vacuum by fitting the experimental values of several physical quantities. We notice
that the coupling constant gS and gD and the parameter Λ are correlated. For instance, if we increase
gS in order to provide a more significant attraction between quarks, we must also increase the cutoff Λ
in order to insure a good agreement with experimental results. In addition, the value of the cutoff itself
does have some impact as far as the medium effects in the limit T = 0 are concerned. Also the strength
of the coupling gD has a relevant role in the location of the CEP, as it will be discussed.

In fact, the choice of the parametrization may give rise to different physical scenarios at T = 0 and
µB = µ ̸= 0 [36], even if they give reasonable fits to hadronic vacuum observables and predict a first
order phase transition. The set of parameters we used insures the stability conditions and, consequently,
the compatibility with thermodynamic expectations.

On the other hand, the regularization procedure, as soon as the temperature effects are considered,
has relevant consequences on the behavior of physical observables, namely on the chiral condensates
and the meson masses [99]. Advantages and drawbacks of these regularization procedures have been
discussed within the NJL [99] and PNJL [76,100] models. We remind that one of the drawbacks of the
regularization that consists in putting a cutoff only on the divergent integrals is that, at high temperature,
there is a too fast decrease of the quark masses that become lower than their current values. This leads
to a non physical behavior of the quark condensates that, after vanishing at the temperature (Teff ) where
constituent and current quark masses coincide, change sign and acquire non-zero values again. To avoid
this unphysical effects we use the approximation of imposing by hand the condition that, above Teff ,
Mi = mi and ⟨q̄iqi⟩ = 0.

4. Equation of State at Finite Temperature

4.1. Characteristic Temperatures

At zero temperature and chemical potential, the chiral symmetry of QCD is explicitly broken. It
is expected that chiral symmetry will be restored at high temperature; hence a phase transition occurs



Symmetry 2010, 2 1354

separating the low and the high temperature regions. This phenomena may be realized in high energy
heavy ion collision experiments.

In this case (µB = 0 and T ̸= 0), where a crossover transition occurs in the PNJL model, a
unique critical temperature cannot be defined, but one of many characteristic temperatures for the
transition may be used. Of course, these temperatures should coincide in the limit where the transition
becomes of second order (in the chiral limit, for example, when one is concerned with the restoration of
chiral symmetry).

We start our analysis by identifying the characteristic temperatures which separate the different
thermodynamic phases in the PNJL model [44], using the regularization that allows high momentum
quark states at finite temperature (the cutoff is used only in the integrals that are divergent and Λ → ∞
in the ones that are already convergent because of the thermal distributions).

Let us analyze the behavior of the quark masses and the field Φ. The characteristic temperature related
to the deconfinement phase transition is TΦ

c and the chiral phase transition characteristic temperature,
T χ
c , signals partial restoration of chiral symmetry. These temperatures are chosen to be, respectively,

the inflexion points of the “quasi” order parameter Φ and of the chiral condensate ⟨q̄uqu⟩; as in [68], we
define Tc as the average of the two transition temperatures, TΦ

c and T χ
c . As shown in [100], the present

regularization lowers the characteristic temperatures and decreases the gap TΦ
c − T χ

c , leading therefore
to better agreement with lattice results.

Let us remark that this section is also devoted to the study of thermodynamic quantities (pressure,
energy per particle and entropy) for which a rescaling of the temperature T0 is needed, in order to
get a better agreement with lattice results for these quantities. Therefore, following the argumentation
presented in [68], here we will use the reduced temperature Tc by rescaling the parameter T0 from 270
to 210 MeV (let us stress that this rescaling is only done for the remainder of this section). Results for
the characteristic temperatures with T0 = 210 MeV and T0 = 270 MeV are shown in Table 3.

Table 3. Characteristic temperatures with two different values for T0.

T0 [MeV] T χ
c [MeV] TΦ

c [MeV] Tc [MeV]
270 222 210 216
210 203 171 187

It should be noticed that, when T0 = 210 MeV is used, we loose the almost perfect coincidence of
the chiral and deconfinement transitions (they are shifted relative to each other by about 32 MeV) and
we have Tc = 187 MeV within the range expected from lattice calculations [77]. However, the behavior
of the relevant physical quantities is qualitatively the same whether T0 = 270 MeV or T0 = 210 MeV.

An interesting point to be noticed in Figure 2, lower panel, is that the inflexion points of the strange
and non-strange quark condensates are close and slightly separated from the inflexion point of Φ,
although the condensates have small peaks around the inflexion point of Φ. The latter effect is related
to the fastening of the phase transition induced by the Polyakov loop as shown in [102] (it obviously
does not signal a phase transition since the variation of the order parameter around this temperature is
small). The Polyakov loop leads to a faster decrease of the quark masses around Tc and the present
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regularization enhances this effect, even at temperatures higher than Tc. At Teff = 345 MeV the
regularization is responsible for the full restoration of the chiral symmetry that was dynamically broken:
the quark masses go to their current values and the quark condensates vanish (see Figure 2, left and right
panels). As already shown in the framework of the pure NJL model [99] and in the PNJL model [100],
the effect of allowing high momentum quark states is stronger for the strange quark mass. Indeed, with
the conventional regularization, the non-strange constituent quark mass at high temperature is already
very close to its current mass, the new regularization only enhancing this behavior. Differently, the
strange quark mass is always far from its current value, unless we allow high momentum quarks to be
present and, in that case, its constituent mass decreases very substantially and comes to its current value.

Figure 2. Upper part: quark masses (left panel) and quark condensates (right
panel) in PNJL model as functions of the temperature; the Polyakov loop field
Φ is also shown. At Teff = 345 MeV, Mi = mi. Lower part: derivatives of the
quark condensates and of the Polyakov loop field Φ (left panel); the topological
susceptibility, χ, (right panel) in the PNJL model, compared to corresponding
lattice results taken from [101].
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As shown in [100], at Teff the behavior of some given observables signals the effective restoration
of chiral and axial symmetry: the masses of the meson partners of both chiral and axial symmetry are
degenerated and the topological susceptibility vanishes as we can see from Figure 2 (lower right panel).

4.2. Thermodynamic Quantities

In the limit of vanishing quark chemical potential, significant information on the phase structure of
QCD at high temperature is obtained from lattice calculations. The transition to the phase characteristic
of this regime is related with chiral and deconfinement transitions which are the main features of our
model calculation.

In Figure 3, we plot the scaled pressure, the energy and the entropy as functions of the temperature
compared with recent lattice results (see Reference [77]). Since the transition to the high temperature
phase is a rapid crossover rather than a phase transition, the pressure, the entropy and the energy densities
are continuous functions of the temperature. We observe a similar behavior in the three curves: a sharp
increase in the vicinity of the transition temperature and then a tendency to saturate at the corresponding
ideal gas limit. Asymptotically, the QCD pressure for Nf massless quarks and (N2

c −1) massless gluons
is given (µB = 0) by:

pSB
T 4

= (N2
c − 1)

π2

45
+ NcNf

7 π2

180
, (28)

where the first term denotes the gluonic contribution and the second term the fermionic one.
The results follow the expected tendency and go to the free gas values (or Stefan–Boltzmann limit),

a feature that was also found with this type of regularization in the context of the SU(2) PNJL model
[68,103,104]. The inclusion of the Polyakov loop effective potential U(Φ, Φ̄;T ) (it can be seen as an
effective pressure term mimicking the gluonic degrees of freedom of QCD) is required to get the correct
limit (indeed in the NJL model the ideal gas limit is far to be reached due to the lack of gluonic degrees
of freedom).

The inclusion of the Polyakov loop and the regularization procedure are essential to obtain
the required increase of extensive thermodynamic quantities, insuring the convergence to the
Stefan-Boltzmann (SB) limit of QCD [105]. Some comments are in order concerning the role of the
regularization procedure for T > Tc. In this temperature range, due to the presence of high momentum
quark states, the physical situation is dominated by the significant decrease of the constituent quark
masses by the qq̄ interactions. This allows for an ideal gas behavior of almost massless quarks with the
correct number of degrees of freedom.

Let us notice that, just below Tc, the pressure and the energy fail to reproduce the lattice points: for
example there is a small underestimation of the pressure and energy in the model calculations. It is
known that the lack of mesonic correlations in the PNJL model is responsible for, at least, a fraction of
this discrepancy. As matter of fact, in [106] the authors have evaluated the pion and sigma contributions
to the pressure by calculating the ring sum in the SU(2) nonlocal PNJL model. They have shown that the
pionic contribution dominates the pressure in the low temperature region, shifting the respective curve
to higher values. It is expected that the introduction of mesonic correlations in the SU(3) PNJL model
has the same effect for the pressure.
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Figure 3. Scaled pressure (p), energy per particle (ϵ), and entropy (s) as a
function of the temperature at zero chemical potential. The data points are taken
from [77]. The pressure reaches 66% of the strength of the Stefan-Boltzmann
value at T = 300 MeV, a value which attains 85% at T = 400 MeV.
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5. Phase Diagram and the Location of the Critical End Point

Although recent lattice QCD results by de Forcrand and Philipsen question the existence of the CEP
[79–81], this critical point of QCD, proposed at the end of the eighties [45–48], is still a very important
subject of discussion nowadays [51].

We remember that the TCP separates the second order transition at high temperature and low chemical
potential, from the first order transition at high chemical potential and low temperature. If the second
order transition is replaced by a smooth crossover, a CEP which separates the two lines is found. In order
to determine and elucidate the nature of the phase transition the relevant thermodynamic quantities are
studied, starting with zero temperature and finite chemical potential.

5.1. Phase Transition at Zero Temperature

Figure 4 illustrates the properties of cold quark matter as predicted by the model calculation. In the
left panel the negative of the thermodynamic potential is plotted as a function of the chemical potential,
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showing the presence of branches with stable, metastable and unstable solutions. This behavior is
obtained in the domain µ2

B < µB < µ1
B, where the gap equations (18) have three solutions as illustrated

in the left panel of Figure 4 for the constituent non-strange quark mass. As a consequence, a first order
phase transition is found at the critical chemical potential µcr

B = 361.7 MeV. The stable solutions are
realized by the minimum of the thermodynamic potential. When stable and metastable solutions give the
same value for the thermodynamic potential, the phase transition occurs as illustrated in Figure 4 (left
panel). The phase of broken symmetry is realized for µB < µcr

B and the “symmetric” phase is realized
for µB > µcr

B . At this crossing point of the curve, the two phases are in thermal and chemical equilibrium
(Gibbs criteria). The baryon density, represented in Figure 4 (right panel) as function of µB, is given by
the slope of the curve −Ω as indicated by Equation (23). This quantity is plotted in Figure 4 (right panel)
which shows that the condition of thermodynamic stability (∂(−Ω)/∂µB > 0) is violated by the portion
of the curve with negative curvature (unstable phase).

Figure 4. Left: grand potential for the stable, metastable and unstable
phases, used to determine µcr

B and u quark mass; right: baryonic density as
function of µB.
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This information can be complemented by the behavior of the pressure/energy per particle as a
function of the baryonic density. To this purpose let us analyze the curve at T = 0 in Figure 5. The
pressure has three zeros that correspond to the extrema of the energy per particle. The third zero of
the pressure, at ρB = 2.36ρ0, corresponds to an absolute minimum of the energy (see Figure 5 right
panel). This is an important point of the model calculation, and the set of parameters is chosen in order
to insure such a condition. In fact, the occurrence of an absolute minimum of the energy allows for the
existence of finite droplets in mechanical equilibrium with the vacuum at zero–pressure (P = 0). For
densities above a critical value, ρcrB = 2.36ρ0, the system returns to a uniform gas phase. The equilibrium
configuration for densities 0 < ρB < ρcrB is, therefore, a mixed phase.
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Figure 5. Pressure (left) and energy per particle (right) as a function of ρB/ρ0
at different temperatures (ρ0 = 0.17 fm−3 is the normal nuclear matter density).
The points A and B (left panel) illustrate the Gibbs criteria. Only in the T = 0

line the zero-pressure point is located at the minimum of the energy per particle.
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In view of the behavior above described, we can conclude that, for T = 0, the uniform non-zero
density phase will break up into stable droplets, with zero pressure and density ρcrB = 2.36ρ0, in which
chiral symmetry is partially restored, surrounded by a nontrivial vacuum with ρB = P = 0 (see also
[36,107–111]). In fact, for our choice of the parameters the critical point at T = 0 satisfies to the
condition µi < M vac

i [36,112], where M vac
i is the mass of the i-quark in the vacuum. This can be

seen by comparing µcr
B = 361.7 MeV (see the T -axis of Figure 6, left panel) with the quark masses

M vac
u = M vac

d = 367.7 MeV and M vac
s = 549.5 MeV.

Figure 6. Phase diagram in the SU(3) PNJL model. The left (right) part
corresponds to the T−µB (T−ρB) plane. Solid (dashed) line shows the location
of the first order (crossover) transition. The dashed lines shows the location of
the spinodal boundaries of the two phase transitions (shown by shading in the
right plot).

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

1st order
  region  

 

 

T
 (M

eV
)

 B (MeV)

CEP

Chiral Limit

 = 0.5

crossover
  region  

 = 0.5

0.0 0.5 1.0 1.5 2.0 2.5
0

50

100

150

200

250

unstable

 Gibbs criteria
 zero/minimum of pressure

mixed phase

 

 

T
 (M

eV
)

B

CEPmetastable



Symmetry 2010, 2 1360

5.2. Phase Transition at Finite Temperature and Density/chemical Potential

Let us now analyze what happens at T ̸= 0. As the temperature increases (see Figure 5, left panel) the
first order transition persists up to the CEP. At the CEP the chiral transition becomes a second order one.
Along the line of a first order phase transition the thermodynamic potential has two degenerate minima,
that are separated by a finite potential barrier making the potential non-convex. The height of the barrier
decreases as the temperature increases and disappears at the CEP. Again, this pattern is characteristic
of a first order phase transition: the two minima correspond, respectively, to the phases of broken and
restored symmetry. The borders of the coexistence area are marked by the dotted lines in Figure 6 which
shows the T − µB phase diagram. The domain between the two dashed lines has metastable states
which are characterized by large fluctuations. They are also solutions of the gap equations but their
thermodynamic potential is higher than for the stable solutions. The left dashed curves represent the
beginning of the metastable solutions of restored symmetry in the phase of broken symmetry, while the
right dashed curves represent the end of the metastable solutions of broken symmetry in the restored
symmetric phase. We also represent in Figure 6 (right panel) the region where the solutions of the gap
equations are unstable.

The location of the CEP is found to be at TCEP = 155.80 MeV and ρCEP
B = 1.87ρ0

(µCEP
B = 290.67 MeV). For temperatures above the CEP the thermodynamic potential has only one

minimum and the transition is washed out: a smooth crossover takes place. In the left panel of
Figure 6 the crossover is represented by the dashed-dotted curve. To calculate the crossover we took
the zero of the ∂2 ⟨q̄uqu⟩/∂T 2, i.e. the inflection point of the quark condensate ⟨q̄uqu⟩. The crossover is
defined as the rapid decrease of the quark condensate (the order-like parameter). To determine the range
of the crossover region we choose to define it as the interval between the two peaks around the zero of
∂2 ⟨q̄uqu⟩/∂T 2. This area is presented in gray in Figure 6 (left panel). We can see that as µB increases
the area where the crossover takes place is narrowed until we reaches the CEP.

Finally, we will focus again on the energy per baryon. In Figure 5 (right panel), we plot the density
dependence of the energy per baryon at different temperatures. We observe that the two points (zero of
the pressure and minimum of the energy density) are not the same at finite temperature. In fact, as can be
seen from Figure 5 (left panel), states with zero pressure are only possible up to the maximal temperature
Tm ∼ 111 MeV. For T < Tm the zero-pressure states are in the metastable density region and, as soon
as T ̸= 0, they do not coincide with the minimum of the energy per particle (see Figure 5, right panel).

The arguments just presented allow to clarify the difference between confined quark matter (in
hadrons) and bounded quark matter (droplets of quarks).

This pattern of phase transition is similar to the liquid–gas transition in nuclear matter, a
consequence of the fact that nuclear matter assumes its ground state at a non-vanishing baryon density
ρB ∼ 0.17 fm−3 when T = 0.

6. Nernst Principle and Isentropic Trajectories

The isentropic lines contain important information about the conditions that are supposed to be
realized in heavy ion collisions. Most of the studies on this topic have been done with lattice
calculations for two flavor QCD at finite µ [113] but there are also studies using different type of models
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[112,114,115]. Some model calculations predict that in a region around the CEP the properties of matter
are only slowly modified as the collision energy is changed, as a consequence of the attractor character
of the CEP [116].

Our numerical results for the isentropic lines in the (T, µB) plane are shown in Figure 7. We start the
discussion by analyzing the behavior of the isentropic lines in the limit T → 0. As already analyzed in
Section 5, our convenient choice of the model parameters allows a better description of the first order
transition than other treatments of the NJL (PNJL) model. This choice is crucial to obtain important
results: the criterion of stability of the quark droplets [36,109] is fulfilled, and, in addition, simple
thermodynamic expectations in the limit T → 0 are verified. In fact, in this limit s → 0 according to
the third law of thermodynamics and, as ρB → 0 too, the satisfaction of the condition s/ρB = const.

is insured. We recall (Section 5) that, at T = 0, we are in the presence of droplets (states in mechanical
equilibrium with the vacuum state (ρB = 0) at P = 0).

Figure 7. Isentropic trajectories in the (T, µB) plane. The following
values of the entropy per baryon number have been considered: s/ρB =

1, 2, 3, 4, 5, 6, 8, 10, 15, 20 (anticlockwise direction).
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At T ̸= 0, in the first order line, the behavior we find is somewhat different from those claimed by
other authors [114,117] where a phenomena of focusing of trajectories towards the CEP is observed. We
see that the isentropic lines with s/ρB = 1, ..., 6 come from the region of symmetry partially restored
and attain directly the phase transition; the trajectory s/ρB = 1 goes along with the phase transition as T
decreases until it reaches T = 0; and the other trajectories enter the hadronic phase where the symmetry
is still broken and, after that, also converge to the horizontal axes (T = 0). Consequently, even without
reheating in the mixed phase as verified in the “zigzag” shape of [113–115,118], all isentropic trajectories
directly terminate in the end of the first order transition line at T = 0.

In the crossover region the behavior of the isentropic lines is qualitatively similar to the one obtained
in lattice calculations [113] or in some models [114,115,119]. The trajectories with s/ρB > 6 go directly
to the crossover region and display a smooth behavior, although those that pass in the neighborhood of
the CEP show a slightly kink behavior.
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In conclusion, all the trajectories directly terminate in the same point of the horizontal axes at T = 0.
As already pointed out in [112], the picture provided here is a natural result in these type of quark models
with no change in the number of degrees of freedom of the system in the two phases. As the temperature
decreases a first order phase transition occurs, the latent heat increases and the formation of the mixed
phase is thermodynamically favored.

We point out again that, in the limit T → 0, it is verified that s → 0 and ρB → 0, as it should be.
This behavior is in contrast to the one reported in [112] (see right panel of Fig. 9 therein), where the
NJL model in the SU(2) sector is used. The difference is due to our more convenient choice of the model
parameters, mainly a lower value of the cutoff. This can be explained by the presence of droplets at
T = 0 whose stability is quite sensitive to the choice of the model parameters.

7. Effects of Strangeness and Anomaly Strength on the Critical End Point

As already noticed, an important question which emerges in the study of the QCD phase diagram is
whether the hadronic phase and the quark gluon like phase are separated by a phase transition in the
thermodynamical sense. The identification of possible critical points associated to the phase transition is
a challenging problem. Since we are working within a model with (2+1) flavors with the UA(1) anomaly
included, we can explore new scenarios with regards to the usual SU(2) model without explicit anomaly.
We have now two more parameters: the strange current quark mass, ms, and the anomaly coupling
strength, gD, and it is certainly interesting to study the effect on thermodynamic quantities of changing
these parameters. The anomaly is present via the ’t Hooft interaction and its effects appear explicitly in
the gap equations (18) and in the expression of the thermodynamical potential (19) through products of
the anomaly coefficient by quark condensates. Here we will discuss the influence on the location and the
nature of the critical points of the degree of explicit symmetry breaking of both chiral symmetry (in the
strange sector) and axial UA(1) symmetry.

7.1. Role of the Strangeness in the Location of the CEP/TCP

Let us study the influence of the strangeness in the location of the CEP/TCP. As we have already seen,
the location of the CEP is found at TCEP = 155.80 MeV and µCEP

B = 290.67 MeV (ρCEP
B = 1.87ρ0)

when we use physical values of the quark masses [95,120]: mu = md = 5.5 MeV, ms = 140.7 MeV.
A first point to be noticed is that in the PNJL model, contrarily to what happens in the chiral limit

only for the SU(2) sector (mu = md = 0, ms ̸= 0) where the TCP is found [76], when the total chiral
limit is considered (mu = md = ms = 0), the phase diagram does not exhibit a TCP: chiral symmetry is
restored via a first order transition for all baryonic chemical potentials and temperatures (see left panel
of Figure 8). Both situations are in agreement with what is expected: the chiral phase transition at the
chiral limit is of second order for Nf = 2 and first order for Nf ≥ 3 [121].

To study the influence of strangeness on the location of the critical points, we vary the current quark
mass ms, keeping the SU(2) sector in the chiral limit and the other model parameters fixed. The phase
diagram is presented in Figure 8 (right panel) as a function of µB and T , and we consider different cases
for the current quark mass ms.
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Figure 8. Left panel: the phase diagram in the SU(3) PNJL model. The solid
lines represent the first order phase transition, the dotted line the second order
phase transition, and the dashed line the crossover transition. Right panel: the
phase diagram and the “line” of TCPs for different values of ms (the dotted lines
are just drawn to guide the eye); the TCPs in both figures are obtained in the
limit mu = md = 0 and ms ̸= 0.
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The pattern of chiral symmetry restoration via first order phase transition remains for mu = md = 0

and ms < mcrit
s [122]. The value for mcrit

s is a subject of debate; those found in lattice [123] or in
model calculations [122,124] are lower than the physical strange current quark mass (ms ≈ 150 MeV).
We found mcrit

s ≈ 9 MeV in our model, lower than lattice values [123] and half of the value obtained
in NJL model (mcrit

s = 18.3 MeV [120]), but still consistent with other models of this type [124].
When ms ≥ mcrit

s , at µB = 0, the transition is of the second order and, as µB increases, the line of
the second order phase transition will end in a first order line at the TCP. Several TCPs are plotted for
different values of ms in the right panel of Figure 8. As ms increases, the value of T for this “line”
of TCPs decreases as µB increases getting closer to the CEP and, when ms = 140.7 MeV, it starts to
move away from the CEP. The TCP for ms = 140.7 MeV is the closest to the CEP and is located at
µTCP
B = 206.95 MeV and T TCP = 187.83 MeV. If we choose mu = md ̸= 0, instead of a second order

transition we have a smooth crossover for all the values of ms and the “line” of TCPs becomes a “line”
of CEPs.

7.2. Role of the Anomaly Strength in the Location of the CEP

The axial UA(1) symmetry is broken explicitly by instantons, leaving a SU(Nf )× SU(Nf ) symmetry
which determines the chiral dynamics. Since instantons are screened in a hot or dense environment, the
UA(1) symmetry may be effectively restored in matter. So, it is instructive to review this enlargement of
chiral symmetry to SU(Nf )× SU(Nf )×UA(1) in more detail.

As already referred, the location and even the existence of the CEP in the phase diagram is a matter
of debate [51]. While different lattice calculations predict the existence of a CEP [125], the absence of
the CEP in the phase diagram was seen in recent lattice QCD results [79–81], where the first order phase
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transition region near µB = 0 shrinks in the quark mass and µB space when µB is increased [79–81].
Due to the importance of the UA(1) anomaly, already emphasized in Section 2, and its influence on
several observables, it is demanding to investigate possible changes in the location of the CEP in the
(T, µB) plane when the anomaly strength is modified. In Figure 9 we show the location of the CEP for
several values of gD compared to the results for gD0 , the value used for the vacuum. As already pointed
out by K. Fukushima in [70], we also observe that the location of the CEP depends on the value of gD
and, when gD is about 50% of its value in the vacuum, the QCD critical point disappears from the phase
diagram; the first order region becomes narrower with the decreasing of the gD value.

Figure 9. Dependence of the location of the CEP on the strength of the ’t Hooft
coupling constant gD.
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The results show that, in the framework of this model, the existence or not of the CEP is determined
by the strength of the anomaly coupling, the CEP getting closer to the µB axis as gD decreases.

8. Susceptibilities and Critical Behavior in the Vicinity of the CEP

In the last years, the phenomenological relevance of fluctuations in the finite temperature and chemical
potential around the CEP/TCP of QCD has been attracting the attention of several authors [126]. As
a matter of fact, fluctuations are supposed to represent signatures of phase transitions of strongly
interacting matter. In particular, the quark number susceptibility plays a role in the calculation of
event-by-event fluctuations of conserved quantities such as the net baryon number. Across the quark
hadron phase transition they are expected to become large; that can be interpreted as an indication for
a critical behavior. We also remember the important role of the second derivative of the pressure for
second order points like the CEP.

The grand canonical potential (or the pressure) contains the relevant information on thermodynamic
bulk properties of a medium. Susceptibilities, being second order derivatives of the pressure in both
chemical potential and temperature directions, are related to those fluctuations. The relevance of these
physical observables is related with the size of the critical region around the CEP which can be found by
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calculating the specific heat, the baryon number susceptibility, and their critical behaviors. The size of
this critical region is important for future searches of the CEP in heavy ion-collisions [114].

The way to estimate the critical region around the CEP is to calculate the dimensionless ratio
χB/χ

free
B , where χfree

B is the chiral susceptibility of a free massless quark gas. Figure 10 shows a
contour plot for two fixed ratios χB/χ

free
B = 1.0 and 2.0 in the phase diagram around the CEP. In the

direction parallel to the first order transition line and to the crossover, it can be seen an elongation of the
region where χB is enhanced, indicating that the critical region is heavily stretched in that direction. It
means that the divergence of the correlation length at the CEP affects the phase diagram quite far from
the CEP and a careful analysis including effects beyond the mean-field needs to be done [127].

Figure 10. Phase diagram: the size of the critical region is plotted for
χB/χ

free
B = 1(2). The TCP is found for mu = md = 0 MeV and
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One of the main effects of the Polyakov loop is to shorten the temperature range where the crossover
occurs [44]. On the other hand, this behavior is boosted by the choice of the regularization (Λ → ∞)
[76]. The combination of both effects results in higher baryonic susceptibilities even far from the CEP
when compared with the NJL model [128]. This effect of the Polyakov loop is driven by the fact that the
one- and two-quark Boltzmann factors are controlled by a factor proportional to Φ: at small temperature
Φ ≃ 0 results in a suppression of these contributions (see Equation (19)) leading to a partial restoration
of the color symmetry. Indeed, the fact that only the 3−quark Boltzmann factors e3βEp contribute to
the thermodynamical potential at low temperature, may be interpreted as the production of a thermal
bath containing only colorless 3-quark contributions. When the temperature increases, Φ goes quickly
to 1 resulting in a (partial) restoration of the chiral symmetry occurring in a shorter temperature range.
The crossover taking place in a smaller T range can be interpreted as a crossover transition closest to a
second order one. This “faster” crossover may explain the elongation of the critical region giving raise
to a greater correlation length even far from the CEP.

Now we show in Figure 11 the behavior of the baryon number susceptibility, χB, and the specific
heat, C, at the CEP, which is in accordance with [120,126,129].
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Figure 11. Left panel: Baryon number susceptibility (right panel) as functions
of µB for different temperatures around the CEP: TCEP = 155.80 MeV and
T = TCEP ± 10 MeV. Right panel: Specific heat as a function of T for different
values of µB around the CEP: µCEP

B = 290.67 MeV and µB = µCEP
B ± 10 MeV.
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The baryon number susceptibility is plotted (left panel) as a function of the baryon chemical potential
for three values of the temperature. The divergent behavior of χB at the CEP is an indication of the
second order phase transition at this point. The curve for T > TCEP corresponds to the crossover and
the other to the first order transition.

Now we will pay attention to the specific heat (Equation (27)) which is plotted as a function of the
temperature around the CEP (right panel). The divergent behavior is the signal of the location of the
CEP. The curve µB < µCEP

B corresponds to the crossover and the other to the first order transition.
The large enhancement of the baryon number susceptibility and the specific heat at the CEP may be

used as a signal of the existence and identification of phase transitions in the quark matter.

9. Conclusions

The concept of symmetries is a very important topic in physics. It has given a fruitful insight into
the relationships between different areas, and has contributed to the unification of several phenomena, as
shown in recent achievements in nuclear and hadronic physics.

Critical phenomena in hot QCD have been studied in the framework of the PNJL model, as an
important issue to determine the order of the chiral phase transition as a function of the temperature
and the quark chemical potential. Symmetry arguments show that the phase transition should be a first
order one in the chiral limit (mu = md = ms = 0). Working out of the chiral limit, at which both chiral
and center symmetries are explicitly broken, a CEP which separates first and crossover lines is found,
and the corresponding order parameters are analyzed.

The sets of parameters used is compatible with the formation of stable droplets at zero temperature,
insuring the satisfaction of important thermodynamic expectations like the Nernst principle. Other
important role is played by the regularization procedure which, by allowing high momentum quark
states, is essential to obtain the required increase of extensive thermodynamic quantities, insuring the
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convergence to the Stefan–Boltzmann (SB) limit of QCD. In this context the gluonic degrees of freedom
also play a special role.

We also discussed the effect of the UA(1) axial symmetry both at zero and at finite temperature. We
analyzed the effect of the anomalous coupling strength in the location of the CEP. We proved that the
location of the CEP depends on the value of gD and, when gD is about 50% of its value in the vacuum,
the QCD critical point disappears from the phase diagram. One expects that, above a certain critical
temperature Teff , the chiral and axial symmetries will be effectively restored. The behavior of some
given observables signals the effective restoration of these symmetries: for instance, the topological
susceptibility vanishes.

The successful comparison with lattice results shows that the model calculation provides a convenient
tool to obtain information for systems from zero to non-zero chemical potential which is of particular
importance for the knowledge of the equation of state of hot and dense matter. Although the results here
presented relies on the chiral/deconfinement phase transition, the relevant physics involved is also useful
to understand other phase transitions sharing similar features.
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Appendix

The quark condensates ⟨q̄iqi⟩, with i, j, k = u, d, s (to be fixed in cyclic order), determined in a
self-consistent way, are given by:

⟨q̄iqi⟩ = − 2Nc

∫
d3p

(2π)3
Mi

Ei

[θ(Λ2 − p⃗2)− f
(+)
Φ (Ei)− f

(−)
Φ (Ei)] (29)

where Ei is the quasi-particle energy for the quark i: Ei =
√

p2 +M2
i .

All calculations in the NJL model can be generalized to the PNJL one, as was shown in [44], by
introducing the modified Fermi-Dirac distribution functions for particles and antiparticles used in the
expression of ⟨q̄iqi⟩:

f
(+)
Φ (Ei) =

Φ̄e−β E−
p + 2Φe−2β E−

p + e−3β E−
p

exp{z+Φ (Ei)}
(30)

f
(−)
Φ (Ei) =

Φe−β E+
p + 2Φ̄e−2β E+

p + e−3β E+
p

exp{z−Φ (Ei)}
(31)

The mean field equations are obtained by minimizing the thermodynamical potential density (19) with
respect to ⟨q̄iqi⟩ (i = u, d, s), Φ, and Φ̄. The respective mean field equations are the already given gap
equation (18) and
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0 = T 4

{
−a(T )

2
Φ̄− 6

b(T )
[
Φ̄− 2Φ2 + Φ̄2Φ

]
1− 6Φ̄Φ + 4(Φ̄3 + Φ3)− 3(Φ̄Φ)2

}

− 6T
∑

{i=u,d,s}

∫
d3p

(2π)3

(
e−2β E−

p

exp{z+Φ (Ei)}
+

e−β E+
p

exp{z−Φ (Ei)}

)
(32)

0 = T 4

{
−a(T )

2
Φ− 6

b(T )
[
Φ− 2Φ̄2 + Φ̄Φ2

]
1− 6Φ̄Φ + 4(Φ̄3 + Φ3)− 3(Φ̄Φ)2

}

− 6T
∑

{i=u,d,s}

∫
d3p

(2π)3

(
e−β E−

p

exp{z+Φ (Ei)}
+

e−2β E+
p

exp{z−Φ (Ei)}

)
(33)
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