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1. Introduction

Sigma models take their name from a phenomenological model of beta decay introduced more than
fifty years ago by Gell-Mann and Lévy [1]. It contains pions and a new scalar meson that they called
sigma. A generalization of this model is what is nowadays meant by a sigma model. It will be described
in detail below.

Non-linear sigma models arise in a surprising number of different contexts. Examples are effective
field theories (coupled to gauge fields), the scalar sector of supergravity theories, etc. Not the least
concern to modern high energy theory is the fact that the string action has the form of a sigma model
coupled to two dimensional gravity and that the compactified dimensions carry the target space geometry
dictated by supersymmetry.

The close relation between supersymmetric sigma models and complex geometry was first observed
more than thirty years ago in [2] where the target space of N = 1 models in four dimensions is
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shown to carry Kähler geometry. For N = 2 models in four dimensions the target space geometry
was subsequently shown to be hyperkähler in [3]. This latter fact was extensively exploited in a
N = 1 superspace formulation of these models in [4], where two new constructions were presented;
the Legendre transform construction and the hyperkähler quotient construction. The latter reduction was
developed and given a more mathematically stringent formulation in [5] where we also elaborated on a
manifest N = 2 formulation, originally introduced in [6] based on observations in [7].

AN = 2 superspace formulation of theN = 2, four dimensional sigma model is obviously desirable,
since it will automatically lead to hyperkähler geometry on the target space. The N = 2 Projective
Superspace which makes this possible grew out of the development mentioned last in the preceding
paragraph. Over the years it has been developed and refined in, e.g., [6–19]. In this article we report
on some of that development along with some more recent development, such as projective superspace
for supergravity [20–25], and applications such as the construction of certain classes of hyperkähler
metrics [26–28].

The target space geometry depends on the number of supersymmetries as well as on the dimension
of the domain. There are a number of features peculiar to sigma models with a two dimensional domain
(2D sigma models). Here the target space geometry can be torsionful and generalizes the Kähler and
hyperkähler geometries. This has been exploited to give new and interesting results in generalized
geometry [29–41].

Outside the scope of this report lies, e.g., Kähler geometries with additional structure, such as special
geometry relevant for four dimensional N = 2 sigma models, (see, e.g., [42]).

All our presentations will concern the classical theory. We shall not discuss the interesting and
important question of quantization.

2. Sigma Models

A non-linear sigma model is a theory of maps from a (super) manifold Σ(d,N ) to a target space (we
shall mostly avoid global issues and assume that all of T can be covered by such maps in patches) T :

Φ : Σ(d,N ) → T

Φ(z) 7−→ Z ∈ T (1)

Denoting the coordinates on Σ(d,N ) by z = (ξ, θ), the maps are derived by extremizing an action

S =

∫
Σ

dzL(Φ) +

∫
∂Σ

.... (2)

The actual form of the action depends on the bosonic and fermionic dimensions dB, dF of Σ. We have
temporarily included a boundary term, which is sometimes needed for open models to have all the
symmetries of the bulk-theory [43–45], or when there are fields living only on the boundary coupling
to the bulk fields as is the well known case for (stacks of) D-branes. For a discussion of the latter in
a sigma model context, see [46]. Expanding the superfield as Φ(ξ, θ) = X + θΨ + ..., where X(ξ)

and Ψ(ξ) are bosonic and fermionic fields over the even part of Σ (coordinatized by ξ), the action
Equation (2) becomes

S = µd−2

∫
ΣB

dξ {∂XµGµν(X)∂Xν + . . .}+

∫
∂Σ

.... (3)
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where d = dB is the bosonic dimension of Σ and we have rescaled the X’s to make them dimensionless,
thus introducing the mass-scale µ.

Let us make a few general comments about the action Equation (3), mostly quoted from Hull [47]:

1. The mass-scale µ shows that the model typically will be non-renormalizable for d > 3 but
renormalizable and classically conformally invariant in d = 2.

2. We have not included a potential for X and thus excluded Landau–Ginsburg models.
3. There is also the possibility to include a Wess–Zumino term. We shall return to this when

discussing d = 2.
4. From a quantum mechanical point of view it is useful to think of Gµν(X) as an infinite number of

coupling constants:
Gµν(X) = G0

µν +G1
µν,ρX

ρ + . . . (4)

5. Classically, it is more rewarding to emphasize the geometry and think of Gµν(X) as a metric on
the target space T . This is the aspect we shall be mainly concerned with.

6. The invariance of the action S under Diff(T ),

Xµ → Xµ′(X) , Gµν(X)→ Gµ′ν′(X
′) (5)

(field-redefinitions from the point of view of the field theory on Σ), implies that the sigma model
is defined by an equivalence class of metrics. N.B. This is not a symmetry of the model since the
“coupling constants” also transform. It is an important property, however. Classically it means
that the model is extendable beyond a single patch in T , and quantum mechanically it is needed
for the effective action to be well defined.

That the geometry of the target space T is inherently related to the sigma model is clear already from
the preceding comments. Further, the maps extremizing S satisfy

∇i∂
iXµ := ∂iX

ν∇ν∂
iXµ = 0 (6)

where ∂i := ∂
∂ξi

, the operator∇ is the Levi-Civita connection for Gµν and we have ignored the fermions.
This is the pull-back of the covariant Laplacian on T to Σ and hence the maps are sometimes called
harmonic maps.

The geometric structure that has emerged from the bosonic part shows that the target space geometry
must be Riemannian (by which we mean that it comes equipped with a metric and corresponding
Levi-Civita connection). Further restrictions arise from supersymmetry.

3. Supersymmetry

This section provides a very brief summary of some aspects of supersymmetry. For a thorough
introduction the reader should consult a textbook, e.g., [48–50].

At the level of algebra, supersymmetry is an extension of the d-dimensional Poincaré-algebra to
include anticommuting charges Q. The form of the algebra depends on d. In dB = 4 the additional
(anti-)commutators satisfy

{Qa
α, Q

b
β} = 2δab(γiC)αβPi + CαβZ

ab + (γ5C)αβY
ab (7)
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Here α, β, .. are four dimensional spinor indices, γi are Dirac gamma matrices, C is the (electric) charge
conjugation matrix and the chargesQa are spinors that satisfy a Majorana reality condition and transform
under some internal symmetry group G ⊂ O(N) (corresponding to the index a). The generators of the
graded Poincaré-algebra are thus the Lorentz-generators M , the generators of translations P and the
supersymmetry generators Q. In addition, for non-trivial G, there are central charge generators Z and Y
that commute with all the others.

Representations of supersymmetry are most economically collected into superfields Φ(ξ, θ), where θa

are Grassmann valued spinorial “coordinates” to which one can attach various amounts of importance.
We may think of them as a book-keeping device, much as collecting components into a column-vector.
But thinking about (ξ, θ) as coordinates on a supermanifold M(d,N ) [51,52] and investigating the
geometry of this space has proven a very fruitful way of generating interesting results.

The index a on θa is the same as that onQa and thus corresponds to the numberN of supersymmetries.
Let us consider the case N = 1, dB = 4, which implies Z = Y = 0. In a Weyl-representation
of the spinors and with the usual identification of the translation generator as a differential operator
Pαα̇ = i∂αα̇ := iσiαα̇∂i, the algebra Equation (7) becomes

{Qα, Q̄α̇} = 2i∂αα̇ (8)

Introducing Berezin integration/derivation [53], ∂α := ∂
∂θα

, the supercharges Q may also be represented
(in one of several possible representations) as differential operators acting on superfields:

Qα = i∂α +
1

2
θ̄α̇∂αα̇

Q̄α̇ = i∂α̇ +
1

2
θα∂αα̇ (9)

Apart from the various representations alluded to above (chiral, antichiral and vector in four
dimensions [48]) there are two basic ways that supercharges can act on superfields, corresponding to left
and right group action. This means that, given Equation (9), there is a second pair of differential operators

Dα = ∂α + i
1

2
θ̄α̇∂αα̇

D̄α̇ = ∂α̇ + i
1

2
θα∂αα̇ (10)

which also generate the algebra Equation (8) and that anticommute with the Q’s:

{Dα, D̄α̇} = 2i∂αα̇ , {Qα, D̄α̇} = {Qα, Dβ} = 0 (11)

Often the supersymmetry algebra is given only in terms of the D’s. From a geometrical point of
view, these are covariant derivatives in superspace and may be used to impose invariant conditions
on superfields.

In general, covariant derivatives∇A in a curved superspace space satisfy

[∇A,∇B} = RAB ·M + 2T C
AB ∇C (12)

where the left hand side contains a graded commutator T C
AB is the torsion tensor and RAB · M the

curvature with M the generators of the structure group. The indices A etc. run over both bosonic and
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fermionic indices. Comparision to Equation (11), with ∇A = (Dα, D̄α̇, i∇αα̇), shows that even “flat”
(RAB ·M = 0) superspace has torsion.

In four dimensions the D’s may be used to find the smallest superfield representation. Such a chiral
superfield φ and its complex conjugate antichiral field φ̄ are required to satisfy

D̄α̇φ = Dαφ̄ = 0 (13)

The Minkowski-field content of this may be read off from the θ-expansion. However, this expansion
depends on the particular representation of the D’s and Q’. For this reason it is preferable to define the
components in the following representation independent form:

X := φ| , χ := D̄φ| , χ̄ := Dφ| , F := 1
2
DD̄φ| (14)

where a vertical bar denotes “the θ-independent part of”. In a chiral representation where D̄α = ∂α the
θ-expansion of a chiral field reads

φ(ξ, θ) = X(ξ) + θ̄χ(ξ) + θχ̄(ξ) + θ̄θF (15)

but its complex conjugate involves a θ dependent shift in ξ and looks more complicated.
A dimensional analysis shows that if X is a physical scalar, χ is a physical spinor and F has to be a

non-propagating (auxiliary) field. This is the smallest multiplet that contains a scalar, and thus suitable
for constructing a supersymmetric extension of the bosonic sigma models we looked at so far. (All other
superfields will either be equivalent to (anti) chiral ones or contain additional bosonic fields of higher
spin.) Denoting a collection of chiral fields by φ = (φµ), the most general action we can write down

S =

∫
d4ξd2θd2θ̄K(φ, φ̄) (16)

reduces to the bosonic integral ∫
d4ξ
{
∂iXb∂b∂āK(X, X̄)∂iX̄

ā + . . .
}

(17)

The most direct way to perform the reduction is to write

S =

∫
d4ξD2D̄2K(φ, φ̄)| (18)

and then to use Equation (13) when acting with the covariant spinor derivatives. Note that K in
Equation (16) is only defined up to a term η(φ)+ η̄(φ̄) due to the chirality conditions as in Equation (13).

We immediately learn additional things about the geometry of the target space T :

1. It must be even-dimensional.
2. The metric is Hermitian with respect to the canonical complex structure

J :=

(
iδab 0

0 −iδā
b̄

)
(19)

for which X and X̄ are canonical coordinates.
3. The metric has a potential K(φ, φ̄). In fact, the geometry is Kähler and the ambiguity in the

Lagrangian in Equation (16) is known as a Kähler gauge transformation.
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4. Complex Geometry I

Let us interrupt the description of sigma models to recapitulate the essentials of Kähler geometry.
Consider (M, G, J) where G is a metric on the manifoldM and J is an almost complex structure,

i.e., an endomorphism(A (1, 1) tensor Jµν .) J : TM ←↩ such that J2 = −1 (only possible ifM is even
dimensional). This is an almost Hermitian space if (as matrices)

J tGJ = G (20)

Construct the projection operators
π± := 1

2
(1± iJ) (21)

If the vectors π±V in T are in involution, i.e., if

π∓[π±V, π±U ] = 0 (22)

which implies that the Nijenhuis torsion vanishes,

NJ(U, V ) = [JU, JV ]− J [JU, V ]− J [U, JV ]− [U, V ] = 0 (23)

then the distributions defined by π± are integrable and J is called a complex structure and G Hermitian.
To evaluate the expression in Equation (22) in index notation, think of π∓ as matrices acting on the
components of the Lie bracket between the vectors π±V and π±U . This leads to the following expression
corresponding to Equation (23):

N (J)µνρ = Jσ[νJ
µ
ρ],σ + JµσJ

σ
[ν,ρ] = 0 (24)

The fundamental two-form ω defined by J and G is

ω := GµνJ
ν
σdX

µ ∧ dXσ (25)

If it is closed for a Hermitian complex space, then the metric has a Kähler potential

G =

(
0 ∂∂̄K

∂̄∂K 0

)
(26)

and the geometry is Kähler.
An equivalent characterization is as an almost Hermitian manifold with

∇J = 0 (27)

where∇ is the Levi-Civita connection.
We shall also need the notion of hyperkähler geometry. Briefly, for such a geometry there exists an

SU(2)-worth of complex structures labeled by A ∈ {1, 2, 3}

J (A)J (B) = −δAB + εABCJ (C) , ∇J (A) = 0 (28)

with respect to all of which the metric is Hermitian

J (A)tGJ (A) = G (29)
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5. Sigma Model Geometry

We have already seen howN = 1 (one supersymmetry) in d = 4 requires the target space geometry to
be Kähler. To investigate how the geometry gets further restricted for N = 2, there are various options:
(i) Discuss the problem entirely in components (no supersymmetry manifest); (ii) Introduce projective
(or harmonic) superspace and write models with manifest N = 2 symmetry; (iii) Add a non-manifest
supersymmetry to the model already described and work out the consequences. The last option requires
the least new machinery, so we first follow this. The question is thus under what conditions

S =

∫
d4ξd2θd2θ̄K(φ, φ̄) (30)

can support an additional supersymmetry. The most general ansatz for such a symmetry is

δφµ = D̄2(ε̄Ω̄µ) (31)

One finds closure of the additional supersymmetry algebra (on-shell) and invariance of the action
provided that the target space geometry is hyperkähler with the non-manifest complex structures formed
from Ω [54]:

J (1) =

(
0 Ωā

,b

Ω̄a
,b̄

0

)
J (2) =

(
0 iΩā

,b

−iΩ̄a
,b̄

0

)
J (3) =

(
i1 0

0 −i1

)
(32)

Further, the parameter superfield ε obeys

D̄α̇ε = D2ε = ∂αα̇ε = 0 (33)

It contains the parameter for central charge transformations along with the supersymmetry parameters.
The full table of geometries for supersymmetric non-linear sigma models without Wess–Zumino
term reads

d = 6 4 2 Geometry
N = 1 2 4 Hyperkähler
N = 1 2 Kähler
N = 1 Riemannian

(Odd dimensions have the same structure as the even dimension lower.) When we specialize to two or
six dimensions, we have the additional possibility of having independent left and right supersymmetries;
the N = (p, q) supersymmetries of Hull and Witten [55]. We shall return to this possibility when
we discuss d = 2, but now we turn to the question of how to gauge isometries on Kähler and
hyperkähler manifolds.

6. Gauging Isometries and the HK Reduction

This section is to a large extent a review of [5,54].
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6.1. Gauging Isometries of Bosonic Sigma Models

The table in the previous section describing the target-space geometry shows that constructing, e.g.,
new N = 2, d = 4 nonlinear sigma models is tantamount to finding new hyper-kähler geometries. A
systematic method for doing this involves isometries of the target space, which we now discuss.

Consider again the bosonic action

S =

∫
dξ∂iφ

µGµν(φ)∂iφν (34)

As noted in Section 2, a target space diffeomorphism leaves this action invariant and corresponds to a
field redefinition. As also pointed out, this is not a symmetry of the field theory. A symmetry of the field
theory involves a transformation of φ only;

δφµ = λAkµA(φ) = [λk, φ]µ ≡ Lλkφµ (35)

where Lλk denotes the Lie derivative along the vector λk. Under such a transformation the action
varies as

δS =

∫
dξ∂iφ

µLλkGµν(φ)∂iφν (36)

The transformation thus gives an invariance of the action if

LλkGµν = 0 (37)

i.e., if the transformation is an isometry and hence if the kµA’s are Killing-vectors.
We take the kA’s to generate a Lie algebra g

[kA, kB] = c C
AB kC (38)

with
kA ≡ kµA

∂

∂φµ
(39)

In what follows, we assume that g can be exponentiated to a group G.
One way to construct a new sigma model from one which has isometries is to gauge the isometries

and then find a gauge connection that extremizes the action [54]. The new sigma model will be a quotient
of the original one. Briefly, this goes as follows:

The isometries generated by kA are gauged introducing a gauge field AAi using minimal coupling,

∂iφ
µ → ∂iφ

µ − AAi k
µ
A = (∂i − AAi kA)φµ ≡ ∇iφ

µ (40)

in the action Equation (34):

S =

∫
dξ∇iφ

µGµν(φ)∇iφν (41)

This action is now locally invariant under the symmetries defined by the algebra Equation (38). Note
that there is no kinetic term for the gauge-field. Extremizing Equation (41) with respect to AAi singles
out a particular gauge-field:

δS = 0⇒ AAi = H−1ABGµνk
µ
B∂iφ

ν (42)
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where
HAB ≡ kµAGµνk

ν
B (43)

In terms of this particular connection, the action Equation (41) now reads

S =

∫
dξ∂iφ

µ
(
Gµν −H−1ABkµAkνB

)
∂iφν (44)

where indices have been lowered using the metric G. Since ∂iφ
µ ≈ ∂iφ

µ + vAi k
µ
A in the action

Equation (44 ), this is a new sigma model defined on the space of orbits of the group G, i.e., on the
quotient space T /G. The metric on this space is G̃µν ≡ Gµν −H−1ABkµAkνB .

To apply this construction to Kähler manifolds, or equivalently, supersymmetric models, in such a
way as to preserve the Kähler properties, more restrictions are required. First, the isometries we need
to gauge are holomorphic and the gauge group we have to consider is the complexification of the group
relevant to the bosonic part.

6.2. Holomorphic Isometries

A holomorphic isometry on a Kähler manifold satisfies

LλkJ = 0, Lλkω = 0 (45)

where J is the complex structure and ω is the Kähler two-form defined in Equation (25). The fact that a
Kähler manifold is symplectic makes it possible to consider the moment map for the Hamiltonian vector
field λk. The corresponding Hamiltonian function µλk is defined by

ıλkω =: dµλk (46)

In holomorphic coordinates (φq, φ̄q̄) where λk = λA(kA + k̄A), this reads

ωq̄pλ
Ak̄q̄A ≡ −iKq̄pλ

Ak̄q̄A =
∂µλk

∂φp
=: µλkp (47)

From these relations it is clear why µλk is sometimes referred to as a Killing potential. Now µ defines a
map from the target space of the sigma model into the dual of the Lie-algebra generated by kA:

T 7→ ∗g, µλk = λAµA (48)

where µA is the basis for ∗g that corresponds to the basis kA for g. When the action of the Hamiltonian
field can be made to agree with the natural action of the group G on T and on ∗g, the µA’s are called
moment maps (We use to the (US) East cost nomenclature as opposed to the West coast “momentum
map”.) This is the case when µλk is equivariant, i.e., when

λkµλ
′k = µ[λk,λ′k]

⇐⇒ kpAµB,p + k̄p̄AµB,p̄ = c C
AB µC (49)

where the equivalence refers to holomorphic isometries.
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The Kähler metric is the Hessian of the Kähler potential K. As mentioned in Section 3, this leaves an
ambiguity in the potential; it is only defined up to the sum of a holomorphic and an antiholomorphic term.

K(φ, φ̄) ≈ K(φ, φ̄) + η(φ) + η̄(φ̄) (50)

An isometry thus only has to preserve K up to such terms:

LλkK = ηλk + η̄λk (51)

For a holomorphic isometry λk = λA(kA(φ) + k̄A(φ̄)) this implies for the projection

1
2

(1− iJ)λkK = λAkA(φ)∂pK = −iµλk + ηλk (52)

(Recall that λAk̄q̄AKpq̄ = iλAµA,p and λAkqAKqp̄ = −iλAµA,p̄, so that λAkqAKq = −iλAµA+hol. and
λAk̄q̄AKq̄ = iλAµA+antihol. )

6.3. Gauging Isometries of Supersymmetric Sigma Models

Due to the chiral nature of superspace, the isometries act through the complexification of the isometry
group G. Explicitly, the parameter λ gets replaced by superfield parameters Λ and Λ̄, while the bosonic
gauge field AAi becomes one of the components of a real superfield V A. (This is the last occurrence
of i as a world volume index. Below i, j, ... denote gauge indies.) In the simplest case of isotropy,
kiA(φ) = (TA)ijφ

j , the coupling to the chiral fields in the sigma model is

φ̄i → φ̃i := φ̄j(eV ) ij , (V ) ij = V A(TA) ij (53)

At the same time, a gauge transformation with (chiral) parameter Λ acts on the chiral and antichiral
fields as

φ̄i → φ̄j(e−iΛ̄) ij , (Λ̄) ij = Λ̄A(TA) ij (54)

The relation Equation (53) can thus be interpreted as a gauge transformation of φ̄ with parameter iV .
For general isometries a gauge transformation with parameter iV is

φ̄i → φ̃i ≡ eLiV k φ̄ (55)

and this is the form we need to use when defining φ̃i. The coupling is thus

K(φ, φ̄)→ K(φ, φ̃) (56)

Under a global isometry transformation, according to Equation (51), there may arise terms such as

δS =

∫
λAη̄A(φ̄) = 0 (57)

whose vanishing ensures the invariance. This is no-longer true in the local case where the
corresponding term

δS =

∫
ΛAη̃A (58)
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will not vanish in general. The remedy is to introduce auxiliary coordinates (ζ, ζ̄) and assign
transformations to them that make the modified Kähler potential K̃ invariant (rather than invariant up to
(anti) holomorphic terms):

K̃ := K(φ, φ̄)− ζ − ζ̄ (59)

The action involving K̃ may now be gauged using the prescription Equation (56) and takes the form
(dropping the irrelevant ζ + ζ̄ term after gauging)

S̃ =

∫
K̂(φ, φ̄, V ) (60)

where

K̂ ≡ K(φ, φ̃)− ie
LiV k − 1

LiV k
η̄AV

A (61)

Using the definition of φ̃ and the relation to the moment maps (see Equation (52) and below), we rewrite
this as

K̂ = K(φ, φ̄) +

(
eLiV k − 1

LiV k

)
V AµA (62)

A more geometric form of the gauged Lagrangian is

K̂ = K(φ, φ̄) +

∫ 1

0

dte−
1
2
tLV JkµV (63)

where we recall that

LkK = η + η̄

LJkK = i(η − η̄) + 2µ (64)

The form of the action that follows from Equation (63) directly leads to the symplectic quotient as applied
to a Kähler manifold [56]: Eliminating V A results in

e−
1
2
tLV JkµA = 0

⇐⇒ µA = 0 (65)

The Kähler quotient is illustrated in the following picture, taken from [5] (with permission from the
publisher Springer Verlag) :

The isometry group G acts on µ−1(0) and produces the quotient M̂ . The same space is obtained if one
considers the extension of µ−1(0) by exp(JX) and takes the quotient by the complexified group GC .
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If we start from a hyperkähler manifold with triholomorphic isometries, there will also be complex
moment maps corresponding to the two non-canonical complex structures

ω± ↔ µ± (66)

In addition to Equation (65), we will then have the conditions

µ+
A = µ−A = 0 (67)

defining holomorphic subspaces. This hyperkähler quotient prescription [4,5] gives a new hyperkähler
space from an old one. The N = 2 sigma model action that encodes this (in d = 4,N = 1

language) reads

S =

∫
d4ξ
(
d2θd2θ̄K̂(φ, φ̄, V ) + 1

2
d2θSAµ+

A + 1
2
d2θ̄S̄Aµ−A

)
(68)

where K̂ is defined in Equation (61) and (V, S, S̄) is the N = 2 vector (gauge) multiplet. The latter
consists of a chiral superfield S and its complex conjugate S̄ in addition to V .

7. Two Dimensional Models and Generalized Kähler Geometry

The quotient constructions just discussed are limited to backgrounds with only a metric present.
Recently extensions of such geometries to include also an antisymmetric B-field have led to a number
of new results in d = 2 which are expected to contribute to new quotients involving such geometries.

Two (bosonic) dimensional domains Σ are interesting in that they support sigma models with
independent left and right supersymmetries. Such (p, q) models were introduced by Hull and Witten
in [55], and also have analogues in d = 6. There is a wealth of results on the target-space geometry for
(p, q)-models. The geometry is typically a generalization of Kähler geometry with vector potential for
the metric instead of a scalar potential etc. See, e.g., [57,58]. Here we first focus on (1, 1) and (2, 2)

models in d = 2.
The (1, 1) supersymmetry algebra is

D2
± = i∂

++
=

(69)

where + and − are spinor indices and ξ++, ξ= are light-cone coordinates in d = 2 Minkowski space.
A general sigma model written in terms of real N = (1, 1) superfields Φ is

S =

∫
Σ

d2ξd2θD+ΦµEµν(Φ)D−Φν (70)

where the metric G and B-field have been collected into

Eµν ≡ Gµν +Bµν (71)

Here N = (1, 1) supersymmetry is manifest by construction and we shall see that additional
non-manifest ones will again restrict the target space geometry. In fact, the geometry is already modified
due to the presence of the B-field. The field-equations now read

∇(+)
+ D−Φµ = 0 (72)
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where
∇(±) ≡ ∇(0) ± T (73)

is the sum of the Levi-Civita connection and a torsion-term formed from the field-strength for theB-field
(The anti-symmetrization does not include a combinatorial factor):

Tµνρ ≡ Hµνρ = 1
2
∂[µBνρ] (74)

Only when H = 0 do we recover the non-torsionful Riemann geometry. The full picture is given in the
following table:

Table 1. The geometries of sigma-models with different supersymmetries.

Supersymmetry (0,0) or (1,1) (2,2) (2,2) (4,4) (4,4)

Background G,B G G,B G G,B

Geometry Riemannian Kähler bi-Hermitian hyperkähler bihypercomplex

We first look at the Gates–Hull–Roček (GHR) bi-Hermitian geometry, or Generalized Kähler
geometry as is its modern guise. Starting from the N = (1, 1) action Equation (7), one can ask for
additional, non-manifest supersymmetries. By dimensional arguments, such a symmetry must act on the
superfields as

δ(±)Φµ = ε±D±ΦνJ (±)µ
ν (Φ) (75)

where (±) correspond to left or right symmetries. It was shown by GHR in [7] that invariance of the
action Equation (7) and closure of the algebra require that J (±) are complex structures that are covariantly
constant with respect to the torsionful connections

∇(±)J (±) = 0 (76)

and that the metric is Hermitian with respect to both these complex structures

J (±)tGJ (±) = G (77)

In addition, the B-field field-strength (torsion) must obey

H = H(2,1) +H(1,2) = dc(+)ω(+) = −dc(−)ω(−) (78)

where the chirality assignment refers to both complex structures. Here we have introduced
dc := J(d) = i(∂̄ − ∂), where the last equality holds in canonical coordinates, the two-forms are
ω(±) ≡ GJ (±) as tensors and ddc(±)ω(±) = 0. When J (+) = ±J (−) this geometry reduces to
Kähler geometry.

Gualtieri gives a nice interpretation of the full bi-Hermitian geometry in the context of Generalized
Complex Geometry [59] and calls it Generalized Kähler Geometry [60], which we now briefly describe.
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8. Complex Geometry II

The definition of Generalized Complex Geometry (GCG) parallels that of complex geometry but
is based on the sum of the tangent and cotangent bundle instead of just the tangent bundle. Hence
we consider a section J of End(T ⊕ T ∗) such that J 2 = −1. To define integrability we again use
projection operators

Π± ≡ 1
2

(1± iJ ) (79)

but now we require that the subspaces of T ⊕T ∗ defined by Π± are in involution with respect to a bracket
defined on that bundle. Denoting an element of T ⊕ T ∗ by v + ξ with v ∈ T , ξ ∈ T ∗, we thus require

Π∓ [Π±(v + ξ),Π±(u+ χ)]C = 0 (80)

where the bracket is the Courant bracket defined by

[v + ξ, u+ χ]C = [v, u] + Lvχ− Luξ − 1
2
d(ıvχ− ıuξ) (81)

where [ , ] is the Lie bracket and, e.g., ıvχ = χ(v) = v · χ. The full definition of GCG also requires the
natural pairing metric I to be preserved. The natural pairing is

< v + ξ, u+ χ >= ıvχ+ ıuξ (82)

In a coordinate basis (∂µ, dx
ν) where we represent v + ξ as (v, ξ)t, the relation in Equation (82) may be

written as [30]:

(v, ξ) I

(
u

χ

)
=

(
0 vχ

uξ 0

)
(83)

so that

I =

(
0 1

1 0

)
(84)

and preservation of I by J means
J tIJ = I (85)

The specialization to Generalized Kähler Geometry (GKG) occurs when we have two commuting GCS’s[
J (1),J (2)

]
= 0 . (86)

This allows the definition of a metric (this is really a local product structure as defined but appropriate
contractions with I makes it a metric) G ≡ −J (1)J (2) which satisfies

G2 = 1 (87)

The definition of GKG requires this metric to be positive definite.
The relation of GKG to bi-Hermitian geometry is given by the following “Gualtieri map”:

J (1,2) =

(
1 0

B 1

)(
J (+) +±J (−) −(ω−1

(+) ∓ ω
−1
(−))

ω(+) ∓ ω(−) −(J t(+) +±J t(−))

)(
1 0

−B 1

)
(88)
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which maps the bi-Hermitian data into the GK data. When H = 0 the first and last matrix on the right
hand side represent a “B-transform” which is one of the automorphisms of the Courant bracket, but here
H 6= 0 in general.

For the Kähler case, J (1,2) in Equation (88), and G reduce to

J (1) =

(
J 0

0 −J t

)
, J (2) =

(
0 −ω−1

ω 0

)
, G =

(
0 g−1

g 0

)
(89)

where J is the complex structure, ω is the corresponding Kähler form and g is the Hermitian metric.
This fact is the origin of the name Generalized Kähler coined by Gualtieri [60].

9. N = (2, 2) , d = 2 Sigma Models Off-Shell

The N = (1, 1) discussion of GHR identified the geometry of the sigma models that could be
extended to have N = (2, 2) supersymmetry, but they found closure of the algebra only when the
complex structures commute, i.e., on ker[J (+), J (−)], in which case they gave a full N = (2, 2)

description in terms of chiral and twisted chiral fields. In this section we extend the discussion to the
non-commuting case and describe the general situation following [32]. Earlier relevant discussions may
be found in [61–64].

The d = 2,N = (2, 2) algebra of covariant derivatives is

{D±, D̄±} = ±i∂
++
=

, {D±,D±} = 0

{D±,D∓} = 0 , {D±, D̄∓} = 0 (90)

A chiral superfield φ satisfies the same constraints as in d = 4:

D̄±φ = D±φ̄ = 0 (91)

but in d = 2 we may also introduce twisted chiral fields χ that satisfy

D̄+χ = D+χ̄ = 0

D−χ = D̄−χ̄ = 0 (92)

The sigma model action

S =

∫
d2θd2θ̄K(φ, φ̄, χ, χ̄) (93)

then precisely yields the GKG on ker[J (+), J (−)], as may be seen by reducing the action to a
N = (1, 1)-formulation. Denoting the (1, 1) covariant derivatives by D± and the generators of the
second supersymmetry Q± we have

D± :=
1√
2

(D± + D̄±)

Q± := i
1√
2

(D± − D̄±) (94)

Note that this formulation shows that both the metric and the H-field have K as a potential

Gφφ̄ = Kφφ̄ , Gχχ̄ = −Kχχ̄

H = ∂̄χ∂ φ∂̄φK + ∂χ∂φ∂̄φK + ∂̄φ∂φ∂̄χK − ∂φ∂φ∂̄χK (95)
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where derivatives on K are understood in the first line, and the second line is a three-form written in
terms of the holomorphic differentials:

d = ∂φ + ∂̄φ + ∂χ + ∂̄χ (96)

See [65] for a more detailed discussion of the above coordinatization.
Furthermore, as discussed for GKG in the previous section, the commuting complex structures imply

the existence of a local product structure

P = −J (+)J (−), ∇P = 0 P2 = 1 (97)

To discriminate it from the general GK case we call this a “Bi-Hermitian Local Product” (BiLP)
geometry.

The general case with (ker[J (+), J (−)])⊥ 6= ∅ was long a challenge. (In a number of publications
co-authored by me, (ker[J (+), J (−)])⊥ was incorrectly denoted coker[J (+), J (−)]. I apologize for
participating in this misuse). The key issue here is what additional N = (2, 2) superfields (if any)
would suffice to describe the geometry. The available fields are complex linear Σφ, twisted complex
linear Σχ and semichiral superfields. Of these Σφ are dual to chirals and Σχ to twisted chirals (See
appendix A). The candidate superfields are thus left and right semi-(anti)chirals XL.R which obey

D̄+XL = D+X̄L = 0

D̄−XR = D−X̄L = 0 (98)

A N = (2, 2) model written in terms of these fields reads

S =

∫
d2θd2θ̄K(XL.R, X̄L.R) (99)

and an equal number of left and right fields are needed to yield a sensible sigma model. When reduced
to N = (1, 1) superspace, this action gives a more general model than what we have considered so far.
Using Equation (94) we have the following N = (1, 1) superfield content;

XL ≡ XL|, ΨL− ≡ Q−XL|
XR ≡ XR|, ΨR+ ≡ Q+XR| (100)

where the vertical bar now denotes setting half the fermi-coordinates to zero. Clearly, XL,R are scalar
superfields and hence suitable for theN = (1, 1) sigma model, but ΨL,R± are spinorial fields. They enter
the reduced action as auxiliary fields and are the auxiliary N = (1, 1) superfields needed for closure of
the N = (2, 2) algebra when [J (+), J (−)] 6= 0 (see [12]). The structure of such an a N = (1, 1) action is
schematically [29]

S =

∫
d2θd2θ̄(D+XE

−1D−X +D(+XΨ−)) (101)

where E = G+B as before.
In [32] we show that a sigma model fully describing GKG, i.e., ker[J (+), J (−)]⊕ (ker[J (+), J (−)])⊥,

is (away from irregular points, i.e., points where the Poisson structures Equation (103), Equation (108)
change rank)

S =

∫
d2θ2d2θ̄K(XL, X̄LXR, X̄R, φ, φ̄, χ, χ̄) (102)
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where K acts as a generalized Kähler potential in terms of derivatives of which all geometric
quantities can be expressed (locally). This K has the additional interpretation as a generating function
for symplectomorphisms between certain sets of coordinates on (ker[J (+), J (−)])⊥, the canonical
coordinates for J (+) and J (−), respectively. The proof of these statements relies heavily on Poisson
geometry [32] and is summarized in what follows.

First, the fact that (φ, χ) and their Hermitian conjugates are enough to describe ker[J (+), J (−)] may
be reformulated using the Poisson-structures [66]

π± ≡ (J (+) ± J (−))G−1 (103)

In a neighborhood of a regular point, coordinates may be chosen such that

πAµ = 0,⇒ J (+)A
µ = J (−)A

µ

πA
′µ = 0,⇒ J (+)A′

µ = −J (−)A′

µ

(104)

It can be shown that A 6= A′ and that we have coordinates labeled (a, a′, A.A′) adapted to

ker(J (+) − J (−))⊕ ker(J (+) + J (−))⊕ (ker[J (+), J (−)])⊥ (105)

where

J± =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 Ic 0

0 0 0 ±It

 (106)

Here Ic and It have the canonical form

I =

(
i 0

0 −i

)
(107)

We thus have nice coordinates for ker(J (+) − J (−)) ⊕ ker(J (+) + J (−)) = ker[J (+), J (−)], but
(ker[J (+), J (−)])⊥ remains to be described. Here a third Poisson structure turns out to be useful;

σ ≡ [J (+), J (−)]G−1 = ±(J (+) ∓ J (−))π± (108)

Now ker σ = ker π+⊕ker π− so we focus on (ker σ)⊥. The symplectic leaf for σ is (ker[J (+), J (−)])⊥

and the third Poisson structure also has the following useful properties [67]:

J±σJ±t = −σ
σ = σ(2,0) + σ̄(0,2)

∂̄σ(2,0) = 0 (109)

where the holomorphic types are with respect to both complex structures. To investigate the
consequences of Equation (109) it is advantageous to first consider the case when ker[J (+), J (−)] = ∅.
It then follows that σ is invertible and its inverse Ω is a symplectic form;

Ω = σ−1, dΩ = 0 (110)
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We may chose coordinates adapted to J (+)

J (+) =

(
Is 0

0 Is

)
(111)

In those coordinates we have from Equation (109) that

Ω = Ω
(2,0)
(+) + Ω̄

(0,2)
(+)

∂Ω
(2,0)
(+) = 0 = ∂̄Ω̄

(0,2)
(+) (112)

which identifies Ω
(2,0)
(+) as a holomorphic symplectic structure. The coordinates may then be further

specified to be Darboux coordinates for this symplectic structure

Ω = dqa ∧ dpa + c.c. (113)

The same derivation with J (+) replaced by J (−) gives a second set of Darboux coordinates which are
canonical coordinates for J (−) and where

Ω = dQa′ ∧ dP a′ + c.c. (114)

Clearly the two sets of canonical coordinates are related by a symplectomorphism. Let K(q, P ) denote a
generating function for this symplectomorphism. Expressing all our quantities in the mixed coordinates
(q, P ), we discover that the expressions for J (±), Ω, G = Ω[J (+), J (−)], ... are precisely what we (see
also [12,64] for partial results) derived from the sigma model action Equation (102) provided that we
identify the coordinates (q, P ) with (XL,XR) (and the same for the Hermitian conjugates).

In the general case when [J (+), J (+)] 6= ∅, we again get agreement, provided that the coordinates
indexed A and A′ in Equation (106) are identified with the chiral and twisted chiral fields (φ, χ). We
thus have a one to one correspondence between the description covered by the sigma model and all of
[J (+), J (+)], i.e., for all possible cases.

10. Linearization of Generalized Kähler Geometry

The generalized Kähler potential K(XL, X̄L,XR, X̄R, φ, φ̄, χ, χ̄) yields all geometric quantities, but
as non-linear expressions (dualizing a BiLP to (twisted) complex linear fields yields a model with
similar nonlinearities) in derivatives of K (unlike the case Equation (95)). In [34] we show that these
non-linearities can be viewed as arising from a quotient of a higher dimensional model with certain null
Kac–Moody symmetries. To illustrate the idea, we first consider an example.

10.1. A Bosonic Example

Consider a Lagrangian of the form
L1 := AµAµ (115)

Following Stückelberg, we may think of this as a gauge fixed version of the gauge-invariant Lagrangian

L2 := DµϕDµϕ (116)
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with Dµϕ := ∂µϕ+ Aµ and gauge invariance

δϕ = ε

δAµ = −∂µε (117)

Finally, the Lagrangian L2 can in turn be thought of as arising through gauging of the global translational
symmetry δϕ = ε in a third Lagrangian

L3 := ∂µϕ∂µϕ (118)

A slightly more elaborate example is provided by the following sigma model Lagrangian;

L̃1 := Gab(φ)∂µφa∂µφb + 2Ga(φ)∂µφaAµ +G(φ)AµAµ (119)

where Aµ is an auxiliary field. Following the line of reasoning above, this Lagrangian may be thought
of as a gauge fixed version of

L̃2 := Gab(φ)∂µφa∂µφb + 2Ga0(φ)∂µφaDµϕ+G00(φ)DµϕDµϕ (120)

where Dµ is as defined above, Ga0 ≡ Ga, G00 ≡ G and the Stückelberg field ϕ ≡ φ0. In turn L̃2 is the
gauged version (in adapted coordinates) of the Lagrangian

L̃3 := Gij(φ)∂µφi∂µφ
j , i = 0, a (121)

whose global symmetry is given by the isometry

∂0Gij = 0 (122)

We see that eliminating the auxiliary field in L̃1 is tantamount to extremizing L̃2 with respect to the gauge
field, i.e., to constructing a quotient of the Lagrangian L̃3 with respect to its isometry. The only remaining
question seems to be if varying the gauge-fixed L̃1 is the same as varying L̃2 (modulo gauge-fixing). The
resulting Aµ’s differ by a gauge-transformation ∂µϕ. Explicitly:

δL̃1 = 0⇒ −Aµ =
Ga∂µφ

a

G

δL̃2 = 0⇒ −(∂µϕ+ Aµ) =
Ga0∂µφ

a

G00

(123)

10.2. The Generalized Kähler Potential

We apply the procedure described above to a semichiral sigma model. Most of the rest of this section
is taken directly from [34,35] where more details may be found.

Consider the generalized Kähler potential

K(XL,R, X̄L̄,R̄) (124)

where XL,R are left and right semi-chiral N = (2, 2) superfields:

D̄+XL = 0 = D̄−XR (125)
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We descend to N = (1, 1) as in Equation (100) by defining components

XL = XL|, ΨL− = Q−XL|
XR = XR|, ΨR+ = Q+XR| (126)

which satisfy

Q+Ψ = JD+ΨL−, Q−ΨL− = −i∂=XL (127)

Q−ΨR+ = JD−ΨR+, Q+ΨR+ = −i∂=XR (128)

The N = (1, 1) form of the Lagrangian is

(
D+XL ΨL+ D+XR ΨR+

)
E


D−XL

ΨL−

D−XR

ΨR−

 (129)

where

E =


0 KLL + IKLLI IKLRJ 0

0 0 0 0

0 KRL 0 0

KRL IKRLI KRR + IKRRI 0

 (130)

Here we use a short hand notation where, e.g., KLR denotes the matrix of second derivatives of the
potential Equation (124) with respect to both bared and un-bared left and right fields. Also the canonical
complex structures I is defined in Equation (107). Notice that neither ΨL+ nor ΨR− occur in the action.

10.3. ALP and Kac–Moody Quotient

The procedure L̃1 → L̃2 → L̃3 outlined in Section 10.1 applied to the present case entails the
replacements (ΨL−,ΨR+)→ (∇−ϕL,∇+ϕR)→ (D−ϕL, D+ϕR) with L̃1 given by Equation (129), and
where

∇±ϕR/L := D±ϕR/L + ΨR/L± (131)

The gauge invariance of L̃2 is

δϕR/L = εR/L , δΨR/L± = −D±εR/L (132)

which gauges the following “global” invariance of L̃3:

δϕR/L = εR/L , D±εR/L = 0 (133)

Since the matrix E in Equation (130) is independent of ϕR/L, invariance under Equations (117) and
(133) is immediate. Using the metric G := 1

2
(E + Et) one also verifies that the Killing-vectors

kR :=


0

0

0

εR

 , kL :=


0

εL

0

0

 (134)
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are null-vectors. Furthermore, the constraints in Equation (133) imply

D+kR = 0

D−kL = 0

∂++kR = 0

∂=kL = 0 (135)

or covariantly [68]
∇(+)kLA = 0 = ∇(−)kRA (136)

with ∇(±) defined in Equation (73). These relations identify the global symmetries as null Kac–Moody
isometries.

After applying the procedure outlined above, we obtain a Lagrangian L̃3. It is then useful to introduce
a definition from [34]:

The space corresponding to L̃3 is the N = (1, 1) form of the Auxiliary Local Product space (ALP) for
the N = (2, 2) Lagrangian L̃1 in Equation (129).

In other words, the ALP is given by the action

(
D+XL • D+XR D+ϕR

)
E


D−XL

D−ϕL

D−XR

•

 (137)

where E is the matrix given in Equation (130), the bullets denote the decoupled ΨL+,ΨR−, and the
Lagrangian is invariant under the global Kac–Moody isometry Equation (134).

10.3.1. Kac–Moody Quotient in (1, 1)

The Lagrangian Equation (137) is an equivalent starting point for deriving the GK geometry for the
target space of Equation (129): To recapitulate from Section 10.1, this proceeds by gauging the isometry
to obtain the L̃2 Lagrangian

(
D+XL • D+XR D+ϕR + ΨR+

)
E


D−XL

D−ϕL + ΨL−

D−XR

•

 (138)

Elimination of the gauge fields (cf. Equation (123));

δΨL− ⇒ D−ϕL + ΨL− = −JK−1
LRJ(KRR + JKRRJ)D−XR − JK−1

LRJKRLD−XL

δΨR+ ⇒ D−ϕR + ΨR+ = −JK−1
RLJ(KLL + JKLLJ)D−XL − JK−1

RLJKLRD−XR (139)
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yields the quotient metric and B-field from E:

E =

(
CLLK

−1
LRJKRL JKLRJ + CLLK

−1
LRCRR

−KRLJK
−1
LRJKRL −KRLJK

−1
LRCRR

)
(140)

where, suppressing indices on the two by two complex matrices,

C := [J,K] (141)

The corresponding Lagrangian is(
D+XL D+XR

)
E

(
D−XL

D−XR

)
(142)

10.3.2. Kac–Moody quotient in (2, 2)

As an alternative, we may perform the Kac–Moody quotient in (2, 2) superspace. Very briefly, this
goes as follows:

In the generalized potential we replace the semi-chiral fields by sums of chiral and twisted chiral
fields according to

K(XL, X̄L,XR, X̄R, φ, φ̄, χ, χ̄)

−→ K(φL + χL, φ̄L + χ̄L, φR + χ̄R, φ̄R + χR, ....) (143)

This doubles the degrees of freedom in the semi sector but the corresponding action has a
Kac–Moody symmetry

δφL,R = λL,R

δχL = −λL
δχR = −λ̄R (144)

where the parameters satisfy

D̄±λL = D−λL = 0 , ∂=λL = 0

D̄±λR = D+λR = 0 , ∂++λR = 0 (145)

To keep the same degrees of freedom as in the original model, we gauge the Kac–Moody symmetry
which reintroduces semi-chiral fields:

K(φL + χL, φ̄L + χ̄L, φR + χ̄R, φ̄R + χR, ....)

−→ K(φL + χL + XL, φ̄L + χ̄L + X̄L, φR + χ̄R + XR, φ̄R + χR + X̄R, ...) (146)

The local complex Kac–Moody symmetry is now

δφL,R = ΛL,R

δχL = −Λ̃L

δχR = − ¯̃ΛR
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δXL,R = −ΛL,R + Λ̃L,R (147)

The equivalence to the generalized potential is seen by going to a gauge where the “φ+χ” terms are zero.
For comparison, we descend to N = (1, 1) via the identification

XL = (φL + χL)| , ψL− = Q−(φL + χL)| = ID−(φL − χL) ≡ ID−ϕL

XR = (φR + χ̄R)| , ψR+| ≡ ID+ϕR (148)

This gives the N = (1, 1) action in terms of the complex scalar fields XL,R and ϕL,R, with the
Kac–Moody generated by the null Killing vectors Equation (134). These corresponding isometries may
be used in a quotient to give precisely the nonlinear expressions in terms of derivatives of K that we
found in Equation (140). They arise from

Eµν = Eµν − kLµh−1kRν , h ≡ kRGkL (149)

where Eµν are the XL,R components in Equation (130). Note that the existence of a left and a right
isometry generalizes the construction in Equation (44) slightly, to allow for a B-field.

11. Projective Superspace

Typically, the N = (2, 2) formulation of the N = (4, 4) models require explicit transformations
on the N = (2, 2) superfields that close to the supersymmetry algebra on-shell. This non-manifest
formulation makes the construction of new models difficult. Below follows a brief description of a
superspace where all supersymmetries are manifest. This projective superspace (The name refers to the
projective coordinates on CP1 =: P1 being used. It is really a misnomer in that it is unrelated to the usual
definition of projective spaces) [6–19] has been developed independent of harmonic superspace [69].
The relation between the two approaches was first discussed in [70] and more recently in [71]. A key
reference for this section is [72] and the review [73].

A hyperkähler space T supports three globally defined integrable complex structures I, J,K obeying
the quaternion algebra: IJ = −JI = K, plus cyclic permutations. Any linear combination of these
aI + bJ + cK is again a complex structure on T if a2 + b2 + c2 = 1, i.e., if {a, b, c} lies on a two-sphere
S2 w P1. The Twistor space Z of a hyperkähler space T is the product of T with this two-sphere
Z = T × P1. The two-sphere thus parametrizes the complex structures and we choose projective
coordinates ζ to describe it (in a patch including the north pole). It is an interesting and remarkable fact
that the very same S2 arises in an extension of superspace to accommodate manifestN = (4, 4) models.

Although projective superspace can be defined for different bosonic dimensions, we shall remain in
two. Here the algebra of N = (4, 4) superspace derivatives is

{Da±, D̄b
±} = ±iδba∂++

=

, {Da±,Db±} = 0

{Da±,Db∓} = 0 , {Da±, D̄b
∓} = 0 (150)

We may parameterize a P1 of maximal graded Abelian sub-algebras as (suppressing the spinor indices)

∇(ζ) = D2 + ζD1 , ∇̄(ζ) = D̄1 − ζD̄2 (151)
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where ζ is the coordinate introduced above, and the bar on ∇ denotes conjugation with respect to a real
structure R defined as complex conjugation composed with the antipodal map on P1 w S2. The two new
covariant derivatives in Equation (151) anti-commute

{∇, ∇̄} = 0 (152)

They may be used to introduce constraints on superfields similarly to how theN = (2, 2) derivatives are
used to impose chirality constraints in Section 9. Superfields now live in an extended superspace with
coordinates ξ, ζ, θ. The superfields Υ we shall be interested in satisfy the projective chirality constraint

∇Υ = ∇̄Υ = 0 (153)

and are taken to have the following ζ-expansion:

Υ =
∑
i

Υiζ
i (154)

When the index i ∈ [0,∞) the field Υ is analytic around the north pole of the P1 and consequently
called an arctic multiplet. For tropical and antarctic multiplets see [17]. We use the real structure acting
on superfields, R(Υ) ≡ Ῡ, to impose reality conditions on the superfields. An O(2n) multiplet is thus
defined via

Υ ≡ η(2n) = (−)nζ2nῩ (155)

The expansion Equation (154) is useful in displaying the N = (2, 2) content of the multiplets. Using
the relation Equation (151) to the N = (2, 2) derivatives in Equation (153) we read off the following
expansion for an O(4) multiplet Equation (155):

η(4) = φ+ ζΣ + ζ2X − ζ3Σ + ζ4φ̄ (156)

with the componentN = (2, 2) fields being chiral φ, unconstrainedX and complex linear Σ. A complex
linear field satisfies

D̄2Σ = 0 (157)

and is dual to a chiral superfield (see the appendix). A general arctic projective chiral Υ has the expansion

Υ = φ+ ζΣ +
∞∑
i=2

Xiζ
i (158)

with all Xi’s unconstrained.

11.1. The Generalized Legendre Transform

In this section we review one particular construction of hyperkähler metrics using projective
superspace introduced in [11].

An N = (4, 4) invariant action for the field in Equation (158) may be written as

S =

∫
D2D̄2F (159)
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with
F ≡

∮
C

dζ

2πiζ
f(Υ, Ῡ; ζ) (160)

for some suitably defined contour C. Eliminating the auxiliary fields Xi by their equations of motion
will yield an N = (2, 2) model defined on the tangent bundle T (T ) parametrized by (φ,Σ). Dualizing
the complex linear fields Σ to chiral fields φ̃ the final result is a supersymmetricN = (2, 2) sigma model
in terms of (φ, φ̃) which is guaranteed by construction to have N = (4, 4) supersymmetry, and thus to
define a hyperkähler metric. In equations, these steps are:
Solve the equations of motion for the auxiliary fields (techniques for this were developed in [74]):

∂F

∂Υi

=

∮
C

dζ

2πiζ
ζ i
(
∂

∂Υ
f(Υ, Ῡ; ζ)

)
= 0 , i ≥ 2 (161)

Solving these equations puts us on N = 2-shell, which means that only the N = (2, 2) component
symmetry remains off-shell. (In fact, insisting on keeping the N = (4, 4) constraints Equation (153)
will put us totally on-shell.) InN = (2, 2) superspace the resulting model, after eliminating Xi, is given
by a Lagrangian K(φ, φ̄,Σ, Σ̄). This is finally dualized to K̃(φ, φ̄, φ̃, ¯̃φ) via a Legendre transform

K̃(φ, φ̄, φ̃, ¯̃φ) = K(φ, φ̄,Σ, Σ̄)− φ̃Σ− ¯̃φΣ̄

φ̃ =
∂K

∂Σ
, ¯̃φ =

∂K

∂Σ̄
(162)

11.2. Hyperkähler Metrics on Hermitian Symmetric Spaces

This section contains an introduction to [26] where the generalized Legendre transform described
in the previous section is used to find metrics on the Hermitian symmetric spaces listed in the
following table:

Compact Non-Compact
U(n+m)/U(n)× U(m) U(n,m)/U(n)× U(m)

SO(2n)/U(n); Sp(n)/U(n) SO∗(2n)/U(n); Sp(n,R)/U(n)

SO(n+ 2)/SO(n)× SO(2) SO0(n+ 2)/SO(n)× SO(2)

The special features of these quotient spaces that allow us to find a hyperkähler metric on their
co-tangent bundle is the existence of holomorphic isometries and that we are able to find convenient
coset representatives.

A simple example of how the coset representative enters in understanding a quotient is given, e.g.,
in [75]. In Rn+1 the sphere Sn forms a representation of SO(n+ 1). The isotropy subgroup at the north
pole p0 of Sn is SO(n). Consider another point p on Sn and let gp ∈ SO(n+ 1) be an element that maps
p0 → p. The complete set of elements of SO(n + 1) which map p0 → p is thus of the form gpSO(n),
or in other words Sn = SO(n + 1)/SO(n). A coset representative is a choice of element in gpSO(n),
and that choice can make the transport of properties defined at the north pole to an arbitrary point more
or less transparent.

An important step in the generalized Legendre transform is to solve the auxiliary field
Equation (161). As outlined in [74] and further elaborated in [76], for Hermitian symmetric spaces
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the auxiliary fields may be eliminated exactly. In the present case, we start from a solution at the origin
φ = 0,

Υ(0) = ζΣ(0) (163)

We then extend this solution to a solution Υ∗ at an arbitrary point using a coset representative. We
illustrate the method in an example due to S. Kuzenko.

Ex. (Kuzenko)

The Kähler potential for P1 is given by

K(φ, φ̄) = ln(1 + φφ̄) (164)

and we denote the metric that follows from this by gφ,φ̄. Here φ is a holomorphic coordinate
which we extend to an N = (2, 2) chiral superfield. To construct a hyperkähler metric
we first replace φ → Υ, and then solve the auxiliary field equation as in Equation (163).
Thinking of CPn as the quotient G1,n+1(C) = U(n + 1)/U(n) × U(1), we use a carefully
chosen coset representative L(φ, φ̄) to extend the solution from the origin to an arbitrary
point. The result is

Υ∗ =
Υ(0) + φ

1−Υ(0)φ̄
=

ζΣ(0) + φ

1− ζΣ(0)φ̄
(165)

To find the chiral multiplet Σ that parametrizes the tangent bundle, we use the definition

Σ ≡ dΥ∗

dζ
|ζ=0 = (1 + φφ̄)Σ(0) (166)

yielding

Υ∗ =
(1 + φφ̄)φ+ ζΣ

(1 + φφ̄)− ζΣφ̄
(167)

The N = (2, 2) superspace Lagrangian on the tangent bundle is then

K(Υ∗, Ῡ∗) = K(φ, φ̄) + ln(1− gφφ̄ΣΣ̄) (168)

The final Legendre transform replacing the linear multiplet by a new chiral field Σ → φ̃

produces the Kähler potential K(φ, φ̄, φ̃, ¯̃φ) for the Eguchi–Hanson metric.

The P1 example captures the essential idea in our construction. The reader is referred to the
papers [26–28] for more examples.

11.3. Other Alternatives in Projective Superspace

Of the two methods for constructing hyperkähler metrics introduced in [4], we have dwelt on the
Legendre transform generalized to projective superspace. The hyperkähler reduction discussed in
Section 6 may also be lifted to projective superspace. Both these methods involve only chiralN = (2, 2)

superfields. When a nonzero B-field is present, the N = (2, 2) sigma models involve chiral, twisted
chiral and semichiral superfields, as discussed in Section 2. For a full description of (generalizations of)
hyperkähler metrics on such spaces, the doubly projective superspace [12] is required. We now briefly
touch on this construction.
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In the doubly projective superspace, at each point in ordinary superspace we introduce one P1 for
each chirality and denote the corresponding coordinates by ζL and ζR. The condition Equation (151)
turns into

∇+(ζL) = D2+ + ζLD1+

∇−(ζR) = D2+ + ζRD1− (169)

with the conjugated operators defined with respect to the real structure R acting on both ζL and ζR. A
superfield has the expansion

Υ =
∑
i,j

Υi,jζ
i
Lζ

j
R (170)

and is taken to be both left and right projectively chiral. We may also impose reality conditions using R,
as well as particular conditions on the components, such as the “cylindrical” condition

Υi,j+k = Υi,j (171)

for some k. Actions are formed in analogy to Equations (159) and (160). TheN = (2, 2) components of
such a model include twisted chiral fields χ, as well as semi-chiral ones XL,R. In fact this is the context
in which the semi-chiral N = (2, 2) superfields were introduced [12]. Hyperkähler metrics derived in
this superspace are discussed in [14]. An exciting project is to merge this picture with the results in [34].
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Appendices
A. Chiral-Complex linear duality

In two dimensions, chiral superfields Equation (13) obey

D̄±φ = 0 (A1)

and twisted chiral superfields χ obey
D̄+χ = D−χ = 0 (A2)

and the complex conjugate relations. They are related via Legendre transformations to complex linear
Σφ and twisted complex linear Σχ superfields obeying

D̄2Σφ = 0 = D̄+D−Σχ (A3)
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and the complex conjugate relations.
A parent action which relates a BiLP generalized Kähler potential K(φ, φ̄, χ, χ̄) to its dual

U(Σφ,Σφ,Σχ,Σχ) is
K(X, X̄, Y, Ȳ )− ΣφX − ΣφX̄ − ΣχY − ΣχȲ (A4)

Variation of the (twisted) complex linear fields constrains X, X̄, Y, Ȳ to be φ, φ̄, χ, χ̄ and K(φ, φ̄, χ, χ̄)

is recovered. On the other hand, the X, X̄, Y, Ȳ field equations are

KX − Σφ = 0 , KX̄ − Σφ = 0 , KY − Σχ = 0 , KȲ − Σχ = 0 (A5)

Assuming that they can be solved for X, X̄, Y, Ȳ as functions of the (twisted) complex linear fields we
find the Legendre transformed potential U(Σφ,Σφ,Σχ,Σχ) when the solutions are plugged back into
Equation (A4).

The above discussion is purely local. To consider global issues, one must take into account gluing of
the potential between patches. In the BiLP case the allowed change between patches Oa and Ob is given
by holomorphic coordinate transformations the (generalized) Kähler gauge transformations.

Let us look at Kähler gauge transformations, restricting to the case with no twisted chiral fields for
simplicity. We thus have

K̃(φ, φ̄) = K(φ, φ̄)− F (φ)− F̄ (φ̄) (A6)

which via a holomorphic coordinate transformation φ′ = F (φ) is equivalent to

K(φ′, φ̄′) = K(F−1(φ′), F̄−1(φ̄′))− φ′ − φ̄′ (A7)

One may ask what this freedom corresponds to in the dual model where no ambiguity of the same
type exists.

The dual to K is found from the Legendre transform with parent action

K(X, X̄)− ΣφX − ΣφX̄ (A8)

and reads

U(Σφ,Σφ) = K
(
X(Σφ,Σφ), X̄(Σφ,Σφ)

)
− ΣφX(Σφ,Σφ)− ΣφX̄(Σφ,Σφ) (A9)

after solving
KX − Σφ = 0 , KX̄ − Σφ = 0 (A10)

The parent action to K̃ is best considered after the coordinate transformation Equation (A7):

K(X, X̄)− ΣφX − ΣφX̄

= K
(
F−1(X), F̄−1(X̄)

)
−X − X̄ − Σφ′X − Σφ′X̄

= K
(
F−1(X), F̄−1(X̄)

)
− Σ′φ′X − Σ

′
φ′X̄ (A11)

where Σ′φ′ := 1 + Σφ′ . We find the corresponding dual potential

U(Σφ′ ,Σ′φ′)

= K
(
F−1(X(Σ′φ′ ,Σ

′
φ′)), F̄

−1(X̄(Σ′φ′ ,Σ
′
φ′))
)
− Σ′φ′X(Σ′φ′ ,Σ

′
φ′)− Σ′φ′X̄(Σ′φ′ ,Σ

′
φ′)

(A12)
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after solving

KX
∂F−1

∂X
− Σ′φ′ = 0 , KX̄

∂F̄−1

∂X̄
− Σ

′
φ′ = 0 (A13)

Comparing to Equation (A10) we see that Σ′φ′ as a functions of X is related to Σφ as a function of X via
a holomorphic coordinate transformation depending on the Kähler gauge transformation F and similarly
for their complex conjugate. Explicitly

Σφ = KX(X, X̄)

Σ′φ′ = KX

(
F−1(X), F̄−1(X̄)

) ∂F−1(X)

∂X
(A14)

The relation between U(Σφ′ ,Σ′φ′) and U(Σφ,Σφ) is more complicated due to the linear X terms, but
can be worked out from Equations (A12) and (A9).
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48. Gates, S.J.; Grisaru, M.T.; Roček, M.; Siegel, W. Superspace or one thousand and one lessons in
supersymmetry. Front. Phys. 1983, 58, 1–548.

49. Wess, J.; Bagger, J. Supersymmetry and Supergravity; World Scientific: Princeton, NJ, USA, 1992;
p. 259.

50. Buchbinder, I.L.; Kuzenko, S.M. Ideas and Methods of Supersymmetry and Supergravity: Or a
Walk Through Superspace; Taylor & Francis: Bristol, UK, 1998; p. 656.

51. Salam, A.; Strathdee, J.A. Supergauge transformations. Nucl. Phys. B 1974, 76, 477–482.
52. Berezin, F.; Leites, D. Supermanifolds. Soviet Maths Doklady 1976, 16 1218–1222.



Symmetry 2012, 4 505

53. Berezin, F.A. The Method of Second Quantization; Academic Press: Waltham, MA, USA, 1966;
Volume 24, pp. 1–228.
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