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Abstract: All but one of the copulas in a recent paper in Symmetry by Perlman and Wellner
can be identified as particular members of either the beta or t families of elliptical copulas.
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1. Introduction

In an interesting paper in this journal, Perlman and Wellner ([1]; henceforth PW) explored the copulas
arising from uniform distributions on the unit ball in Rd and, when d = 2, the copulas arising from
certain transformations thereof. Copulas are probability distributions whose marginal distributions are
all uniformly distributed; they have a major role to play in multivariate statistical analysis. Amongst
the more prominent examples of copulas in the statistical literature are “elliptical copulas” which are
those based on marginal transformations to uniformity of distributions whose densities have elliptically
symmetric contours; these, of course, include distributions whose densities have spherically symmetric
contours as special cases. Prominent amongst multivariate elliptical/spherical distributions/copulas are
multivariate t distributions/copulas and multivariate symmetric beta distributions/copulas; in elliptical
distribution form, the latter were introduced as multivariate Pearson Type II distributions ([2,3]), and a
scaled version of the former are called multivariate Pearson Type VII distributions. See Fang et al. [4].

It turns out that all the copulas in PW can be identified as members of one or other of these families
except for their “spherical copula” (PW, Section 4). In two cases (Section 2 below), this is just a
not-especially-helpful renaming of the copulas. In the third (Section 3 below), the link is perhaps
surprising and worthy of some explication.
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2. Immediate Links with Beta Copulas

For clarity, suppose that d = 2. The bivariate spherically symmetric beta distribution has the simple
density function

fb,s(x, y; β) =
β

π
(1− x2 − y2)β−1, x2 + y2 ≤ 1,

for parameter β > 0. Its marginal densities are both symmetric beta distributions on [−1, 1] with
parameter b = β + 1/2 where, for example,

fb(x; b) =
1

22b−1B(b, b)
(1− x2)b−1, x2 ≤ 1.

Clearly, these marginals are uniform if β = 1/2 in which case the bivariate density is

fb,s(x, y; 1/2) =
1

2π

1√
1− x2 − y2

, x2 + y2 ≤ 1,

which is density (6) of PW. That is, PW’s “circular copula” is the bivariate spherically symmetric beta
(or Pearson Type II) copula with parameter β = 1/2 in the above parametrisation. (This identification
says nothing about its uniqueness, as proved by PW, nor, like the other identifications I make in this
note, does it help with obtaining its distribution function—often just called its “copula”—which is a
major focus of PW’s work.)

Now introduce the elliptically symmetric beta distribution associated with the above spherically
symmetric beta distribution. In the usual way (e.g., [4]), it arises by linearly transforming the random
variables that follow the spherically symmetric beta distribution by premultiplying their vector (X, Y )T

by a square root of the matrix

Σ =

 1 ρ

ρ 1

 ,
where −1 < ρ < 1 turns out to be the correlation coefficient. The resulting density, in a standard
parametrisation, is

fb,e(x, y; β) =
β

π
√

1− ρ2

(
1− x2 − 2ρxy + y2

1− ρ2

)β−1
, x2 − 2ρxy + y2 ≤ 1− ρ2.

When β = 1/2 and ρ = sin γ, this can be seen to equate to (32) of PW. That is, PW’s “one-parameter
family of elliptical copulas” is the bivariate elliptically symmetric beta (or Pearson Type II) copula with
parameter β = 1/2 in the above parametrisation. Algebraically, the non-standard derivation of this
distribution by PW (Section 5) arises from explicitly working directly with the Cholesky square root of
Σ, essentially their (29).

3. Less Immediate Links with t Copulas

In their Section 6, PW observe that if {X, Y } are the random variables distributed according to the
“circular copula”, then the non-linearly transformed variables {U, V } where

U =
X√

1− Y 2
, V =

Y√
1−X2
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are marginally uniformly distributed and hence jointly distributed according to a copula. In their
Proposition 6.1, PW show this copula to have density

cPW (u, v) =
1

π

√
(1− u2)(1− v2)

(1− u2v2)2
, − 1 ≤ u, v ≤ 1.

I now observe that this is the bivariate spherically symmetric t copula with degrees of freedom 2. (I have
not seen this simple formula for, in short, the t2 copula density published anywhere before.)

To verify this claim, start from the density of the bivariate spherically symmetric t distribution, again
simple and given by

ft,s(x, y; ν) =
1

2π

1

(1 + (x2 + y2)/ν)(ν/2)+1
, x, y ∈ R2.

Here, the parameter ν > 0, for reasons concerned with sampling derivations of such distributions, is
known as the degrees of freedom (henceforth d.f.). As is well known, its marginal densities are both
(“Student”) t distributions on ν d.f. The tν copula density on [0, 1]× [0, 1] can then be derived from ft,s

via the formula (e.g., Nelsen [5])

c†t(w, z; ν) =
ft,s(F

−1
ν (w), F−1ν (z); ν)

fν(F−1ν (w))fν(F−1ν (z))
, 0 ≤ w, z ≤ 1.

Here, fν and Fν are the density and distribution functions of the univariate tν distribution. A further linear
transformation from [0, 1]× [0, 1] to [−1, 1]× [−1, 1], as in PW, then sees the tν copula density become

ct(u, v; ν) =
1

4
c†t

(
1 + u

2
,
1 + v

2
; ν
)
, − 1 ≤ u, v ≤ 1.

In general, Fν involves the incomplete beta function but, as is well known in the case of ν = 1 (the
Cauchy case) and under-appreciated in the case of ν = 2 (Jones [6]), in each of those two cases it reduces
to a simple invertible formula. In particular,

f2(x) =
1

(2 + x2)3/2
, F2(x) =

1

2

(
1 +

x2√
2 + x2

)
, F−12 (w) =

2w − 1√
2w(1− w)

.

Using these formulae and that of ft,s(x, y; 2) in c†t(w, z; 2) results in ct(u, v; 2) = cPW (u, v) by
straightforward algebraic manipulations.

A more interesting route to the same result takes advantage of general relationships between univariate
and bivariate spherically symmetric beta and t distributions. First, let B be a random variable following
the symmetric beta distribution on [−1, 1] with parameter b = ν/2 and let T be a random variable
following the t distribution with parameter ν. The following relationship is a version of one that is long
established (Cacoullos [7,8]) but still relatively little known among statisticians:

B =
T√

ν + T 2
, T =

√
νB√

1−B2
.

Second, let {B1, B2} be random variables following the bivariate spherically symmetric beta distribution
with density fb,s(x, y; ν/2), i.e., with β = ν/2, and let {T1, T2} be random variables following the
bivariate spherically symmetric t distribution with density ft,s(x, y; ν). Then, the relationship between
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{B1, B2} and {T1, T2}, which is also known and is a rather easy consequence of the polar representations
of these bivariate spherically symmetric distributions, is that

Bi =
Ti√

ν + T 2
1 + T 2

2

, Ti =

√
νBi√

1−B2
1 −B2

2

, i = 1, 2.

Recalling PW’s notation that {B1, B2} = {X, Y }, it follows that the random variables

T1 =

√
2X√

1−X2 − Y 2
, T2 =

√
2Y√

1−X2 − Y 2

follow the bivariate spherically symmetric t2 distribution. But marginally transforming {T1, T2} back to
beta marginals (in this case, uniform marginals since b = 1) via Bi = Ti/

√
2 + T 2

i , i = 1, 2, yields a
distribution with the same copula as {T1, T2}—the t2 copula. And

B1 =
T1√

2 + T 2
1

=
X√

1− Y 2
= U, B2 =

T2√
2 + T 2

2

=
Y√

1−X2
= V.

As PW note, their construction of {U, V } “extends readily to generate a [d-dimensional] copula”. I will
now outline briefly how the above argument generalises to show that this copula is the d-dimensional
spherically symmetric t copula with degrees of freedom 2. Start from {X1, ..., Xd} being uniformly
distributed on the unit ball, which still corresponds to a spherically symmetric beta distribution with
β = 1. PW’s elegant conditional argument (p. 594) carries through to the random variables

Ui =
Xi√

1−∑d
j=1,j 6=iX

2
j

, i = 1, ..., d,

following the uniform distribution marginally and hence a copula jointly. The d-dimensional relationship
between spherically symmetric beta and t distributions can be readily shown to be

Ti =

√
νBi√

1−∑d
j=1B

2
j

, i = 1, ..., d.

Then, the argument based on the same marginal transformations back to the beta (uniform) hold as for
d = 2. In d dimensions, the t2 copula density on [−1, 1]d actually turns out to be

ct(u1, ..., ud) =
Γ((d/2) + 1)

πd/2

∏d
i=1(1− u2i )(d−1)/2(∏d

i=1(1− u2i ) +
∑d
i=1 u

2
i

∏d
j=1,j 6=i(1− u2j)

)(d/2)+1
.

(It is not clear how much, if anything, this identification would have helped PW with their task of
obtaining its distribution function.)

4. Conclusions

Most of the copulas in PW ([1]) have been identified as either beta or t copulas. The simple explicit
form of what has been shown in Section 3 to be the spherically symmetric t2 copula density is an
interesting byproduct of PW’s work.
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