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Abstract: The theory of Frame transformation relations between the states of Born 

Oppenheimer and the weak coupling approximations is developed for polyatomic 

molecules. The symmetry relations are a generalization of the frame transformation 

relations derived by Harter and Crogman for coupled rotor molecules. A key internal 

symmetry label (named “soul”) is defined so that it remains a constant label for frame 

transformation relations, and is conserved during vibronic transitions, ionization, and even 

dissociation provided the nuclear spin-rotation interaction is relatively small. Simplified 

procedures are given for obtaining selection rules, statistical weights, and matrix elements 

of multipole operators for common molecules having various point symmetries. 
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1. Introduction 

It is well known that permutations or symmetric groups have an important role in the physics of 

many-body systems. Their importance stems from the fact that a system of identical particles has 

permutational symmetry and there exists an inter-relation between the permutation and the unitary 

groups. It is the theory of group representations that physicists use to solve and understand a variety of 

problems; the work of Frobenius in the 19th century and others such as Young [1], Yamanouchi [2,3], 
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Littlewood [4], and Gel’fand [5–7] have established the theory of permutational group representations 

as a powerful tool in spite of the fact that the theory is quite difficult. With the aid of computers, the 

group representations theory has become a remarkably effective tool for the modern physicist. 

The theory of permutation group representations is quite useful to describe many phenomenon of 

molecules, ions, and radicals which are made of identical points like particles (electrons, nuclei, atoms, 

and molecular sub-complexes such as CH3). Algorithms for representations, dimensions and characters 

that were developed by Shur [8], Littewood [4], Yamanouchi [2,3], Robinson [9], Coleman [10], 

Harter [11] and others act as a powerful tool to explore the symmetry dynamics of molecular systems. 

Symmetry operations involving interchange of identical particles by rotations and reflections are the 

reasons that finite point groups such as Dm, Cm, Oh and Td are important symmetries. 

Experience has taught us that elementary quantum objects with the same quantum numbers are 

indistinguishable and mathematical description of multi-quantum states must not lead to a new 

quantum state due to a permutation of constituents. Furthermore, Fermi-Pauli and Bose-Einstein’s 

permutational symmetry principles strongly restrict the allowed quantum configurations, spectra, and 

spin states. This results ultimately in having only the particular constituents in the periodic atomic 

chart, the chart of the Nuclides, and finally in the allowed elementary particles of the standard  

quark QCD. 

Harter et al. [12] have developed an approximate theory for high J spin-rotational levels and very 

high resolution spectra of octahedral XY6 molecules. Additionally, Harter and Patterson [13] were 

among the first to apply tableaus to molecular spin states and statistical weight calculations. The  

spin-statistics theorem says that the systems with integer spins are bosons, that is, symmetric to all 

permutations while the systems with half-integer spins are fermions, that is, antisymmetric to odd 

permutations. This theorem has a rather difficult proof based on the PCT theorem [14] and quantum 

field theory. This symmetry principle will influence all other symmetries defined for multi-particle 

states, for example, the possible values of the total angular momentum of molecules as discussed 

below. The effects of Spin-statistics can be rather subtle, one example is the influence of nuclear spins 

on the quantum numbers of molecules which is seen in the difference between ortho- and  

para-hydrogen. In the ortho form, the two proton spins are parallel, but in the para form they are paired 

to a total spin of 0. As a result of the fermion characteristic of the constituent protons, the allowed 

rotational degeneracies of the two forms are different, thus giving different heat capacities. The 

changes in the proton spin states are normally very slow, making the two forms appear as two 

macroscopically different gases. 

Level and spectral clusters, and related tunneling dynamics are intimately related to nuclear, atomic, 

or molecular permutations. However, floppy molecules do operations that transcend the geometry of 

3D crystal point group operations. One of the earliest attempts of permutation operations to non-rigid 

molecular symmetry was put forward by Longuet-Higgins [15]. He classified the spin states and states 

motions for molecular symmetry systems such as ethane and hydrazine. Longuet-Higgins points out 

that there are certain symmetry elements of non-rigid molecules; for example, the twisting of ethane 

which leads to configurations which cannot be brought into near-coincidence with the original one by a 

simple rotation of the whole molecule in space. The work of Hougen et al. [16], Harter et al. [17–22], 

and Bunker and Jensen [23] have allowed for an easier approach to compute spin weight, and 

rovibration wavefunctions, and to open new avenues to study large amplitude motions. In one 
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approach, Groner [24] has tried to identify pinwheel rotations with crystal space groups, that is, point 

groups with translations. Harter and Patterson pointed out that the eigenstates of the system must be 

based off of the irreducible representation of Sm. This means that we can use the Young tableau 

labeling schemes to label the eigenstates of the systems.  

In this paper, we will apply the techniques developed and used by Harter and Patterson [17–22]. 

The main goal is to attempt to answer the question of how molecular species come about due to some 

kind of coupling interactions in the strongly and weakly coupled regimes, which allows for insight into 

large amplitude motion of molecular systems. In this paper, Section 2 extends the frame transformation 

relation for couple rotor systems by Crogman and Harter [25] to include symmetry. A procedure for 

finding the induced symmetry that resulted from various coupled states is there developed; Section 3 

shows how to Young Tableau algebra to compute spin weight for the permutation group; Section 4 

provides a concrete example to illustrate our technique, and Section 5 discusses the various ways to 

couple two diatomics and compute the resulting tunneling matrix. It is hoped that the present work will 

be another step in this direction for a large number of molecular systems, which have some sort of 

geometrical symmetry in their structure. This work is meant to expose the simplest and most powerful 

symmetry analysis methods available. 

2. Symmetry Relation for a Coupled System 

Fano and Chang [26], and Junger et al. [27,28] have worked out a theory that describes the 

phenomenon that comes about for a diatomic molecule coupled to an electron. Harter et al. [12] have 

extended their idea to polyatomic molecules. Their work went a step further by considering the 

symmetry induced as a result of a polyatomic molecule interacting with an electron [12]. By using 

Young tableau’s mathematics, Harter et al. [12] reduced the mathematical complexity involved  

in the symmetry analysis. This provided a convenient way to calculate the spin weight and predict 

what symmetry species were excluded. Spin weights give spectral intensity ratios for different 

symmetry species. Here, we consider the permutation group along with Young tableau  

techniques [11,12,17–22,29,30] for the symmetry of two coupled diatomic molecules. Lemus [31] 

applied the theory of Chen [29] to generate what is known as vibrational symmetry adapted bases. This 

method works because of the isomorphism between the symmetric group and point group. Our 

exploitation of two coupled diatomic molecules allows us to utilize the power of Young tableau for the 

symmetry group and projector analysis as described by Harter et al. [11,12,23,29]. First, we imagine 

more general cases such as listed in tables of Figure 4.4 as illustrated in a previous article by Crogman 

and Harter [25]. 

2.1. Symmetry Effects for Two Coupled Rotors 

The symmetry of any rotor can be written in terms of the Ա (external) × ࣡̅ (internal). If the rotor is 

free, then Ա is R3. However, if it is confined to some crystal matrix, then Ա is the group site symmetry 

of the lattice. When the rotor experiences a homogeneous electric field, the external symmetry Ա is O2. 

On the other hand, ࣡̅ is the internal symmetry of the rotor structure. The fact that a rotor is made up of 

nuclear points means that the real internal symmetry is finite and related to permutations groups. An 



Symmetry 2013, 5                   89 

 

 

external field applied to the orbitals will split into various finite symmetry species according to the 

molecular version of the crystal field theory.  

We will start with the following expressions and develop a base transformation going from a lab 

weakly correlated (LWC) momentum states to a Body Oriented Angular (BOA) momentum 

constricted states of two strongly coupled rotors [25,32]. A bare rotor with finite symmetry (B,b) is 

given in [25] is defined in terms of symmetric rotor waves ܦ௠	௡
ே  as follows: 

௕	௠ݎ
ே஻∗ሺ߶߯ߠሻ ൌ෍ቀܰ

݊
ቚܤ
ܾ
ቁ
∗
௠ܦ ௡
ே∗ ሺ߶߯ߠሻඥሾܰሿ

௡

 (1a)

where ܰ  is the total angular momentum label of rotational group ܴଷ  in three dimensions and 	
ሾܰሿ ൌ √2ܰ ൅ 1. 

The inverse relation as defined in [25] is given by the unitarity of the internal “crystal field”  

coefficient ቀܰ
݊
ቚܤ
ܾ
ቁ. 

ඥሾܰሿܦ௠	௡
ே∗ ሺ߶߯ߠሻ ൌ෍ቀܰ

݊
ቚܤ
ܾ
ቁ ௠ݎ ௕

ே஻ ሺ߶߯ߠሻ∗

஻௕

 (1b)

Let us now consider two rotors of finite symmetry labels (D*,d) for “little “rotor Dℓ and (B*,b) for 

“main” rotor DR. Consequently we can use Equations (1a) and (1b) to write the following (LWC) 

coupled wave function. 

〈ሾܴℓሿௗ		 ௕			ெ
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ቚܦ
݀
൰
∗

൬
ܴ
	݊ோ

ቚܤ
ܾ
൰
∗

௡ℓ௡ೃ

෍ ௠ℓ௠ೃܥ ெ
ℓ					ோ						௃

௠ℓ௠ೃ

௠ℓܦ ௡ℓ
ℓ			∗ ሺ߶߯ߠሻܦ௠ೃ	௡ೃ

ோ				∗ ሺߛߚߙሻ 
(2)

Using the relationship 

ർߛߚߙ; ฬ߯ߠ߶
ܴ		ℓ		ܬ	
݊ோ	݊ℓ	ܯ

඀ 		ൌ ෍ ெ			௠ℓ௠ೃܥ
ℓ ோ ௃

௠ℓ௠ೃ

௠ℓܦ ௡ℓ
ℓ ∗ ሺ߶߯ߠሻܦ௠ೃ ௡ೃ

ோ ∗ ሺߛߚߙሻ 

ൌ෍ܥஃ			௡ೃ			௄
ℓ					ோ					௃

௄∧

௡ℓ	ஃܦ
ℓ			∗ ሺΦΘΞሻܦெ	௄

௃				∗ሺߛߚߙሻ 

	ൌ ൽΦΘΞሺߛߚߙሻฬ
ℓ
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ඁ
 

(3)

derived in a previous work [25] to have transformation the BOA 

〈ሾܴℓሿௗ					௕			ெ
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Following the crystal field relation, Equation (1b) gives the following:  
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Now, an isoscalar coefficient ۧܥ|ܤܣۦ is defined using the finite symmetry Wigner Eckart theorem 

and coupling coefficient ܥ௔				௕		௖
஺			஻		஼ . 

ඨ
ሾܰሿ
ሾܬሿ

෍ ௠ܥ ௡			ெ
ℓ					ே						௃

௠௡ெ

ቀ ℓ
݉
ቚܣ
ܽ
ቁ ቀܰ

݊
ቚܤ
ܾ
ቁ
∗
ቀ ܬ
ܯ
ቚܥ
ܿ
ቁ ൌ ඨ

ሾܤሿ
ሾܥሿ

௔ܥ ௕ ௖
஺			஻		஼ۦሺℓሻܣሺܴሻܤ|ሺܬሻ(6) ۧܥ

Before moving on we will define what we mean by ሺܥܤܣሻ. As in reference [12], ܣ labels the 

internal ࣡̅  symmetry of vibronic activity or excitation” (electronic Σ , Π , Δ , or vibrational ߜ, ,ߨ  ,ߪ
symmetry). When relating the BOA states to the LWC or scattering states of angular momentum ℓ, the 

labels considered will be those ܣ correlates with ℓ:	ुℓ ↓ ࣡̅ ൌ  on the other hand is the ܤ …⊕ܣ⊕⋯

internal ࣡̅ symmetry of bare rotor such that there must exist at least one Young Tableau ሼߤሽ associated 

with each ܽ	ܴܫሺܤሻ of	࣡. As for the label ܥ, this labels the internal ࣡̅ symmetry of constricted rotor by 

writing all IR contained in the tensor product ܤ⊗ܣ ൌ ܥ⊕⋯ ⊕… The total angular momentum 

levels ܬ௣ belonging to each ሺܥܤܣሻ triad are just those correlated with ܥ:	ु௃೛ ↓ ࣡̅ ൌ ⋯⊕ ܥ ⊕… . 

The preceding (LWC) state is then expressed: 

〈ሾܴℓሿௗ					௕			ெ
஽∗		஻∗		௃ 〉 ൌ ෍ۦሺℓሻܣሺܴሻܤ|ሺܬሻۧܥ ൬

ℓ
݊ℓ
ቚܦ
݀
൰
∗

஺஼௡ℓ

෍ඨ
ሾܤሿ
ሾܥሿ

௔ܥ ௕ ௖
஺			஻		஼

௔௖

௡ℓݎ ௔
ℓ	஺∗ሺΦΘΞሻݎெ	௖

௃	஼∗ሺߛߚߙሻ (7)

(Here we consider only the real irreps (B* ≡ B, D* ≡ D) and [C] is the dimension of group irreducible 

representative (IR) of DC). 

This amounts to a transformation between the (LWC) and the (BOA) state. The BOA basis function 

is defined as follows: 

ቚܣܱܤ	ℓܥܣ	ܤ
∗

ܾ
඀ ൌ෍ඨ

ሾܤሿ
ሾܥሿ

௔ܥ ௕ ௖
஺			஻		஼

௔௖

௡ℓݎ ௔
ℓ	஺∗ሺΦΘΞሻݎெ ௖

௃	஼∗ሺߛߚߙሻ (8)

Here the ℓ-rotor A-wave is using the angles (ΦΘΞ) relative to the other rotor’s frame whose 

coordinates are lab-relative (αβχ), and whose quantum labels are (J,C) with R no longer valid. 

However the internal B-symmetry of the big rotor is the same as before and related to its nuclear  

spin state. 

Suppose we begin in the LWC where both rotors have a finite symmetry, and move to the BOA 

basis. Then the transformation Equation (7) takes us from the BOA basis to the LWC basis and an 

inverse transformation Equation (8) does the reverse. According to Equation (7), the symmetry 

coefficient ൬
ℓ
݊ℓ
ቚܦ
݀
൰
∗

 remains as part of the transformation. The ℓ-rotor locks itself as a passenger on 

the rotor whose frame is being observed from the lab, while B is preserved through the transformation 

matrix. In Equation (8), it appears that a new symmetry species A corresponding to the ℓ-passenger is 

defined relative to the rotor labeled by B, while the symmetry label B remains invariant. However, this 

may not be the whole story; it seems that there may be two ways of interpreting Equation (8).  

To compare our result to that of Harter et al. [12], let us assume that the effect of the smaller rotor 

on the larger rotor symmetry is negligible. So the overriding symmetry then would be that of the large 

rotor as treated by Harter et al. [12], where the ℓ-rotor is treated as a symmetry perturbation. This then 

leads to one way to compute A and C symmetry labels as described previously by Harter et al. [12]. 
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But, what if the rotors are comparable or identical? Then other choices of frames may become 

relevant, and each may involve another way of interpreting Equation (8). As in reference [12] the 

symmetry label B may label the “under all” symmetry of “bare” nuclei in the system. Then as we move 

from a LWC basis to the strongly coupled basis, the B label must correlate the permutation symmetry 

of all identical nuclei to the composite geometrical point symmetry (labeled C) for the whole of the 

strongly interacting system. From a mathematical perspective, there is no indication that the symmetry 

label B in the LWC is different in the BOA basis, but physically, the new geometry suggests that B 

cannot remain unchanged; it must correlate with the symmetry of the composite BOA rotor states. If 

the interpretation of B “under all” symmetry species B changes, then both A and C must be  

determined differently. 

Two possible symmetries emerge; one of them specifically corresponds to the larger one of the 

rotors behaving like a miniature “Lab” for the other, so that the symmetry of the small rotor will 

correlate with the frame of the larger body. In other words, the BOA transformation has the larger 

body acting as a lab for the small body that is like a passenger in the frame of the larger body, and 

respects its symmetry. However, the coefficient ൬
ℓ
݊ℓ
ቚܦ
݀
൰
∗

 of the second rotor is transferred to a 

transformation equation such as the equation below: 

ௗܶ
ℓோ௃ሺ஺஻஼ሻ ൌ ෍ۦሺℓሻܣሺܴሻܤ|ሺܬሻۧܥ ൬

ℓ
݊ℓ
ቚܦ
݀
൰
∗

஺஼௡ℓ

 (9)

Unlike the orbiting electron of reference [12], this rotor has a finite symmetry. Moreover, identical 

rotor molecules present the problem of which rotor is “lab” and which is “passenger”. In fact, there can 

be no way to tell. But once the molecule is locked in some particular geometry, then we can begin 

symmetry analysis based upon whatever is the composite symmetry. 

In our recent work [25,33], we have seen the effects of coupling becoming extremely strong 

between the molecules so that it causes them to behave as a single rigid body [25]. Where symmetry is 

concerned, the locking of the two rotors now appears as one body with some new symmetry. Recall 

that B is the symmetry label for the nuclear points in the rigid R-body but now the B symmetry label 

may not be the same as it was in the LWC basis. That being the case, ܤ may correlate to a new 

symmetry belonging to an intersection of the symmetry groups of the two rotor molecules, while the 

symmetry label ܣdescribes the active modes of this composite geometry. 

We begin with the finite symmetries of ܱ஽  and ܱ஻ groups, as they became correlated, the finite 

symmetry ܱ஽   is lost but there is an induced symmetry ܱ஺ that is now correlated to the symmetry 

group ܱ஻. ܱ஺ ൈ ܱ஻ ⊇ ܱ஼ and ܱ஼  is the symmetry group that is correlated to that of ܱଷ and the total 

angular momentum J of the coupled rotor described by ݎெ	௖
௃	஼∗. Also, it is possible that ܱ஼ is a higher 

symmetry as when two diatomic molecules  and  form a ௗܶ molecule . 

Thus, the electron-rotor correlation must be generalized further by these possibilities. An electron 

has no finite internal symmetry only external, therefore, the sum ∑ ൬
ℓ
݊ℓ
ቚܦ
݀
൰
∗

௡ℓ  disappears since ݊ℓ ൌ 0. 

Consequently Equations (7) and (8) reduce to 
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ቚܣܱܤ	ℓܥܣ	ܤ
∗

ܾ
඀ ൌ෍ඨ

ሾܤሿ
ሾܥሿ

௔ܥ ௕ ௖
஺ ஻ ஼

௔ܻ
஺∗ሺΘΞሻݎெ ௖

௃ ஼∗ሺߛߚߙሻ
௔௖

 (10a)

And 

ቤሾܴℓሿ		௕			ெ
		஻∗		௃ ඀ඁ ൌ෍ۦሺℓሻܣሺܴሻܤ|ሺܬሻۧܥ ቚܣܱܤ ℓܥܣ ܤ

∗

ܾ
ܬ
ܯ
඀

஺஼

 (10b)

Thus, the results in Equations (10a) and (10b) are the same as first given by Harter and his 

colleagues [12]. 

2.2. (ABC) Operators and Nuclear Exchange Symmetry 

For the BOA basis there are two groups of symmetry operators that are analogous to the LWC 

symmetry composed of the outer product of	ܱ஺ for the ℓ-rotor, and ܱ஻ for the R-rotor. If we consider 

the case where the BOA composite symmetry is the inner product ܱ஺ ൈ ܱ஻ ൌ ܱ஼ of “rigid rotations” 

then we may apply Equations (10a) and (10b) of electron polyatomic molecule interaction based on the 

symmetry of the bare R-rotor. We have shown above that transformation preserves the finite symmetry 

of the bare rotor with labels (B,b) as seen by combining the symmetry properties to the  

rotor-rotor states.  

௡ℓݎℓ	ഥࡾ ௔
ℓ	஺∗ሺRሻ ൌ෍ܦ௔ᇲ ௔

஺ ௡ℓݎ ௔ᇲ
ℓ ஺∗ ሺRሻ

௔ᇲ

 (11a)

௖	ெݎ௃ࡾ
௃	஼∗ሺRሻ ൌ෍ܦ௖ᇲ ௖

஼ ெݎ ௖
௃ ஼∗

௖ᇲ

ሺܴሻ (11b)

ഥࡾ ൌ ൫ࡾഥ	ℓ,  ௃൯ is defined with respect to body coordinates as described in [12]. We consider a systemࡾ

in which A is weakly coupled to B, but as we turned on the coupling the symmetry is reduced from  
ζA × ζB to ζAB. The internal frame operator ࡾഥ moves the whole universe except for constricted coupled 

systems. We must point out that only operators that move the two systems around together will commute 

with the coupling interaction. We discuss here the symmetry of the general symmetry properties of our 

general BOA states and compare that to reference [12]. Applying Equations (11a) and (11b) to the 

(BOA) state, Equation (7) gives the following: 
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ℓ
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(12)

ࡾ ฬܣܱܤ	ሺܥܣሻ	ܤ
∗

ܾ
ℓ
݊ℓ
ܬ
ܯ
඀ ൌ෍ܦ௕ᇲ ௕

஻ ฬܣܱܤ ሺܥܣሻ ܤ
∗

ܾᇱ
ℓ
݊ℓ
ܬ
ܯ
඀

௕ᇲ

 (13)



Symmetry 2013, 5                   93 

 

 

Thus we conclude that the total internal molecular ߫ symmetry properties are given by the bare rotor 

symmetry label (B,b). This proves that the Harter–Patterson and da Paixao relation [12] for an electron 

coupled with a polyatomic molecule is more general than previously understood. Moreover, the very 
fact that ∑ ௕	௕ᇲܦ

஻
௕ᇲ  multiplies the BOA state vector, implies that the operator ࡾഥ moves both molecules 

rigidly together. This indicates that the symmetry label ܤ is the representation of a new symmetry or 

the intersection of ܱ஽ ൈ ܱ஻. 

2.3. Theory of ABC Symmetry Selection 

The symmetry of	࣡̅஼ is the overall symmetry happening when both rotor wavefunctions are strongly 

correlated. We must remember that the total symmetry is based on ܵ௡  group products  

ܵ௠ ൈ ܵ௡ ൈ … regardless of BOA or LWC or whatever and comes about from fundamental nuclear 

identity. ܵ௡ is the permutation of all nuclei common to both ࣡̅஻ and 	ഥ࣡ ஽. However, the 	ܵ௠ ൈ ܵ௡ ൈ … 

challenge come in determining the symmetry label A. This is the symmetry induced to the rotor with 

angular momentum ℓ by the second rotor to which it is strongly correlated.  

If we consider the case where all nuclei are identical, the “under all” nuclear permutational 

symmetry group is ܵ௡ where n is the number of identical nuclei. But, when the rotor molecules are 
uncorrelated, the relevant permutation symmetry is that of each of the individual rotors, namely ܵ௡భ 

and ܵ௡మ. As they become weakly coupled, the permutation symmetry is ܵ௡భ ൈ ܵ௡మ and corresponds to 

the number of identical nuclei with the coupled system. This symmetry is approximately ܵ௡భ ൈ ܵ௡మ ⊆ ܵ௡ 

since we assume that bonds between the constituent molecules are unbroken. As a result, we start with 

the permutation group ܵ௡ and the outer product of the individual permutation groups of each molecule. 

To begin with, we write following for the two rotors:  

ܵ௡భ ⊃ ࣡ோ̅,
ሺߩ, ,ሻܤ

ܵ௡మ ⊃ ࣡ℓ̅
ሺߣ, ሻܦ

 (14)

൫ܵ௡భ൯  represents the Young tableau irreducible representations whose subduction 	
ఘ൫ܵ௡భ൯ܦ ↓ ோ̅ߦ ൌ. ܦ⨁.

஻ ⊕… , to the group 	࣡̅஻  gives a B symmetry label. So by the Frobenius 

reciprocity, ߩ൫ܵ௡భ൯ is in the induction to ܵ௡భ by ܦ஻൫ߦோ̅൯ ↑ ܵ௡భ ൌ. ܦ⨁.
ఘ ⊕…, where the symbol in the 

parentheses describe a correlation table for each rotor constituent. Since the two constituent rotors are 

interacting then their geometry of the symmetry is described by the product of the external and internal 

symmetry of each rotor that is: ൬
߫ோ
௅஺஻, ோܩ̅
ሺܴ, ሻܤ

൰ ൈ ൬
߫ℓ
௅஺஻, ℓܩ̅
ሺℓ, ሻܦ

൰ 

൬
߫ோ
௅஺஻, ோܩ̅
ሺܴ, ሻܤ

൰ ൈ ൬
߫ℓ
௅஺஻, ℓܩ̅
ሺℓ, ሻܦ

൰ (15)

However, at first, we will only concern ourselves with the internal point symmetry. Thus, the 
symmetry is given by  Z D  Z B

. This new group is a subgroup of the permutation ܵ௡ where n is the 

number of identical nuclei common to both molecules.  

஽ܩ̅ ൈ ஻ܩ̅ ൌ ஻ܩ̅ ≡ ܵ௡భ ൈ ܵ௡మ ⊆ ܵ௡ 

where ݊ଵ ൅ ݊ଶ ൌ ݊ 
(16)
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The first step is to compute the character table of ܵ௡. Next we must perform symmetry analysis in 

both of our bases, namely LWC and BOA basis. As mentioned before for simplicity, we assume the 

simpler case where all nuclei are identical. 

We will start with uncoupled bases and symmetry analysis of the individual constituent rotors. The 
symmetry groups are ܵ௡భ and ܵ௡మ which are subgroups of ܵ௡. In the weakly coupled basis it is assumed 

that the symmetry group is ܵ௡ for a group of identical nuclei. For example two ܪଶ molecules would 

have a symmetric group of ܵସ. We also need a correlation table between ܵ௡ and ܱଷ for the rotation 

group of the entire rotor-rotor system.  

At first, nature reduces the symmetry from ܵ௡ to a lower symmetry since initial chemical bonds 
between individual rotors prevent all n! permutations from being allowed, that is, 	ܵ௡ ⊇ ܵ௡భ ൈ ܵ௡మ . 

Initially, we assume that the molecules will have some freedom to rotate individually, and subjected to 

the coupling between them, give rise to various geometrical structures that may become a final 

geometry if a very strong interaction takes effect. For example, two ܪଶ molecules might later find 

themselves locked into ܦଶ ଶௗܦ ,  or ܦସ  symmetry. While the system is weakly coupled, they move 

through all these geometries giving rise to various states that make up a generalized cluster basis, that 
is, an induced representation basis. In the LWC basis, we have permutation symmetry ܵ௡భ ൈ ܵ௡మ	 

giving to two classes of operators, those that leave the two ܪଶ	molecules together that is bi-cyclic 

operators like (12)(34), and those that move the individual ܪଶ molecules that is, monocyclic operators 

like (12) which is the same as transposition in group theory. 
Therefore, we compute the correlation ܵ௡భ ൈ ܵ௡మ ↑ ܵ௡: This seems like a difficult task, in general, 

but by using Young tableau the procedure becomes easier. To achieve this, we must find the outer 
product using the Frobenius Reciprocity Theorem. If ܵ௡భ ൈ ܵ௡మ is isomorphic to a composite molecular 

point group, then the approach in determining the ܥ label is very easily done. 

The BOA basis is approached if the coupling becomes strong enough to lock our coupled system. 

At this point, we assume that the coupling is so strong that molecules can only vibrate in the planes to 

which they are confined so the angle between them is almost constant. Then we can describe the 

composite system by some geometrical point group of a rigid (or semi-rigid) molecule. 

We now outline a procedure to find the symmetry labels ܣ  and ܥ . We find the “under all” 

permutational symmetry in the BOA constricted situation. Observing the intersection of ࣡̅஽ ൈ ࣡̅஻ 
which is some particular geometry point group gives us the ܤ labels. We defined ܤ to be the symmetry 

label of the identical nuclei within the new arrangement. The derivation of the symmetry species ܥ 

comes from the irreducible modes that are active. When we move to the BOA basis, certain modes 

become active. These active modes have an ܣ (“Activity”) symmetry label. This lets us find ܥ. Once 

the particular point group is determined and the modes that can be excited are found, then	ܥ is just the 

irreducible representation of the outer product of ܣ and ܤ, that is ܥ⨂ܣ ൌ   .ܥ

This gives all the possible symmetry pieces of ܥ.  We will consider an example of  

diatomic–diatomic interaction. Since the overall external symmetry is ܱଷ , knowing ܥ  gives a 

correlation induced between the irrep ܥ  and that of ܱଷ . Similarly, the correlation between the 
irreducible representation of ܱଷ and ࣡̅஽ ൈ ࣡̅஻ or ܵ௡భ ൈ ܵ௡మ  can be computed. The characters of ܴଷ is  

given by  
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݁ܿܽݎ ℓሺ߱00ሻܦ ൌ
݊݅ݏ ቀℓ ൅ ଵ

ଶ
ቁ߱

݊݅ݏ ߱ 2ൗ
 (17)

We derive the character of ܱଷfrom its outer product relation to ܴଷ. 

ܴଷ ൈ ௜ܥ ൌ ܱଷ (18a)



Trace D(w 0 0)

O3

1

  0

r, r2

  120

R2

  180

R, R3

  90

i

  180

I

  180

Ir, Ir2

  120

IR2

  180

IR, IR3

  90

Ii

  180

0 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1

1 3 0 1 1 1 3 0 1 1 1

1 3 0 1 1 1 3 0 1 1 1

2 5 1 1 1 1 5 1 1 1 1

2 5 1 1 1 1 5 1 1 1 1

3 7 1 1 1 1 7 1 1 1 1

3 7 1 1 1 1 7 1 1 1 1

4 9 0 1 1 1 9 0 1 1 1

4 9 0 1 1 1 9 0 1 1 1

5 11 1 1 1 1 11 1 1 1 1

5 11 1 1 1 1 11 1 1 1 1

6 13 1 1 1 1 13 1 1 1 1

(18b)

The frequency ݂஼ሺܬሻ of the irreducible representation of ܥ subduced to ܱଷ is given by 

݂஼ ൌ
1
°ܩ

෍ ߯௚஼
∗
ܿ௚

௖௟௔௦௦௘௦
௖೒చ಴

݊݅ݏ ቀℓ ൅ ଵ

ଶ
ቁ߱

݊݅ݏ ߱ 2ൗ
 

(19)

where ܥ is the irrep label of the point group of the composite rigid body.  

3. Spin Statistical Weights 

One cannot speak of statistical weight without mentioning the extensive review by Bunker and 

Jensen [23], which outlines a procedure to calculate statistical weight for molecular symmetry.  

Hougen [34] has used a classical approach to classify the various labeling schemes of molecular 

symmetry. Alvarez-Bajo et al. [35] revisited group computed spin weight for methane using symmetry 

projection. As pointed out earlier, large amplitude motions may result in configurations that can be 

described by molecular symmetry group as shown by Bunker et al. [23]. However, we consider the 

treatment of such with symmetry permutation groups, which sometimes reveal details not obvious 

from traditional approaches. The power of such approach can be seen in a comparison study done by 

Harter et al. [12] with old techniques used by Hougen [34] to showcase Young tableau as a powerful 

tool that can be used to compute statistical weight. In their work, Harter points out that the tableau 

method gives the same result as long as inversion does not play a dynamical role. In comparing this 

method with that of Hougen [34], Harter shows that it reveals the hidden structure of the inversion 

doublets for various molecular symmetries. 
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The symmetric classification for nuclear wavefunction of a diatomic molecule is done by 

considering its two nuclei. However, symmetry classification may appear ambiguous because it 

depends on the details of the permutation of nuclei. Harter and colleagues [12] have shown how to 

assign Young tableau to the point symmetry species ܤ. Furthermore, n identical nuclei may have one 

or more orbital tableau corresponding to each ܤ labels of the spatial point group, and for each tableau, 

there is just one nuclear spin tableau that describes the permutational properties of the nuclear spin 

wavefunction. This is due to the Bose–Einstein Principle demanding the spin tableau of the nuclear 

state to be identical to its orbital tableau while the spin tableau of the Fermi-Dirac nuclear state is 

conjugated to its orbital tableau. The Bose nuclear states are those with integral spins such as a photon, 

or deuterium nuclei, whereas the Fermi nuclear states are those with half-integer spins such as nuclei 

with odd numbers of nucleons. 

To compute the spin weight one must do a little ܷ௠ algebra. The statistical weight found by using 
the Robinson formula along with the correlation frequencies ஻݂

ఓೞ  give 

஻ܹ ൌ ෍݈ఓೞ

ఓೞ

஻݂
ఓೞ (20a)

where ݈ఓೞ is given in Figure 28 of reference [12] as  

 

(20b)

The hooklength of a box in the tableau is the number of boxes in a “hook” which includes that box 

and all boxes in the line to the right and in the column below it. This formula gives directly the 

number	݈ఓೞ  of nuclear spin states associated with each tableau ሼߤ௦ሽ. The sum of these numbers taken 

over each tableau associated with “soul” label ܤ will be the desired statistical weight. 

These correlation frequencies are quite simple for point groups but not as easy for the permutation 

groups. We will give a few formulas for the permutation group. If for the individual molecules we 

have two nucleons (݊݅݌ݏ	ܫ	 ൌ 	1/2), the necessary ܷ௠ is ܷଶ, three would be ܷସ	since ܫ	 ൌ 	3/2, that is: 

݉ ൌ ܫ2 ൅ 1 (21)

where I is the spin angular momentum. For Bosons: ܫ	 ൌ 	1	use ܷଷ, ܫ	 ൌ 	2	nuclei use ܷହ, and so on. 

For a more detailed approach and understanding of how to use tableau to compute statistical spin 

weight for molecular system, one should consult the work of Harter et al. [12]. 
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4. Coupling between Two Diatomic Molecules 

It is well known that diatomic molecules such as ܪଶ, ܱଶ, and ܦଶ have ܦ∞௛,	symmetry. However, the 

nuclear spins of these molecules are different. ܪଶ has two protons with each spins of ܫ	 ൌ 	1/2, ܱଶ 

nuclear spin is ܫ	 ൌ 	0, and ܦଶ nuclei each have each nuclear spins of ܫ	 ൌ 	1. Thus ܪଶ is fermionic, 

whereas ܱଶ	 and 	ܦଶ are bosonic. The nuclear spins of all elements and their isotopes are very well 

known and can be found in tables of nuclides [36]. 

The spin statistical weight determines the relative intensity of spectra belonging to each ܤ label. ܪଶ 

contain two spin-1/2 protons where the state ܤ ൌ Σ௚ା by its even parity correlates to the antisymmetric 

tableau ሼߤ௦ሽ ൌ ሼ1ଶሽ of singlet (I = 0) spin tableau by Fermi-Dirac rules. The state ܤ ൌ Σఓା belongs to 

the symmetric spin tableau ሼߤ௦ሽ ൌ ሼ2ሽ that is, triplet (ܫ	 ൌ 	1) total spin. One should note that for a 
diatomic molecule with symmetry ܦஶ௛

	
the only choices are ܤ ൌ Σ௚ା or Σఓା. Deuterated hydrogen ܦଶ 

contains two spin-1 deuterons where, by Bose-Einstein rules, the state ܤ ൌ Σఓା	by its parity correlates 

to the ሼߤ௦ሽ ൌ ሼ1ଶሽ	 antisymmetric tableau and	Σ௚ା belongs to the tableau ሼߤ௦ሽ ൌ ሼ2ሽ. The state Σ௚ା has 

spin states of total nuclear spin angular momentum of 	ܵ ൌ 2 and ܵ ൌ 1, while Σఓା is the deuterium 

triplet with  ܵ ൌ 1. However, ܱଶ only has ortho-states species Σ௚ା ൌ ሼ2ሽ. The para species Σఓା are Pauli 

excluded because spin-0 states cannot be antisymmetric.  

We now investigate symmetry structure and levels of two diatomic molecules. We have assumed 

that the interaction is between identical diatomic molecules. The energy levels for two uncoupled ܪଶ 

molecules are shown in Figure 1. As these molecules come into the vicinity of each other, we suppose 

they begin to interact in a weakly correlated state [25].  

Figure 1. Rotational Energy levels of a ܪଶ molecule. 

 



Symmetry 2013, 5                   98 

 

 

In the LWC basis, the symmetry of the molecular system is nearly the ܵସ permutation group, which 

is isomorphic to that of the tetrahedral point ௗܶ. The character table of ܵସ is given in Equation (22) 

where ሼߤሽ represents the irreps of ܵସ. 

S4 1  132  14  23  1234  13 
4  1 1 1 1 1

14  1 1 1 1 1

2, 2  2 1 2 0 0

2,12  3 0 1 1 1

3,1  3 0 1 1 1

 (22)

Since the overall symmetry of the ܴଷ group is ܱଷ then the correlation between ܵସ and ܱଷ is given as 

follows. This uses the isomorphism of ௗܶ and ܵସ. 

Td O3

S4 O3

A1

4 
A2

14 
E

22 
T1

2,12 
T2

3,1 
J p  0 1 . . . .

0 . 1 . . .

1 . . . 1 .

1 . . . . 1

2 . . 1 . 1

2 . . 1 1 .

3 . 1 . 1 1

3 1 . . 1 1

4 1 . 1 2 1

4 . 1 1 1 2

5 . . 1 2 1

5 . . 1 1 2

6 1 1 1 1 2

6 1 1 1 2 1

7 1 . 1 2 2

7 . 1 1 2 2

 (23)

Equation (23) tells us how the angular momentum energy states splits according to S4 symmetry 

group. As the angular momentum increases the effects of clustering begin to be manifested [11,12]. 

This is more noticeable in the irreps {2, 1ଶሽ and ሼ3,1ሽ of ܵସ. But as we go from the LWC basis to the 

BOA basis by increasing the coupling strength, the nuclei is locked into a particular geometry. If the 

energy between the molecules is not high enough to cause bond breaking in the individual diatomic 

molecules we may see clustering of the energy levels. 

4.1. 		ܵଶ ൈ ܵଶ Point Group 

X2 molecule has two identical nuclei, which means it has a permutation symmetry group of S2. 

When the molecules are weakly coupled, constituents allow full S4 permutations, but as the coupling 

increases the permutation symmetry may be reduced to 	Sଶ ൈ Sଶ , the outer product between the 

symmetry groups of the two diatomic molecules. The characters of 	Sଶ ൈ Sଶ are listed below: 
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S2 1  12 
1 1

1 1



S2 1  1 2 
1 1

1 1

 



S2  S2

1

1

Ii3

34 
Ii4

12 
Ry

12  34 
1  1  1  1 2  12  1  12  1 2 

 1 1 1 1

 1 1 1 1

 1 1 1 1

 1 1 1 1

 

(24)

The 	ܵଶ ൈ ܵଶ group is isomorphic to C2. 	ܵଶ ൈ ܵଶ, however, it allows a 180° rotation about the center 

of each individual ܺଶ molecules, while the other stays fixed; for instance consider the configuration 

 where the numbers label the position of the atoms of the ܺଶ	 molecules. Under the ܵଶ ൈ ܵଶ 

operation (34), the previous configuration changes to .
 

By using Frobenius Reciprocity theorem we obtain the ܵଶ ൈ ܵଶ ↑ ܵସ	reduction table. In left column 

of Equation (25) we give the spin tableaus for fermions and Boson nuclei:  

S4  S2  S2 2   2  12   12  2   12  12   2 
Fermi

spin

Boson

spin

14  4  1 . . .

4  14  . 1 . .

2,2  2,2  1 1 . .

3,1  2,12  . 1 1 1

2,12  3,1  1 . 1 1

 

(25)

In BOA basis the interaction is so strong that their position is locked in together preventing the 

large amplitude motion that is allowed in LWC basis. The only symmetry operators that are allowed 

are those that move both molecules rigidly together. If the molecules are locked in parallel to each 

other then they belong to a group with ܦଶ or ܦଶ௛ symmetry but if oriented at right angles then the 
group form is one with ܦସ or ܦଶௗ symmetry. We investigate X2  molecules orientation with either ܦଶ௛ 

or ܦସ symmetry. 

4.2. Statistical Weight 	ܵଶ ൈ ܵଶ 

The algebra needed is ܷଶfor Fermions of spin ܫ	 ൌ 	1/2. From Equation (21) we have ݉	 ൌ 	2. This 

means that there are three possible choices for the numerator of ݈ఓೞ by Equation (20b): 
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4   2 3 4 5 , 2, 2   2 3
1 2

, and 3,1   2 3 4
1

. The Frobenius Reciprocity theorem 

gives the correlation frequencies and using Equations (20a) and (20b) we compute the statistical 

weight for ܵଶ ൈ ܵଶ to be, 

W 2 . 2  
2 3 4 5

4 3 2 1


2 3
1 2

3 2
2 1

 6
 

(26a)

W
2 . 12   W

12 . 2 


2 3 4
1

4 2 1
1

 3
 

(26b)

W
12 . 12  

2 3
1 2

3 2
2 1



2 3 4
1

4 2 1
1

 4
 

(26c)

Equations (26a–c) shows how the various symmetry levels would cluster. The state corresponding 

to the symmetry species {2}{2}would consist of four degenerate levels whereas the states with 

symmetry {2}{12} would be triply degenerated. The use of Young tableau gives information about the 

clustering of the level. As we continue to reduce the symmetry we will compute the statistical weight 

using Young tableau. 

 ଶ௛ Point Groupܦ .4.3

When two X2 molecules are aligned parallel to each other, their arrangement gives a symmetry 
group of ܦଶ: ൛1, ܴ௫, ܴ௬, ܴ௭ൟ that is, there is a R’s rotation of 180° degrees around the x, y, and z axes. 

ܺଶ	 configuration contains a horizontal refection plane ߪ௛ ൌ ௫௬ߪ ൌ ௭ܴܫ  where ܫ  is the inversion 

operator such that . This operator works by inverting the spatial 

coordinates of all nuclei through the center of mass. The overall symmetry of ܺଶ configuration is the 

outer product of ܦଶ and ݅ ൌ ሼ1, ଶ௛ܦ ሽ that isܫ ≡  contains three 180° degrees rotations about	ଶ௛ܦ .݅⨂ଶܦ
the xyz axes, an I  inversion, a horizontal refection ߪ௫௬ , and two vertical planes (ߪ௫௭ ൌ ௫ܴܫ ),  
௬௭ߪ ൌ  .symmetry group is given by Equation (27)	ଶ௛ܦ ௭௬. The character table forܴܫ

D2h 1 Rx Ry Rz I IRx IRy IRz

1  13  24  12  34  14  23  14  23  12  34  13  24  1 
A1g 1 1 1 1 1 1 1 1

B1g 1 1 1 1 1 1 1 1

A2g 1 1 1 1 1 1 1 1

B2g 1 1 1 1 1 1 1 1

A1u 1 1 1 1 1 1 1 1

B1u 1 1 1 1 1 1 1 1

A2u 1 1 1 1 1 1 1 1

B2u 1 1 1 1 1 1 1 1

 
(27)
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Let us consider a spring model system such as shown in the Figure 2 in order to compute the 
vibrational levels in the plane in which both diatomic molecules lie. Since we assume that the D2h  
symmetry, then the coordinates are described by following state vectors 

xi  i x i  1, 2...8  or i i  1, ..., 8  (28)

Figure 2. Spring mass system for four nuclei. 

 

i x  i a j j x
j1

8

  (29a)

Where 

i a j 

H S . M L . . L
S H M . . L L .
. M H S . L L .

M . S H L . . L
L . . L H . S M
. L L . . H M S
. L L . S M H .
L . . L M S . H































 
(29b)

And ܪ ൌ ߠଶݏ݋݆ܿ ൅ ݇ ᇱܪ , ൌ ߠଶ݊݅ݏ݆ ൅ ݉ , ܵ ൌ െ݇ , ܵᇱ ൌ െ݉ ܮ , ൌ ߠ݊݅ݏߠݏ݋݆ܿ ܯ , ൌ ߠଶݏ݋݆ܿ , and 

ᇱܯ ൌ  .ߠଶ݊݅ݏ݆
From Equation (27) we build our D2h  projectors; For example the projector 

ܲ஺భ௚ ൌ 1 8ൣሺ1ሻ1 ൅ ሺ1ሻܴ௭ ൅ ሺ1ሻܴ௬ ൅ ሺ1ሻܴ௫ ൅ ሺ1ሻܧ∗ ൅ ሺ1ሻߪ௫௬ ൅ ሺ1ሻߪ௬௭ ൅ ሺ1ሻߪ௫௬൧⁄ . When this acts 

state |1ۧ  we have 	ܲ஺భ௚|1ۧ ൌ 1 4ሾ|1ۧ ൅ |2ۧ ൅ |3ۧ ൅ |4ۧሿ⁄ .  The application of 	ܲ஺భ௚  on |1ۧ  gives  

non-zero for states parallel it and give a similar result when applied to |5ۧ . Only irreps 
൛ܣଵ௚, ,ଶ௚ܣ ,ଵ௨ܤ   .give a nonzero result	ଶ௨ൟܤ

Therefore, the application of D2h projectors to the coordinates, gives the 8 × 8 transformation matrix 

Equation (30). 

T 
1

2

1 1 1 1 . . . .
1 1 1 1 . . . .
1 1 1 1 . . . .
1 1 1 1 . . . .
. . . . 1 1 1 1
. . . . 1 1 1 1
. . . . 1 1 1 1
. . . . 1 1 1 1





























 
(30)
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The transformation contains two 4 × 4 blocks, which block diagonalized the force matrix due to the 

presence of D2h symmetry. As a result, the force matrix is reduced by this transformation to two  

2 × 2 matrices and four 1 × 1 matrices or eigenvalues. 

B1u
5 A1g

1

2 j cos 2  p 2 j cos sin

2 j cos sin 2 jsin 2  p



















 
(31a)

A1g
1 B1u

5

2k  2 j cos 2  p 2 j cos sin

2 j cos sin 2m  2 jsin 2  p



















 
(31b)

The parameter p is the spring constant if the spring system is connected to the springs along all 

eight coordinate axes, but we will assume that is not the situation there because p = 0. Therefore, the 

eigenvalues for Equation (31a) are 0 and 2j, and eigenvectors ቀ1
1
ቁ and ቀ 1

െ1
ቁ. But for Equation (31b) 

we have the following eigenvalue:  

േߟ ൌ ߙ േ (32) ߚ

where ߙ ൌ ݆ ൅ ݉ ൅ ݇ and ߚ ൌ ඥሺ݆ െ ݉ ൅ ݇ሻଶ ൅ ݆ሺ݉ െ ݇ሻ݊݅ݏଶߠ. 

The eigenvectors are listed below their eigenvalues  

ቆ
ଶ

√ଷ
േߟ
1

ቇ

ܰ
 

(33)

Where ܰ ൌ ටଶఎേ
మାଷ

ଷ
. 

The other eigenvalues are (2k and 0), (0 and 2m), which corresponds eigenvectors A2g and B2u 

modes of the D2h respectively. 

4.4. Statistical Weight for ܦଶ  

Bunker and Jensen [23] have given a detailed development of permutation and permutation 

inversion groups, which one should consult for a thorough understanding. The inversion group 

݅ ൌ ሼ1, 	ሽܫ is synonymous to their ߝ ൌ ሼܧ, ሽ∗ܧ ଶ௛ܦ . ⊈ ܵସ ≡ ௗܶ  since ܵସ  is absent of the inversion 

operation ܧ∗. We use the out product between the groups ܵସ and ࣟ such that ܦଶ௛ ⊆ ܵସ ⨂ࣟ ≡ ܱ௛. The 

∗ܧ  operator commutes with all ܵସ  operations; thus the ܵସ ⨂ࣟ  group is called a complete nuclear 

permutation inversion (CNPI [23]) group. We are now in position to compute the correlation between 

ଶ௛ and ܵସܦ ⨂ࣟ. For brevity we consider a much simpler correlation between the molecular symmetry 
group ܦଶ	and ܵସ since only the irreps ൛ܣଵ௚, ,ଶ௚ܣ ,ଵ௨ܤ  give a non-result. The resulting correlation	ଶ௨ൟܤ

table is shown in Figure 3. 

From Equations (20a) and (20b) we compute the spin weight for the D2h point group by using 

Equation (27), along with the correlation table shown in Figure 3. As a result, the following spin state 

weights are found. 
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WA2 g
WB1u

WB2 u


2 3 4

1

4 2 1

1

 3
 

(34a)

WA1g


2 3 4 5

4 3 2 1
 2

2 3
1 2

3 2
2 1

 7 (34b)

Figure 3. Energy spectrum and correlation diagram for D2. Structure of two  

diatomic molecules. 
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The irreps ൛ܣଵ௚, ,ଶ௚ܣ ,ଵ௨ܤ  labels of the internal ܤ ଶ௛ are the only active modes and are theܦ ଶ௨ൟ ofܤ

symmetry of the bare rotor. The modes of the constricted rotor come from the tensor product 	
ܤ⨂ܣ ൌ  as shown in the energy level diagram in Figure 3. As we move down the column of the ,ܥ

correlation table we see clustering formation; for example the irreps ሼ2, 1ଶሽ and ሼ3,1ሽ of ܵସ  comes 

together to form the ܤଶ௨	cluster of ܦଶ௛ as displayed in the right of Figure 3. On the other hand, moving 

across the row shows the splitting of the irreps of ܵସ into various irreps of ܦଶ௛.  

Figure 3 is an illustration of Lab-body duality. The rows represent “coerced” or forced symmetry 

breaking, this comes from applying some kind of external field, which would result in the energy level 

splitting. The columns describe what is happening in the body frame; in other words, the symmetry 

reduction brings about clustering. The energy level diagrams of Figure 3 were obtained from  

Equation (27) through Equations (34a) and (34b). 

 ଶ Point Groupܦ .4.5

Diatomic rotor-rotor BOA structures of ܦସ or ܦଶௗ point group symmetry may come about when the 

two diatomic molecules are paired at right angles to each other. Equation (35) gives the character table 

for the ܦସ point group. It is the same character table as its isomorphic symmetry ܦଶௗ	for which the 

operators ܴଷ, ܴଷ
ଷ, ݅ଷ, and ݅ସ are paired with inversion ܧ∗. 

D2d 1 R3
2 E*R3, E*R3

3 R1
2, R2

2 E*i3,E
*i4

A1 1 1 1 1 1

B1 1 1 1 1 1

A2 1 1 1 1 1

B2 1 1 1 1 1

E 2 2 0 0 0

 
(35)

For a rotor-rotor locked in ܦସ point symmetry, each of its ܵସ tableau symmetry labeled levels must 

split according to a ܦସ point symmetry Equation (36). 

S4  D4 A1 A2 B1 B2 E

Fermi
spin

Bose
spin

14 D4 4 D4 1 . . . .

4 D4 14 D4 . . 1 . .

2, 2 D4 2, 2 D4 1 . 1 . .

3,1 D4 2,12 D4 . 1 . . 1

2,12 D4 3,1 D4 . . . 1 1

 
(36)

Now, reading the columns gives the induced representations such as ܣଶ ↑ ܵସ ൌ ሼ2, 1ଶሽ for a Boson. 

From this, we construct spin–tableau correlations with Dସ  symmetry states, for either Bose or  

Fermi nuclei. 
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4.6. Statistical Weight for ܦସ 

As with the ܦଶ analysis we calculate the spin weight for the irreps of ܦସ. Since Fermions spin  

I = 1/2, the unitary algebra is U2. The B2 spin weight is zero for ܦସ symmetry since in the group 

correlation table between ܦସ and ܵସ, the B2 irrep correspond only to {2,12}, and using Robinson’s hook 

length formula as defined in reference [11], we compute the numerator to be zero. The total sum of the 

spin weight is 13 and not 16. However, we need not be alarmed since the spin weight for doubly 

degenerated E must be double counted, hence, we still have 16 spin states in all. 

WE WA2


2 3 4
1

4 2 1
1

 3
 

(37a)

WA1


2 3
1 2

3 2
2 1

 1 (37b)

WB1


2 3 4 5

4 3 2 1


2 3
1 2

3 2
2 1

 6
 

(37c)

The energy level clusters shown in Figure 4 for a ܦସ structure are quite different from that of Dଶ.  

E-symmetry species indicate double degeneracy but Young Tableau assigns each of the two levels 

with a triple degeneracy. This is shown in the energy diagram of Figure 4.  

Thus using (2) we can find BOA constricted wave function. Consider the angular momentum 

ℓ ൌ 1ି state. From the correlation table we have for ܣ labels ሼܤଶ,  ଶௗܦ/ସܦ ሽ and the bare rotor isܧ

symmetry, thus ܤ labels are irreps of ܦସ/ܦଶௗ point group. We now computed the labels of constricted 

rotor from the tenser product ܤ⨂ܣ ൌ ܥ  that is ቄ1ି, ൛ܣ ൌ ሼܤଶ, ܤ⨂ሽܧ ൌ ሼܣଵ, ,ଵܤ ,ଶܣ ,ଶܤ ሽൟܧ ൌ

1െ,	,ܧ,ܧ,ܧ,2ܤܧ,2ܤ	ܧ⨂ܧൌܧ2ܤ⨁2ܣ⨁1ܤ⨁1ܣ. This shows in the energy level diagram in Figure 4. 

5. Tunneling Hamiltonians 

We can write down various tunneling Hamiltonian matrix for each of the symmetry above as we 

move from ܵ௡ symmetry to any of the others. We will start by giving the regular representation of the 

four particle states for each symmetry case ሼ|1ۧ, |2ۧ, |3ۧ, |4ۧሽ. From ܵ௡ we may have all the possible 

final point group geometry as given in Figure 5. However, 	Sଶ ൈ Sଶ and ܦଶ have only four possible 

arrangements whereas ܦସ has eight. ܦଶ is a subset of ܦସ, but 	Sଶ ൈ Sଶ although isomorphic to ܦଶ, is not 

a subset of ܦସ. Figure 6 shows all the arrangements of 	Sଶ ൈ Sଶ, ܦଶ and ܦସ. 

The reason why we have not done all 24 arrangements is due to the existence of the bonds between 

the two diatomic molecules, as a result, only certain feasible operations are allowed. To take advantage 

of the full ܵସ symmetry, it would be necessary to break the bonds between the diatomic molecules. We 
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are ready to investigate each tunneling paths from ܵସ to 	Sଶ ൈ Sଶ, ܦଶ and ܦସ. Here |1ۧ is the argument 

(1234), and |2ۧ is (2143), |3ۧ	 is (2134), and |4ۧ is (1243) as shown in Figure 6. Each one is obtained 

from 	Sଶ ൈ Sଶ  operations. Similarly, we can derive the states for ସܦ	 ଶௗܦ , , or ܦଶ௛  by using their 

operations on state |1ۧ. 

Figure 4. Energy spectrum and correlation diagram for ܦସ  structure of two  

diatomic molecules. 

 

Example 
S4 

related to 
Tetragonal D4 
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Figure 5. All possible paths from S4 to a lower symmetry. 

 

Figure 6. All possible arrangement from ܵସ to 	Sଶ ൈ Sଶ, ܦଶ and ܦସ. The state is shown in 

the kets, and the possible ܵସ operator is represented in parentheses. The upper case letters 

represent the tunneling parameter between different configurations. 

 

|1234

(14) (23)
LR

(13) (24)

M

(12) (34)
|4321

|3412

|2143|2413

|3142

|4213

|1324

(24 13)

(31 42)

(1 4)

(2 3)

(12) (34)

(34)(12)

|2134

|1243

|2143

R L
M

D

D

S  X S22

4

2

S

S

P

Q

*
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5.1. Tunneling Hamiltonian for 	ܵଶ ൈ ܵଶ Point Symmetry 

In the LWC basis the molecular system have S4 symmetry. As we increase the coupling or 

interaction, the symmetry is reduced. 	ܵଶ ൈ ܵଶ is one such symmetry reduction sub-group where the 

individual molecules still have some freedom to rotate in and out of the plane in which they are 

confined. In more recent work, Hougen et al. [37] have extended permutation-inversion group 

studying large amplitude motion acetylene. The earliest work in treating large amplitude motion in 

non-rigid molecules goes back to Longuet-Higgins [15]. 	ܵଶ ൈ ܵଶ has two configurations that normal 

symmetry operations cannot reproduce. Applying the permutation operations {1,(12),(34),(12)(34)} to 

each of the base states ሼ|1ۧ, |2ۧ, |3ۧ, |4ۧሽ gives the following regular representation of 	ܵଶ ൈ ܵଶ.  

1 . . .
. 1 . .
. . 1 .
. . . 1



















,

. 1 . .
1 . . .
. . . 1.
. . 1 .



















,

. 1. . .
1 . . .
. . 1 .
. . . 1



















,

1 . . .
. 1 . .
. . . 1
. . 1 .



















R 1  R 12  34   R 12  R 34 

 
(38)

These matrixes are for a group table that is isomorphic to D2. 

S2  S2 1 12  34  12  34 
1 1 12  34  12  34 

12  12  1 12  34  34 
34  34  12  34  1 12 

12  34  12  34  34  12  1

 
(39)

Consider the symmetry operators g that commutes with the Hamiltonian H, i.e., gH = Hg, but the 

non-commutative symmetry D3, D4, etc., we build our Hamiltonian matrix by combining the dual 

symmetry operators as described by Harter [38]. Equation (39) shows that 	ܵଶ ൈ ܵଶ forms an Abelian 

group, thus we can construct the Hamiltonian matrix since it naturally commutes with the 	ܵଶ ൈ ܵଶ 

operators. The resulting parameters H, തܴ , M, and ܮത  can be visualized as coupling or tunneling 

parameters related to the symmetry path. The bar is used as an indicator that only one of ܺଶ is being 

operated on; thus the outcome does not match a point group operation. L  is the tunneling parameter 

between |1234ۧ and |1243ۧ, and R  is the tunneling parameter between |1234ۧ and |2134ۧ, and M is 

between |1234ۧ , and |2143ۧ . Writing the tunneling Hamiltonian in the basis of the regular 

representation Equation (38): H ൌ 1ܪ ൅ܯሺ12ሻሺ34ሻ ൅ തሺ12ሻܮ ൅ ܴ	ഥ ሺ34ሻ which gives: 

R H  

1

2

3

4

H  R M  L . .

M  L H  R . .
. . H  L R M
. . R M H  L



















 
(40)

Since 	ܵଶ ൈ ܵଶ is isomorphic to D2, one might expect that the transformation matrix created from the 

projection of D2 would diagonalize Equation (40). But this is not the case. Instead, its block 

diagonalizes the 	ܵଶ ൈ ܵଶ Hamiltonian. 
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T R H T 

1

2

3

4

H  L  R M . . .
. H  L  R M . .
. . H M R  L
. . R L H M



















 
(41)

We construct a transformation Equation (42) that diagonalizes the Hamiltonian Equation (40) using 

the fact that ቀ1 1
1 െ1

ቁ diagonalizes a bilaterally symmetric matrix ቀܣ ܤ
ܤ ܣ

ቁ.  

T 
1

2

1 1 . .
1 1 . .
. . 1 1
. . 1 1



















 (42)

As a result, we obtained the following eigenvalues: 

E1  H  L  R M

E2  H  L  R M

E3  H M  R  L

E4  H M  R  L

 (43)

However, the eigenvectors are just the columns of the transformation matrix. There is degeneracy 

since two of our eigenvalues are the same. The trace of Equation (38) gives 

1 12  34  12  34 
4 0 2 2

 (44)

Therefore this splits into (2A1,B1,B2) of the D2 irreps. 

5.2. Tunneling Hamiltonian for D2 Point Symmetry 

As the coupling is increased so that the two diatomic molecules become locked, we can have any of 

the other three cases in Figure 5. At this point, we are in BOA basis. The Bunker and Jensen work [23] 

is paramount for molecular symmetry groups. Although one could easily solve a rigid rotor problem 

with molecular symmetry, we use here symmetry projector theory [38,39], which allows for a sort of 

elegance when solving the coupled rotor system that is locked. Previously we saw that the D2h 
fundamental vibration modes are ൫ܣଵ௚, ,ଶ௚ܣ ,ଵ௨ܤ  ଶ௨൯. Here, the physics of D2h and D2 are essentiallyܤ

the same. The group table of D2 is given by 

1 Ry Rx Rz

Ry 1 Rz Rx

Rx Rz 1 Ry

Rz Rx Ry 1

 (45)

and its matrix representation as follow: 
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1 . . .
. 1 . .
. . 1 .
. . . 1



















,

. 1 . .
1 . . .
. . . 1.
. . 1 .



















,

. . 1 .

. . . 1
1 . . .
. 1 . .



















,

. . . 1

. . 1 .

. 1 . .
1 . . .



















 (46)

Next we have given the projectors of D2 

 (47)

The tunneling Hamiltonian in the basis of a D2 regular presentation is given as follows: 

R H  

1

2

3

4

H M L R
M H R L
L R H M
R L M H



















 
(48)

From Equation (47) we have the following diagonalizing transformation: 

T 
1

2

A1 B1 A2 B2

1 1 1 1 1

2 1 1 1 1

3 1 1 1 1

4 1 1 1 1

























 
(49)

Applying Equation (49) to Equation (48) we obtain the eigenvalues and eigenvectors in Equation (50): 

EA1
 H  R  L  M :

1

2

1
1
1
1



















, EB1
 H  M  R  L :

1

2

1
1
1
1



















,

EA2
 H  M  R  L :

1

2

1
1
1
1



















, EB2
 H  M  R  L :

1

2

1
1
1
1



















 
(50)

The D2 tunneling matrix produces no degeneracy in A1 mode, as it was the case with 	ܵଶ ൈ ܵଶ. This 

must be due to the fact that for 	ܵଶ ൈ ܵଶ structures, that an individual diatomic molecule is allowed to 

rotate out of the plane and it is the same symmetry configuration whether the diatomic molecule has 

one of its rotors out of the plane or the other one.  
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5.3. Tunneling Hamiltonian for D4  Point Symmetry 

Unlike ܦଶ, ܦସ is non-Abelian since its group elements do not commute and neither will they be any 

faithful to the representation of ܦସ ସܦ .  point group contains an identity operation, a 180° rotation 
around each of the x, y and z axis ൛ܴ௭, ܴ௬, ܴ௭ൟ, 90° and −90° about z-axis	ሼܴ, ܴଷሽ	, and finally 180° 

about each of the diagonals ሼ݅ଷ, ݅ସሽ. Non-commutivity of ܦସ means that we cannot write all eight of the 

operators as a spectral decomposition using commuting idempotents. By idempotents, we mean 

࣪ఈ ∙ ࣪ఈ ൌ ࣪ఈ	 and zero otherwise. We will use projector theory to give a description of its  

non-Abelian algebra. Since it is non-commutative it is not possible to spectral decompose all of its 

eight operators by using eight commutating idempotents. 

1 Rz R R3 Rx Ry i3 i4

Rz 1 R3 R Ry Rx i4 i3

R3 R 1 Rz i3 i4 Ry Rx

R R3 Rz 1 i4 i3 Rx Ry

Rx Ry i3 i4 1 Rz R3 R

Ry Rx i4 i3 Rz 1 R R3

i3 i4 Ry Rx R3 R 1 Rz

i4 i3 Rx Ry R R3 Rz 1

 

(51)

We obtain the ܦସ  regular representation from a group table Equation (51) rearranged so that 

columns are labeled by kets |݃ۧ =݃|1ۧ, and rows are labeled by bras  

|݃ۦ ൌ|݃ۧା ൌ ା݃|1ۦ ൌ1ۦ|݃ିଵ (52)

(Note that the inverses of the column operators sit on the left end of the rows). 

Here each ܴሺ݃ሻmatrix component is 1 (or 0) if ݃ is (or is not) at that spot in Equation (51).  

1 . . . . . . .

. 1 . . . . . .

. . 1 . . . . .

. . . 1 . . . .

. . . . 1 . . .

. . . . . 1 . .

. . . . . . 1 .

. . . . . . . 1





























,

. 1 . . . . . .
1 . . . . . . .
. . . 1 . . . .
. . 1 . . . . .
. . . . . 1 . .
. . . . 1 . . .
. . . . . . . 1
. . . . . . 1 .





























,

. . 1 . . . . .

. . . 1 . . . .

. 1 . . . . . .
1 . . . . . . .
. . . . . . 1 .
. . . . . . . 1
. . . . . 1 . .
. . . . 1 . . .





























,

. . . 1 . . . .

. . 1 . . . . .
1 . . . . . . .
. 1 . . . . . .
. . . . . . . 1
. . . . . . 1 .
. . . . 1 . . .
. . . . . 1 . .





























R(1) R Rz  R R  R R3 

. . . . 1 . . .

. . . . . 1 . .

. . . . . . . 1

. . . . . . 1 .
1 . . . . . . .
. 1 . . . . . .
. . . 1 . . . .
. . 1 . . . . .





























,

. . . . . 1 . .

. . . . 1 . . .

. . . . . . 1 .

. . . . . . . 1

. 1 . . . . . .
1 . . . . . . .
. . 1 . . . . .
. . . 1 . . . .





























,

. . . . . . 1 .

. . . . . . . 1

. . . . 1 . . .

. . . . . 1 . .

. . 1 . . . . .

. . . 1 . . . .
1 . . . . . . .
. 1 . . . . . .





























,

. . . . . . . 1

. . . . . . 1 .

. . . . . 1 . .

. . . . 1 . . .

. . . 1 . . . .

. . 1 . . . . .

. 1 . . . . . .
1 . . . . . . .





























R(Rx ) R Ry  R i3  R i4 

(53a)

Since these representations are non-commuting, we cannot simply write the Hamiltonian in terms of 

them. Using the idea of mutually commuting lab based and body based operators ݃ and ݃̅, we can find 

the dual space. Harter [38] has given a detailed description of how to do this in general. In this case, 
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we find a body matrix representation ሼ. . ܴሺ݃̅ሻ. . ሽ  in Equation (53a) that commutes with in  

Equation (53b).  

1 . . . . . . .
. 1 . . . . . .
. . 1 . . . . .
. . . 1 . . . .
. . . . 1 . . .
. . . . . 1 . .
. . . . . . 1 .
. . . . . . . 1





























,

. 1 . . . . . .
1 . . . . . . .
. . . 1 . . . .
. . 1 . . . . .
. . . . . 1 . .
. . . . 1 . . .
. . . . . . . 1
. . . . . . 1 .





























,

. . 1 . . . . .

. . . 1 . . . .

. 1 . . . . . .
1 . . . . . . .
. . . . . . . 1
. . . . . . 1 .
. . . . 1 . . .
. . . . . 1 . .

..





























,

. . . 1 . . . .

. . 1 . . . . .
1 . . . . . . .
. 1 . . . . . .
. . . . . . 1 .
. . . . . . . 1
. . . . . 1 . .
. . . . 1 . . .





























R(1) R Rz  R R  R R3 

. . . . 1 . . .

. . . . . 1 . .

. . . . . . 1 .

. . . . . . . 1
1 . . . . . . .
. 1 . . . . . .
. . 1 . . . . .
. . . 1 . . . .





























,

. . . . . 1 . .

. . . . 1 . . .

. . . . . . . 1

. . . . . . 1 .

. 1 . . . . . .
1 . . . . . . .
. . . 1 . . . .
. . 1 . . . . .





























,

. . . . . . 1 .

. . . . . . . 1

. . . . . 1 . .

. . . . 1 . . .

. . . 1 . . . .

. . 1 . . . . .
1 . . . . . . .
. 1 . . . . . .





























,

. . . . . . . 1

. . . . . . 1 .

. . . . 1 . . .

. . . . . 1 . .

. . 1 . . . . .

. . . 1 . . . .

. 1 . . . . . .
1 . . . . . . .





























R(Rx ) R Ry  R i3  R i4 

(53b)

The group-based ܴሺ݃ሻ D4 cannot be diagonalized but reduced or block diagonalized to a 

combination of irreps ܣଵ, ,ଵܤ ,ଶܣ ଶܤ , and ܧ  from the character Table (4.13). The character of 	
ܴሺ݃ሻ  is found by taking its trace, which gives ሼ8,0,0,0,0ሽ . The trace of ܴሺ݃ሻ  ݏ݅ 

ܴሺ݃ሻ ൌ  All eight ܴሺ݃ሻ matrices are reducible by some transformation ܶ to a .ܧଶ⨁2ܤ⨁ଶܣ	⨁ଵܤ	⨁ଵܣ

block diagonals form with ܣଵ, ,ଵܤ ,ଶܣ  blocks. Thus the reduction is carried out by finding all ܧ ଶ, andܤ

eight of the generalized projectors. This approach is described in more detail in [23,29,38,39] but will 

not be approached here. 

The D4 Hamiltonian is made by combining body based or dual space 	ܴሺ݃̅ሻ  representations in 

Equation (53a) since they commute with matrices Equation (53b) of the regular D4 representation as 

required by D4 symmetry. Thus we have, 

RG (H )  H 1  RR2  SR  SR
3
 LRx  MRy  Pi3 Qi4  (54a)

RG H  

1

Rz

R

R3

Rx

Ry

i3

i4

H R S S L M P Q

R H S S M L Q P

S S H R Q P L M

S S R H P Q M L

L M Q P H R S S

M L P Q R H S S

P Q L M S S H R

Q P M L S S R H



































 (54b)

The first step in finding a transformation that would block diagonalized Equations (54a) and (54b) 

is to find the largest number of mutually commuting operators. This is also referred to as the Maximal 

Set of Commuting Operators (MSOCO). As pointed out by Harter [38], the number of operators is 

unique and it is the rank of the group. The rank of ܦସ is six and the number of orthogonal irreducible 

representation (irreps) of the algebra is five, which means that there must exist another member of the 

set. The choice of this member is not unique. We choose an operator diagonal so we can split ࣪ா 
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idempotent in a particular way in order to build a particular set of ܧ െ  ସ there existܦ In case of .ݏ݌݁ݎݎ݅

three subgroups of order 4, five of order 2, and one of order 1, of which we can choose one as a 

temporary member to complete the maximal sets. For our computation we choose the subgroup 

ଶܥ ൌ ሼ1, ܴ௫ሽ  to split ࣪ா  idempotent. Harter [38] described a procedure that we use to split ࣪ா 

idempotent into four new projectors. 

Equation (51) is divided into its five classes as seen by how the table is sectioned off in blocks that 

form sort of a commuting algebra. Harter [38] has gone in detailed description of non-Abelian algebra 

where	ܦଷ algebra is given as an example. Since in non-Abelian algebra, not all the matrices can be 

diagonalized or reduced at once by a single transformation, we use a technique of class commutating 

algebra described by Harter [38] that simultaneously spectral decompose MSOCO. The class algebra 

does not form a group but allows us to derive the projectors of the group. From the projectors we are 

able to derive such properties as the character table Equations (34a) and (34b), eigenvectors, and the 

transformation matrices, etc. Since, we already know the ܦସ character table we will not here follow the 

exact approach of reference [38] because we can derive its projectors from Equations (34a) and (34b) 

as was done in (Section 4). The irreps of Equations (34a) and (34b) give five projectors, however, 

because the rank of ܴሺ݃ሻ is 6 we need to split ࣪ா idempotent as discussed before. Now that we have 

all eight projectors, we derive a transformation Equation (55), which allows us to reduce the 

Hamiltonian Equation (55) to a block diagonal form as shown in Equation (56). From the projectors of 

D4 we found the transformation matrix Equation (55). 

T 
1

2 2

1 1 1 1 2 0 0 2

1 1 1 1  2 0 0  2

1 1 1 1 0  2 2 0

1 1 1 1 0 2  2 0

1 1 1 1 2 0 0  2

1 1 1 1  2 0 0 2

1 1 1 1 0 2 2 0

1 1 1 1 0  2  2 0



































 

(55)

This block diagonalized Equations (53a) and (53b) to give the following: 

H  .

H A1 . . . . . . .

. H B1 . . . . . .

. . H A2 . . . . .

. . . H B2 . . . .

. . . . H11
E H12

E . .

. . . . H 21
E H 22

E . .

. . . . . . H11
E H12

E

. . . . . . H 21
E H 22

E

































 
(56a)
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H  .

H A1 . . . . . . .

. H B1 . . . . . .

. . H A2 . . . . .

. . . H B2 . . . .

. . . . H11
E . H 21

E .

. . . . . H11
E . H 21

E

. . . . H12
E . H 22

E .

. . . . . H12
E . H 22

E

































 
(56b)

 

The reduction of Equations (54a) and (54b) using the above transformation gives four  

singlet eigenvalues  

H A1  H  S  L  M  P Q  R  S

H B1  H  S  L  M  P Q  R  S

H A2  H  S  L  M  P Q  R  S

H B2  H  S  L  M  P Q  R  S

 (57)

Finally, there are two pairs of identical two by two matrices each with the following matrix element: 

H11
E  H  L  M  R; H12

E  S  P Q  S

H22
E  H  L  M  R; H21

E  S  P Q  S.
 (58a)

These two by two matrices will have to be further diagonalized if Q, P or ܵ݉ܫ  are non-zero. 

Therefore, if we let ܵ ൌ ߩ ൅ ݅߭ then we can represent these two-by-two matrices as 

H11
E H12

E

H 21
E H 22

E














H  R  L  M 2
Q  P

2
 i





2 i 
Q  P

2






H  R  L  M ;



















 (58b)

If instead we apply the transformation Equation (55) using the regular representation ܴሺ݃ሻinstead 

of ܴሺ݃̅ሻ then it would be block diagonalized like in Equation (56b). 

To interpret the eigensolutions of Equation (58b), we represent our two-by-two matrix in terms of 

the quasi-spin vectors ሺ ஺ܵ, ܵ஻, ܵ஼ሻ as defined in Figure 7.  

H11
E H12

E

H21
E H22

E












 H  R  0  2 Q  P  SB

0 1
1 0








2

  4 SC

0  i
i 0








2

  2 L  M  SA

1 0
0 1








2

  
(59)

Equation (59) is analogous to the description of a two state system, therefore U2 analysis may help 

to characterize the eigensolution. Harter [38,39] have given a general development U2 analysis for any 

two states system. Suppose ቆ
ଵଵܪ
ா ଵଶܪ

ா

ଶଵܪ
ா ଶଶܪ

ா ቇ has the form ቀܣ ܤ
ܤ ܦ

ቁ with no component on the C axis. 
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Also let A = D so both L and M are zero. Then there results a simple mixing between the E modes in 

the two by two blocks with eigenvectors (
ଵ

√ଶ
ቀ1 1
1 െ1

ቁ  diagonalizing bilaterally symmetric 

൬
ܪ െ ܴ ܲ െ ܳ
ܲ െ ܳ ܪ െ ܴ൰ sub-Hamiltonians. 

Thus the E-Hamiltonian under these conditions has a perfect bilateral symmetry. This means that if 

the quasi-spin vector starts out on the B axis as in Figure 7, it remains fixed. However, when ܮ ്  ,ܯ

we have an asymmetric two-state system that is very much like the one in reference [39]. This is 

plotted in Figure 8. 

Figure 7. (ABC) symmetry coordinates. This diagram was published by Harter [38]. 

 

Figure 8. Two state system eigensolutions [39]. 
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6. Conclusions 

The frame relation derived in reference [25] was developed to include the finite symmetry of a 

molecular geometry. The B label was shown to be the symmetry species of the nascent geometry’s 

point group. The transformation relation has a finite symmetry field coefficient of the small rotor 

included in it. It is not clear how one should choose a particular frame over. However, in a locked 

geometry, the choice of frame does not matter, but only the geometric point group that is formed. We 

investigated locked geometries for two diatomic molecules using Young tableau and unitary algebra to 

find the nuclear spin statistical weights. This gives approximates and preliminary insight for  

level structure. 

Moreover, we used the frame transformation relations derived in reference [25] to calculate the 

transitions between angular momentum states. More general transition relations were found than those 

given in reference [12]. However, one could extend our relation to include symmetry for transitions in 

a two rotor coupled system, but this will be left for future work. 
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