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system (SUSY-YM). It is shown how the A/ = 2 Fayet Hypermultiplet (FH) and N' = 2
vector multiplet (VM) are embedded within. The central charges and internal symmetries
provide a plethora of information as to further symmetries of the Lagrangian. Several of
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1. Introduction

The N' = 4 Super-Yang Mills (SUSY-YM) system is a very active area of study, and has become
even more so over the past decade with the emergence of the AdS/CFT correspondence [1]. One very
powerful aspect of this correspondence is that it relates a perturbation theory to a strongly coupled
system. As AN/ = 4 SUSY-YM is a conformal field theory, an important undertaking has been to find
dualities between string theory and theories that are more QCD-like. Klebanov and Strassler took a step
in this direction in [2], where they unveiled a background which breaks the supersymmetry to N” = 1,
while regulating the IR divergence behavior. Following this work, several other supersymmetry breaking
backgrounds were discovered [3-6].

In parallel to the unveiling of these duality backgrounds, specific calculations were done showing
duality to confining gauge theory calculations. Herzog and Klebanov showed duality in the tree level
energy calculations between branes on the supergravity side and confining strings on the gauge theory
side [7,8]. In this newly emerging gauge/gravity picture, Regge trajectories were resurrected from the old
dual resonance models and reinvestigated by Pando Zayas, Sonnenschein, and Vaman in [9], including
some one loop level calculations. Most recently, one loop corrections to the k-string energy have been
investigated, the so-called Liischer term. This emerges on the string theory side through the bosonic part
of the D-brane energy, although in addition different one loop information of the fermionic part has also
been unveiled [10-13]. A nice picture is developing which shows the dualities between objects on the
string theory and gauge theory sides.

In this paper, we take a step back from this picture. Even though this is the best understood of the
gauge/gravity dualities, the d = 4, N' = 4 SUSY-YM theory part of the correspondence itself still has
unknown attributes. The most glaring issue is the auxiliary field closure problem: it is still unknown
how to augment this theory with finite numbers of auxiliary fields such that the charges satisfy the
following algebra:

{Da, Dy} =2 6" (") a0y ()

This is a problem which has been well known for at least thirty years. In 1981, Siegel and Rocek
(SR) investigated a solution within the known framework that existed at the time and found a no-go
theorem [14]. This result has been interpreted as the definitive statement on this issue.

However, there are some loose ends that challenge this conventional wisdom about the SR no-go
theorem. The first of these is contained within the SR work itself. In an often overlooked final
commentary in the work, the authors state a possible way to avoid the SR no-go theorem. It is also
often overlooked that the derivation of the SR no-go theorem is based on a particular assumption of
dynamics. In particular, the authors assume the gauge field is subject to the dynamics of the usual
Yang-Mills action. It is simple to consider a different starting point. It is easy to negate this assumption.

Though mostly unknown, the action for the ABJM model [15] together with a discussion of 3D,
N = 6 superconformal invariance first appeared in works written in the period of 1991-1995 on the
importance of Chern-Simons models [16-19]. So instead of considering the fields of a vector multiplet
in 4D that realizes N’ = 4 SUSY or a hypermultiplet in 4D that realizes N/ = 2 SUSY, one could
attempt to construct respective 3D Chern-Simons models with A/ = 8 SUSY or N/ = 4 SUSY that are
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based on the dimensional reduction of 4D multiplets. The SR no-go theorem cannot be applied to such
constructions! Thus, the study of 3D Chern-Simons theories provides a new way to attack this very
old problem.

The methods in harmonic [20,21] or projective [22,23] superspace absolutely offer solutions, however
these add an infinite number of auxiliary fields. In this paper we offer an in-depth analysis of the
Lagrangian symmetries generated by the central charges and internal symmetries of the algebra as a
possible window into algebraic closure with a finite number of auxiliary fields. To the knowledge of
the authors, these symmetries have never been discussed in this detail; almost certainly not in the 4-D
Majorana component notation that is used in this paper. In short, we are trying to push the bounds of
knowledge further to understand how the algebra fails to close with a finite number of auxiliary fields.
Furthermore, this paper analyzes the central charges and internal symmetries, or lack thereof, of other
SUSY systems embedded into the overarching d = 4 N' = 4 SUSY-YM system.

This paper is structured as follows. We begin by showing how the Abelian d = 4, N' = 4 super
Yang-Mills (SUSY-YM) system can be made to split into the N' = 2 vector multiplet (VM), which
closes, and the A/ = 2 Fayet Hypermultiplet (FH) systems, which does not [24]. Then we show the
main result: the recovery of many first and second order supersymmetries from the central charges and
internal symmetries of this algebra.

Unless otherwise specified throughout the document, our notation convention is as follows. Capital

Latin indices are euclidean and go from one to three: I, J, K,... = 1,2, 3. Lower case Latin indices
1,7, k,m,--- = 1,2 are also Euclidean. This is not to be confused with the spinor indices, which
are the other half of the lower case latin alphabet a,b,c,d,--- = 1,2,3,4, ranging from one to
four. Greek indices are four dimensional Minkowski space-time indices and go from zero to three:
wv, o 3,---= 0,1,2,3. Symmetrization and antisymmetrization are defined without normalization:
A(/U/) = AMV + AVM (2)
Ay = N — Ay, 3)

2. Materials and Methods

This section presents the algebra for d = 4. N/ = 4 SUSY-YM is laid out in component notation.
The Lagrangian is presented, which is globally invariant to these transformations. Next, the algebra is
uncovered, which of course does not close. It is shown how this algebra splits into both the N' = 2
FH and N/ = 2 VM multiplets; the latter closes while the former does not. It is commented on how
after reduction to the FH system, certain central charges and internal symmetries are removed from the
algebra. Of course, all central charges and internal symmetries are removed from the algebra under
reduction to the A/ = 2 VM multiplet. The central charges and internal symmetries present in the
algebra for SUSY-YM and FH unveil Lagrangian symmetries. These symmetries and the method with
which they are unveiled is the main result of the paper, and they are catalogued in Section 3. The
calculations to find the transformation laws and algebra were performed with Mathematica, along with
calculations by hand to check the Mathematica code. The calculations to find the symmetries of the
Lagrangian from the algebra and transformation laws were performed by hand.
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2.1. N = 4 Transformation Laws

The Lagrangian for the Abelian d = 4, V' = 4 SUSY-YM system

L= (0,470 A7) J(8,B7)(0"B)
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Our conventions for the gamma matrices are as in Appendix of [25]. Note here that D, and D with
I =1,2,3 comprise a se of N/ = 4 transformation laws.

These transformations are known as zeroth order symmetries of the Lagrangian. The main result of
this paper will be the first and second order symmetries of the Lagrangian, and how they can be recovered
from the algebra. We wish to return to the calculation of third order and higher symmetries in the future.

2.2. N = 4 Algebra

In this section, we will discover the central charges and internal symmetries of this algebra which will
lead us to the Lagrangian symmetries in Section 3. Using the shorthand

x = (AL, B, F1,G" d, !, \), (10)
the algebra can be written
{Da, Du}x = 2i(v*)ab0uX,  {Das Do} Ay = 2i(v*)anFruw (11)
and

{DL, DJYAK =2i6" (") 0, AT — 267K (47 pd+
— 271 EMC L FM 4 (7)o GM],
{DI D/YBX =2i6"7 (") 0, BX + 2 ie' K C,pd
(DL, DJYFR =2i6" (v") b0, FX + 2e" 5 (441 10, d+
+ 2ZTEM 0 OAM + (vP4*) a0, GM]
{D}, DY}G" =2i6" (1")ap0,G™ — 26" 75 (7°41) 0" F,
— 2ZTTEM[(~5) JOAM 4 (45 7")ab8“F ] (12)

{Dg, Dy }d =2i6" (7#) ppud+-
+ 267K ((v?) pOA" — iCOBY + (4°4") 0, F™)
{DL.DJYA, =2i6" (") o Fyu+
+ 2! 7R (100, AK + ( a0, BE — (V°7,) s GF)
(DL, DI =206 (7" e + €K [=Cop(v") & + (77)an(7°4*) 2+
+ (V") as(V 1) 0w
{Dg, DY =2i" (v a0 — i€ F [=Cap(v") L+ (77 )an(7°7") M+
+ (V) ab(VP) M8 Aa+
— i Z"FM[Can(7) L+ (V)b (V1)
+ () ab (V0™ 0u0Y (13)

and for the cross terms
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{D,,D{} A7 =2ie" K C, FX
{D,,D{} B’ =2ie "X C,, G¥
{D,,Di}F7 =2i" K C,, A%
{D,,Di}G7 =2i" "X C,,OB*

{Do,D{}\. =0 (14)
{D,,D;}d =0
{D,,D{YA, =2iC0, A" — 2(7°) 00, B!
{Da, Dy yoo! =2ie"" Cop () 10t (15)
where
ZIJKM = 5IM(SJK o 5IK5JM (16)

2.2.1. Central Charges and Internal Symmetries

We will use the notation (A7, FX) to indicate, for instance, the presence of a non-zero term involving
the field F'X on the right hand side of the anti-commutator {DZ, D/} AX and vice-versa. In this notation,

we list the following fields which are coupled through a central charge or internal symmetry:

3\

AT FR), (ATGT), (BY,GN),

(
(A7,d), (B7,q), (¢, A, fields coupled by a central charge (17
(F7,G), (F’,d), or internal symmetry
( ;zjv)‘b>’ ( c{7¢l{() )
In addition, the algebra couples the following fields through a U (1) gauge symmetry
(A, A®), (A, B®), fields coupled through a gauge symmetry (18)

In Section 3, we will show how these central charges and internal symmetries can be used to uncover
several first and second order Lagrangian symmetries. We note that this algebra is absent of central

charges and internal symmetries between

(F, A, (A, d), (B, FK), fields not coupled through

a central charge (19)

J oK J
(B”,A%), (G7,d) or internal symmetry

2.3. Reduction to N = 2 Systems

Before we fully investigate the first and second order Lagrangian symmetries, we will investigate how
to split the A/ = 4 system into the N' = 2 FH and VM systems. When we do this, some of the central

charges and internal symmetries vanish. In fact, in the case of the N' = 2 VM system all of these vanish,
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and the algebra has no information on first and second order Lagrangian symmetries. This is of course
because the N/ = 2 VM algebra closes. It is important to note that for reduction, we are considering only
one pair of the six possible pairs of D-transformations. We leave the consideration of the other five pairs
to future research.

Dropping the D? and D? transformations and making the following definitions:

D! =D, D2=D! (20)

a

where ¢ = 1, 2 labels the two supersymmetries of the embedded systems, we next make field redefinitions
to manifest the embedded systems. The embedded N' = 2 VM system is composed of half of the fields
of the NV = 4 system:
A=A', B=B'! F=F', G=G',
Ay d G =0, =N @D
and the embedded N = 2 FH system is composed of the other half
Al=A% A*=A% B'=B? B*=DB
F'=F? F’=F G'=G? G*=G°,
Yo =i, UL=4 (22)
2.3.1. Reduction to N' = 2 VM
The resulting ' = 2 VM algebra is
DA =,
DB =i(v"), G,
f);F = ( H) baugév
DiG =i(o )U (7 ) baugba
DZA# = i(0®)V <7u)a Cba
Did = i(0")7(v"1") 0]
D¢ = 87(i(v") a0 = (") a0 B — iCa F) + (0°)7 (77 )an G+

— () (0" VB + () @3)

i (01 N I svj (10
i (01) e (V) - (10)

&= G =N (25)

where

and
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The algebra reduces to

(D!, DIV = 206 (v") 0,V (26)
(D!, DIYA, = 2069 (v")ap Fy + i(0%)7(2iCap0) A — 2(7°) s 0, B). (27)

where
V = (A,B,F,G,d, v, \). (28)

So this algebra closes up to gauge transformations and all the central charges and internal symmetries
from the overarching A = 4 algebra have vanished, aside from the U (1) gauge symmetries. The algebra,

therefore, contains no information on extra symmetries of the Lagrangian.
2.3.2. Reduction to ' = 2 FH

The transformation laws for the embedded N = 2 FH system are
DAY = 694, +i(0®) 73,
DB =i(7")y [ (0%)94y + (1) 743 ],
DLF7 = (4") 0 694y +i(a®) 747 |,
DLGY = i(v°7") 0L (%) 74y + (o) 747 ],
Dty = i(v)apBp A’ = iCaF + (o) ()G = (4°1" )0 B,
Diy = (0%)7[— (") DA’ + Cap 7]+
+ (@) ()G — (") a0, B (29)
with algebra
{D, DI} AF = 2i67 (4#) a0, A" — 20 Z7F ™ C ™,
(D, DI} BY = 2i6" (1) 0, B — 20 Z7¥" Cy, G,
(D%, DI}F* = 206" (v") 0, F* — 2i 27" C oy DA™,
{D., DI}G* = 216" (v*)0,G* — 212" C, OB™,
{D}, DYk = 206 (1) @yuths — 2297 Cop(1) 0,07 (30)
where
Zukm = gimgik _ gikgim G g k,m = 1,2. 31)
So only the couplings (A7, GK) and (F/, G¥) have vanished from the overarching N' = 4 theory.
Couplings still remain between (A7, F*) and (B7, G*) and (¢}, ).

2.4. Uncovering First and Second Order Lagrangian Symmetries

This section shows the method with which we unveil first and second order Lagrangian symmetries.
We show examples of how the procedure with more than one calculation will uncover the same
symmetry. The full list of unique symmetries is unveiled in Section 3. The full list of calculations,
including those unveiling redundant symmetries, are shown in Appendix. All such calculations were

performed by hand.
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2.4.1. First Order Bosonic Symmetries

Contracting the coupling from the anticommutator on A” and F'/ in Equation (14) with the Grassmann

spinors €% and X’ results in the first order bosonic symmetry of the Lagrangian

AJ cf b AJ FK
(1) _&Xs I _ _a b IJK
0B53q ( P ) = 22'_{Da’Db} ( J ) =e"x7€ 7" Cap < OAK ) . (32)

Interestingly, contracting the coupling from the anticommutators on A% and F* in Equation (12) with

the Grassmann spinors €4 and x’ results in a very similar first order bosonic symmetry of the Lagrangian

1) AK b 7 IJKM M
Opsa | prc | SEGZT 0w | |- (33)
In fact, these two symmetries are identical, and we can define them succinctly as:
AK M
BSS( ) F K ] AM ( )
where

8?)(1} ZIKM

TEM = or (35)
gaXZ KM,

This redundancy in the definition of 7% begs the question: could a notation that somehow combines
the underlying N' = 1 vector multiplet and three copies of A/ = 1 chiral multiplets that comprise the
N = 4 SUSY-YM multiplet result in a simplified definition of 75 ? At present, it is unknown how to

do this and we wish to revisit this question in the future. Furthermore, we will see that redundancies are

present in our calculations of other symmetries which leads us to define the variables PX, QX, TKM,
(UMK, WEM "and (V) EM as:
P = bR (), QF = bl KOy,
E?X{)]ZIJKMCab
TEM = { or N e L Sl
b KME,
s KM (45 gy b eTKM (nBym
WHEM = ¢ or , (VIEM = ¢ o (36)
e 2" M) ab e Z N (P

2.4.2. Second Order Bosonic Symmetries

By taking the commutators of each of the first order bosonic symmetries with each other, we reveal

second order bosonic symmetries. This procedure will sometimes lead to redundant symmetries as in
Opra( P Po) A = (053, (P1), O (P2)] AR = ALY (Pr, Po)0IAY
ST To) AN = (B35 (T), Oga(T2) 4K = A5 (T, T)DAY
Op1e(Wh, Wa) A7 = (0335 (Wh), Osgs (Wa)l A7 = AG(Wa, W) DIA! (37)
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where
AT (P, Py) = PPy,
A (T, Ty) = T Ty
Ags (W, Wa) = WiTW" (38)
We can succinctly write these three redundant symmetries as one
8320 (M) AR = Ao A’ (39)
where (A;)%7 is an arbitrary 3 x 3 matrix and | | denotes antisymmetrization:
(Al)[KJ] — (Al)KJ_ (Al)JK. (40)

2.4.3. First Order Fermionic Symmetries

Analogous to how we found the second order bosonic symmetries, we can uncover first order

fermionic symmetries through calculations such as:

d d Oy
5&«“1;19(13) < W > = _5Q[Daa51(91;1(P)] ( W ) =¢*P’ ( i(y“)l/):@ d ) 41)
b b ab%p

All such possible calculations are listed in the Appendix A2, some of which are redundant as in the

second order bosonic case.

3. Results

We list the first order bosonic symmetries unveiled directly by the central charges and internal
symmetries. We next calculate from these symmetries first order fermionic and second order bosonic
symmetries of the Lagrangian. We will notice that certain symmetries of the Lagrangian exist which
are not revealed by this procedure. This is due to the absence of certain central charges in the algebra.
We discuss the unique symmetries of A/ = 4 SUSY-YM in Sections 3.1, 3.2 and 3.3 and the unique
symmetries of A" = 2 FH in Section 3.4. In Appendix we list all symmetries unveiled by the procedure,
including redundancies: symmetries which are the same from the Lagrangian perspective but which arise
from different terms in the algebra as described in Section 2.4. No non-gauge symmetries of the N = 2
vector multiplet are uncovered through this procedure as there are no central charges in this algebra.

3.1. N = 4 SUSY-YM_: First Order Bosonic Symmetries

The unique first order bosonic symmetries revealed by all the central charges and internal symmetries

in this way are:

AK —d BX —d
659%1(13)( . )zPK(DAK>7 55;;2(@( ; )EQK<DBK) “2)

AK M
p53(T) ( - ) =T ( o ) (43)
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BX GM
%Mﬂ(GK>EWW<DEW> (44)
A7 GK
5%MW<GJ)EW”<EMK) (45)
r’ GE
5%wﬂ<y)50%”@<_ﬂ> (46)
K d
535 (U) ( . ) = (U9, ( i ) @)
sy [ 9 ) =y [ O (48)
BS8 A}/ - nuyGK
(1) Ac K/ ud X
5BSQ(Q> K = Q (7/1)0 aﬂ _>\d (49)
(1) Ae WK/ 5 d 5(
0ps10(U) x| = U")* (V") Lon Y (50
)\ K
%@w% ;)zwwwwm(‘f) (51)
c _)‘d
Spsra (WK = WEM (y5y) 4 M (52)
Sas (VUK = (V7)Y KM (35,4 49,4} (53)
8o g (T = TEM (41) 49, 21 (54)

along with the U(1) gauge symmetries

dcA, = Q%0,A% 6.4, = PXo,BX,
§A, = eX8Cwd, AL, §A, = X8 (V) wd, B! . (55)

The following identity proves useful in directly verifying these as Lagrangian symmetries:
(V7" 5a7) ) = 0 (56)

where () denotes symmetrization, i.e., (y*)(®) = (y#)ab 4 (y#)be
It is interesting to note here that because of the absence of B’ to '/ coupling in the algebra, this
method fails to uncover the first order bosonic symmetry of the Lagrangian

BE M
6%ﬂﬂ(FK>EWW<DEM> (57)

In addition, Lagrangian symmetries such as

GE d
6(5};16([]) < d ) = (UM)Kau ( GK ) (53)
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K o'F,,
353017 (U) ( ) > = (UMK ( ) ok ) (59)
v uv

also are not manifest in the algebra. We will leave all such symmetries not manifested by the algebra out
of the remaining calculations of second order bosonic and first order fermionic symmetries, as we are

investigating how the absence of these symmetries fails to uncover further symmetries down the line.

3.2. Second Order Bosonic Symmetries

In Appendix A1, we list all the second order bosonic symmetries which are calculated in this way,
including their redundancies. Here, we list only the unique symmetries, written in terms of the arbitrary
matrices (A1)57, (AS)75, (A3), (AD)K, AKX, and (AL”)7:

5 (A)AK = AFI0A7 52, (A) B = OB’
St (A)FX = AFIOF7 . 680, (MG = AV 06K
Sk (M) FY = (M) 0,0,FT, 63, (An)GY = (AF)1710,0,G

055 (A2) A, = s (M) 00 (60)
Ofrss(A1) ( ’;I; ) = A} ( (S_I;Eg; ) (61)
Opso(As) ( ﬁ ) = (A5)" ( gﬁgﬁ; ) (62)
5l ( o ) = ()" ( o ) )
S (As) ( ’éj ) = (A" ( gi;agng ) (64)
o) ( . ) =00 (D e ) ©3)
st (4 ) = (7%,
38ha(00) ( v ) = (0%’ ( e ) )
O15(1s) ( gK ) = Af < ?‘é oK ) (68)
S816(As) ( SK ) = Af < ?EGK ) (69)
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G’ 5 0,0,d
Orr (o) ( 1 ) = (Ag")’ ( _"a“ayGJ> (70)

F’ §1OGK

F/ ) 9,0°F,,
Oizs1s(Ao) ( s ) = (\)(U,V) ( P ) (72)
and
Sihao (M) K =AY HITy! (73)
Srbor (M)XK =[(AS7)ST — (ASP) K] (7,7 767") 2,00 (74)
3han(A2)Ae =(AYNEE (3,799,7%) 20,05 \a, (75)
0 hos (Aa) K =(AHVE) (75, 200y (76)
Sron(As)Ae =(A5FE (1591 20,0, M (77)
3hos (Aa) 0K =(AH (v94) 20,0,4] (78)
35006 (As) 0K =(AHVE) () S0 + 2(A5) K7 (4*) 28,0, (79)
53527(A3))‘ _( M) ( )da 9, >\d (80)
Shos (M)WK =AY (49) 20y) 81)
Jerbao(A1)Ae =AFK (77) 200 (82)
Ac Oy

Sirhso(As) ( oF ) = A (7)) ( sz ) (83)

A Oy
O (Ms) ( . ) = Af < —éxc ) (84)

d
Fssn(Aa) = ( O ) Bde (85)

’7 P)/oz |:I)\d

d

5(2) A A — 77# quz)d 36
s M) ( A ) ( (V°77u7%) o 0a DN (50

d K
5(2) A /\C = (AX K (7#)c D¢d 87
Bs3a(Aa) ( 1/15) (A%) (7)1, DN (87)

)\C a B Cdaaa K
O (M) ( « ) = (A5~ ( g )”;;jd i ) , (38)
Hic
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Ae i [ (7 7”) 100050
5(2) A = A;,L K 14 c d 89
BS36( 6) ( 77Z)CK > ( 6 ) < _(7u’yaf>/u7/8)cd8aa,3/\d 7 )

This analysis seems to not miss any second order bosonic symmetries which act on the fermions A,
and 7. However, the missing first order bosonic symmetries alluded to previously which act on the
bosons clearly manifest themselves here in missing second order bosonic symmetries. Basically, as the
fields A’ and B” enter the Lagrangian in the same way, they should have the same first and second order
symmetries. The same should hold for F/ and G”. But clearly since, for example, the algebra is not
symmetric between exchange of A’ <+ B’ or '/ <+ G/, Lagrangian symmetries involving these field

pairs will be missed when generated from the algebra in the manner presented here.

3.3. N = 4 SUSY-YM: First Order Fermionic Symmetries

All such possible calculations are listed in the Appendix A2, some of which are redundant as in the

second order bosonic case. Here is listed only the unique symmetries.
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3.4. Symmetries of the N' = 2 FH Lagrangian
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The symmetries of the N/ = 2 FH system follow analogously from the N' = 4 calculations. The

first order bosonic symmetries of the ' = 2 FH system calculated from the central charges and internal

symmetries are
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where i, 7, k,m = 1,2, and € and X?‘ are once again infinitesimal Grassmann spinors. Here, we clearly
notice the absence of symmetries between A’ <+ B’, A7 «++ G7, B’ ++ [/, and G’ ++ F’. As in the

N = 4 case, this is a direct result of the absence of coupling terms between these fields in the algebra.

Interestingly, we find that the second order bosonic symmetries calculated from these first order

symmetries all vanish identically
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On the other hand, several first order fermionic symmetries still remain after reduction to the N = 2

FH system:
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These are only the unique symmetries uncovered via this method, the redundant calculations being
shown once again in Appendix A3. Here we notice as in the bosonic case, that these fermionic
symmetries are not themselves symmetric with respect to A7 ++ B’ and F/ « G”. Again, this is
a direct result of the absence of the corresponding central charge or internal symmetry in the algebra.

4. Discussion

The d = 4, N = 4 SUSY-YM system is important to many theoretical models in physics today. As
it is a conformal field theory, it’s possible that its study can lead to further understanding of “walking”
theories such as technicolor. In string theory, the AdS/CFT correspondence relates calculations of d = 4,
N = 4 SUSY-YM to classical supergravity calculations on Ad.Ss x S®, where the correspondence is weak
to strong and vice versa. In an effort to more accurately describe the standard model, this has been taken
further to include correspondences to gauge theories with running couplings. Even so, the problem of
how to augment the dynamical theory of d = 4, N’ = 4 SUSY-YM with a finite number of auxiliary fields
such that the algebra closes has been unsolved for quite some time. A solution to this problem would be
helpful to more fully understand these aforementioned theories relating to conformal field theories.

In this paper, we chose a particular set of auxiliary fields for d = 4, N' = 4 SUSY-YM and catalogued
the Lagrangian symmetries manifest in the central charges and internal symmetries of the resulting
algebra. It was noted how not all possible Lagrangian symmetries can be uncovered this way, as certain
central charges and internal symmetries are missing from the algebra. We reinforce here that all results

presented are from straightforward, actual calculations with no assumptions of centrality. For instance,
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we have directly calculated that the SUSY-YM Lagrangian in Equation (4) is invariant with respect to
the transformation laws in Equations (5)—(8). We have directly calculated that these transformation laws
satisfy the anti-commutation relations in Equations (11)—(15). The main result of this paper is how
these transformation laws and anti-commutators lead by direct calculation to the first and second order
Lagrangian symmetries presented in Section 3.

Furthermore, reduction of this particular A’ = 4 system to the A/ = 2 Fayet hypermultiplet and
N = 2 vector multiplet was shown to follow from our direct calculations. Here it was noticed how
in this reduction, central charges and internal symmetries are lost from the algebra. In the case of the
vector multiplet, all charges and internal symmetries are lost as the algebra closes. In the case of the Fayet
hypermultiplet, some central charges and internal symmetries remain, as this algebra does not close.

Finally, we make a note on quantization of non-closed systems such as the A/ = 4 SUSY-YM system
investigated in detail in this paper. In general, non-closure of an algebra leads to an added difficulty in
the quantization procedure. Perhaps the most ubiquitous example is the criticality of string theory. For
quantum non-critical strings, one must solve the Liouville theory. This is not necessary in the case of
critical strings [26,27]. In the case of our results of the N = 4 SUSY-YM system, we have laid out
our results in the hopes of eventually obtaining a closed system, in the sense of Equation (1), without
an infinite number of auxiliary fields. For instead quantization of the non-closed system presented, the
specific forms of the non-closure terms we calculated are important in the same vein as the Liouville

theory for non-critical strings. We leave this quantization as a future project.

“It is while you are patiently toiling at the little tasks of life that the meaning and shape of

the great whole of life dawn on you.”
—Phillips Brooks
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A. Explicit Calculation of Symmetries, Including Redundancies

This section explains in more detail the procedure which led us to the symmetries presented in the
body of the paper. Many symmetries found in this manner are redundant, and those presented in the

paper are the unique symmetries found through this procedure.

Al. N = 4 SUSY-YM: Second Order Bosonic Symmetries

In this section, we explicitly show how the second order bosonic symmetries are discovered through
the N = 4 algebra. Several are redundant, and in the body of the paper, only the unique symmetries

were listed.
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with
ASE(Wy, Wy) = WEIWSE,
Ass(Vi, Vo) = (VI (V) ',
A (P, W) = PEWHRY,
Ag5(T, W) = Ay5(T, W) = THEW R,
(ML) (U W) = (U)W,
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K
c wc

= vy ) et
! (Y1) L 0a0p A
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a0 e ) = . ) )

5 d K
=t 00 ( ()
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[5 SlO(Ul) BSlo(U2)]¢
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34 (U PYAe Z[05210(U), 6521, (P)Ae = 2(A 1) XK (U, P)(4") 28,0, M
51(3%26( ) E[‘Sgsw( ) 1(913911(13)]1?5
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0rbas(Q, PYUE = [0529(Q), 0551, (P)UE = —AF(Q. P)(°) ‘D]

53531(W P) ( 2[( ) E[égg“lz(w)végk)?n(P)] ( Z:K )
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— _ AN K T P ('Y )c d
( 14,11) ( ) >((’y5)cdD)\d
55,?;20(131,132);&5 = [5591)911( P), 51(231;11(P2)]¢§
= — AL (P, PO, (A19)

with

QJ(U“) ) (Aﬁ 10) (VV, U) = WKM<UM>M
(Alfglo) ( ) ( V) (Aﬁ’w)K(T, U) = TKM(UM)M
(Alf(l)jlo)KJ(Uh 2 ) (U2}) ) (Alfo,n)KM(Ua P) = (U"rpPY,

(A810)7"5(Q,U)
U) =
)
Agih(Q, P) = QKP” NS (W, Py = WKMpM,
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)

Ve
U

o~~~

(Alf3 11) ( (V“)KMPM)v Aﬁ,ll(Ta P) = TKMPM?
A (P, Py) = PPy (A20)

where [ | denotes antisymmetry, i.e., UjUy = U{U;* — UJU}*.

A2. N = 4 SUSY-YM: Fermionic Symmetries

Taking the commutators or D, and D! with the first order bosonic symmetries for the N' =
SUSY-YM system, we find several first order fermionic symmetries, some of which are redundant.
The symmetries calculated below which involve 4 P el 7K c2QK el /K and £4(UP)K el 7K are redefined

through
e PRt — cop?
E?QKEIJK N gaQJ

eHUPYETE 5 g2(UP)? (A21)
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as symmetries defined either way are equivalent for the Lagrangian. In Section 2.4.3, all symmetries are

listed using this redefinition where applicable.
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and from [D,, 51(;)94@)]
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= 5aT‘]M ZDW;M
(7M)ab8y FM
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and from [D!, 6%}, (T)]
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and from [D!, (5;)97(U)]
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and from [D!, 559%9(@)]
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A3.N =2FH

1119

In this section, we list all of the A/ = 2 FH fermionic first order symmetries uncovered via our

method, including the redundant ones. Only the unique symmetries were listed in the body of the paper.
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Calculation of [D?, 54 B 53(T)] uncovers no new symmetries, just these same eight again:
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under redefinitions of 7.
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