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Abstract: We revisit the charge-conjugation operation for the Dirac equation in its chiral
representation. A new decomposition of the Dirac spinor field is suggested and achieved
by means of projection operators based on charge conjugation, which is discussed here in a
non-standard way. Thus, two separate two-component Majorana-type field equations for the
eigenfields of the charge-conjugation operator are obtained. The corresponding free fields
are entirely separated without a gauge field, but remain mixed and coupled together through
an electromagnetic field term. For fermions that are charged and, thus, subjected to the gauge
field of electrodynamics, these two Majorana fields can be reassembled into a doublet, which
is equivalent to a standard four-component Dirac spinor field. In this way, the Dirac equation
is retained in a new guise, which is fully equivalent to that equation in its chiral form.
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1. Introduction

According to the canonical standard model of elementary particle physics, leptons and quarks come
in three flavors, are massless and, thus, obey chiral symmetry, but then, they acquire mass through the
Higgs [1,2] mechanism (see, e.g., the text book [3] for details). The Dirac equation [4] is fundamental
in all of this and well understood; however, the nature of the neutrinos involved remains less clear.
Are they Dirac fermions or massive Majorana [5,6] particles? In the past, neutrinos were often
described by the massless Weyl [7] equations involving only two-component Pauli [8] spinors. However,
since convincing empirical evidence [9] for the finite neutrino masses and the associated neutrino
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oscillations [10] had been found in the past few decades, massive neutrinos have been discussed,
and furthermore, another very massive neutrino species (or a sterile one) has been considered in
four-neutrino models [11], for example to explain the masses of the light neutrinos by the see-saw
mechanism [10].

Clearly, any realistic extension of the standard model (SM) will have to consider finite neutrinos’
masses. Therefore, the Majorana equation with various mass terms [12,13] has gained strong attention, in
particular in its complex two-component version (see [14–18] and the recent review by Dreiner et al. [19]
on two-component spinor techniques), and been used in modern quantum field theory for the description
of massive neutrinos. The physical state of affairs in this field and its research perspectives (as of 2006)
were described comprehensively in a review by Mohapatra and Smirnov [20].

The purpose of the present paper is to show that the Dirac equation for a massive and charged fermion
can be rewritten in terms of two two-component Majorana-like equations, which respectively govern two
independent Pauli-spinor fields. In the case of charged leptons, they become coupled in the presence of
an electromagnetic gauge field. The related field equations are developed on the basis of the chiral Dirac
equation. Their derivation employs projection operator techniques related to the charge conjugation
operator, which is considered here in a new way following the recent work by Marsch [16,17].

The paper is organized as follows. We first discuss the relevant aspects of the Dirac equation in
chiral representation and address chirality, helicity and charge conjugation C, as well as the properties of
their associated projection operators. Then, the eigenfields of C are derived and shown to be expressible
in terms of two-component spinor fields, which obey Majorana-like equations, including a mass term.
Finally, we show that a massive charged fermion (electron and positron) can be arranged in a doublet
governed by what we may call the Dirac–Majorana equation. With a short conclusion section, we close
the paper.

2. The Dirac Equation and Chiral Symmetry

2.1. Weyl Representation

In this tutorial introductory subsection, we first consider the Dirac equation in its chiral or
Weyl [7] representation. The subsequent paragraphs provide the necessary material for the discussion in
the following sections. We use standard [3] symbols, notations and definitions and conventional units of
~ = c = 1, with the covariant four-momentum operator denoted Pµ = (E,−p) = i∂µ = i(∂/∂t, ∂/∂x),
which acts on the spinor wave function ψ(x, t). The particle mass is m. We may also
sometimes abbreviate the contravariant space-time location vector xµ = (t,x) simply as x.
The Dirac [4] equation in its standard form reads:

iγµ∂µψ = mψ (1)

The four-vector γµ consists of the four Dirac gamma matrices that come in various representations [3].
We use here the chiral representation in which the gamma matrices may be written as follows:

γµ = (β12, γσ) =

((
0 1

1 0

)
12,

(
0 1

−1 0

)
σ

)
(2)
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Here, 12 stands for the 2 × 2 unit matrix, and the two-dimensional matrices β and γ are defined by
Equation (2) implicitly. The three associated Pauli [8] matrices have their standard form given by:

σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
(3)

Together with the unit matrix, the Pauli matrices may be combined in the four-vector form,
σµ± = (12,±σ), which is used later.

Now, we can also introduce the chiral matrix γ5 = iγ0γ1γ2γ3, which in chiral representation, takes
the form:

γ5 =

(
−12 0

0 12

)
(4)

and obeys (γ5)2 = 14, where 14 stands for the 4×4 unit matrix. By use of γ5, the well-known projection
operators can be defined as PR,L = 1

2
(14 ± γ5), which are idempotent and represent a decomposition of

the identity operator. In matrix form, we obtain:

PL =

(
12 0

0 0

)
and PR =

(
0 0

0 12

)
(5)

With their help, any Dirac spinor field can be decomposed into its right- and left-chiral component,
ψ = PRψ + PLψ = ψR + ψL.

Finally, we may introduce a gauge field, which is obtained by the minimal substitution. We first
consider the Abelian gauge field Aµ(x) of electrodynamics. Conventionally, this is inserted into the
Dirac field Equation (1) according to the minimal coupling principle, i.e., by replacing the time-space
derivative ∂µ by the covariant derivative:

Dµ = ∂µ + iqAµ (6)

The particle charge is denoted by q. The resulting Dirac equation reads:

iγµ(∂µ + iqAµ)ψ = mψ (7)

By its definition, γ5 anticommutes with all gamma matrices, which means {γ5, γµ} = 0, where the curly
brackets denote the anticommutator. Consequently, we have γµPR,L = PL,Rγ

µ, and by using this, we
obtain the coupled Dirac equations for the right- and left-chiral field,

iγµ(∂µ + iqAµ)ψR,L = mψL,R (8)

The interchanged indices for the mass term indicate that it breaks chiral symmetry. Yet, note that the
gauge field coupling term has no effect on the chiral decomposition of the Dirac field.
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2.2. Eigenfunctions

We here derive and present the eigenfunctions of the Dirac equation in an unconventional, but
convenient way using the chiral representation, in which the Dirac equation may be written as follows:

i

(
β12

∂

∂t
+ γσ · ∂

∂x

)
ψ = mψ (9)

To derive its eigenfunctions, we make the usual plane-wave ansatz for the particles (negative
frequency):

ψP(x, t) = v(p) exp(−iEt+ ip · x) (10)

and antiparticles (positive frequency):

ψA(x, t) = w(p) exp(iEt− ip · x) (11)

The spatial differentiation in Equation (9) yields a term involving the spin-related helicity operator, and
therefore, it is convenient to use its eigenfunctions. They obey the eigenvalue equation of the helicity
operator in Fourier space:

(σ · p̂)u±(p̂) = ±u±(p̂) (12)

These two eigenvectors depend only on the momentum unit vector p̂ = p/p =

(sin θ cosφ, sin θ sinφ, cos θ) and can be written as:

u+(p̂) =

(
cos θ

2
e−

i
2
φ

sin θ
2

e
i
2
φ

)
, u−(p̂) =

(
− sin θ

2
e−

i
2
φ

cos θ
2

e
i
2
φ

)
(13)

in which the half-angles of θ and φ appear. According to Equation (13), we have u†±(p̂)u±(p̂) = 1

and u†∓(p̂)u±(p̂) = 0. The dagger denotes, as usual, the transposed and complex conjugated vector,
respectively, matrix. Thus, the eigenvectors for the same p̂ are orthogonal to each other and normalized
to unity. They further obey the relation u±(−p̂) = iu∓(p̂). The trace matrix elements of the spin
operator between these two eigenvectors read:

u†±(p̂)σu±(p̂) = ±p̂ (14)

The four-component spinors, v and w, can now be decomposed into:

vs(p) = ϕs(p)us(p̂) (15)

ws(p) = χs(p)us(p̂) (16)

whereby we added the subscript s, which indicates the helicity eigenvalue that can be s = ±1, and thus,
s2 = 1. The above two-component spinors obey the matrix equations:

(βE − γsp−m)ϕs(p) = 0 (17)

(βE − γsp+m)χs(p) = 0 (18)
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for particles (top) and antiparticles (bottom), having opposite signs of their mass terms. Nontrivial
solutions require the determinant of the above 2 × 2 matrices to vanish, which yields the
positive eigenvalue:

E(p) =
√
m2 + p2 (19)

The negative root related to antiparticles must not be considered explicitly, as it is already implied by the
ansatz (11). The energy does not depend on the spin index s. When solving the Equations (17) and (18)
for their eigenfunctions, we obtain:

ϕs(p) =
1√

2m(E(p) + sp)

(
m

E(p) + sp

)
(20)

χs(p) =
1√

2m(E(p)− sp)

(
−E(p) + sp

m

)
(21)

These spinors are both real and can be normalized in the standard Lorentz-invariant way by introducing
the conjugate spinor ϕ̄ = (βϕ)T , where superscript T denotes the transposition. It is straightforward to
show that ϕ̄sϕs = 1, χ̄sχs = −1, ϕ̄sχs = 0, and χ̄sϕs = 0, where the dispersion relation (19) has been
used. Finally, we obtain the normalized orthogonal particle and antiparticle spinor fields:

ψP(x, t;p, s) = ϕs(p)us(p̂) exp(−iE(p)t+ ip · x) (22)

ψA(x, t;p, s) = χs(p)us(p̂) exp(iE(p)t− ip · x) (23)

For opposite helicities, the orthogonality of ψA and ψP is ensured by the orthogonality of the
corresponding helicity eigenvectors. Finally, we note the following symmetry properties:

γχs = ϕ−s, γϕ−s = −χs (24)

which are used subsequently in connection with charge conjugation.

3. The Dirac Equation and Charge Conjugation

3.1. Projection Operators

According to standard procedures [3], the charge conjugation symmetry of the Dirac equation is given
by the operator C, which has the effect that ψ transforms into ψC = Cψ = −iγyψ

∗, where the asterisk
means complex conjugation and the phase factor in front is apt convention.

The charge conjugation operation can be more concisely written by the help of a new operator named
τ = −iσyC, where C denotes the complex conjugation operator, which transmutes a complex number z
into z∗. This operator turned out to be very convenient in the treatment of the complex two-component
Majorana equation [16,17]. It is antiunitary and obeys τ † = −τ = τ−1 and τ 2 = −1. Furthermore, it
anticommutes with all Pauli matrices, {τ,σ} = 0, which means it flips the spin by interchanging the
sign of the Pauli matrix three-vector. Furthermore, with the above eigenfunctions of the helicity operator,
we find the important property:

τus(p̂) = su−s(p̂) (25)
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Using the above operator τ , we can now define the charge conjugation [3] by C = δ in the chiral
representation, in which it is given by the matrix operator:

δ = γτ =

(
0 τ

−τ 0

)
(26)

It is unitary and its own inverse, and its square yields the unit matrix: δ2 = 14, δ† = δ−1 = δ. These
properties qualify the charge conjugation operator for the construction of a projector in the following
form, P± = 1

2
(1± δ), which in matrix form reads:

P± =
1

2

(
1 ±τ
∓τ 1

)
(27)

Using the properties of τ , it is straightforward to validate that P± is idempotent. As the operator C
changes i into its negative, we have P±i = iP∓. Concerning the Dirac matrices, we find [P±, iγ

µ] = 0,
where the square brackets denote the commutator. This is nontrivial for γ0, but readily verified and
also immediately obtained for the three spatial components of gamma by noting that [τ, iσ] = 0.
With the help of P±, any Dirac spinor field can now be decomposed [13] into two orthogonal
charge-conjugated components,

ψ = P+ψ + P−ψ = ψ+ + ψ− (28)

obeying δψ± = ±ψ±. This decomposition can be made in a Lorentz-invariant way. As [δ, iγµ] = 0, one
finds that the projection operator P± commutes with the operator of the Lorentz transformation.

It is then straightforward to decompose by projection the Dirac equation including the electromagnetic
gauge field into two equations for the eigenfields of C or δ with the result:

iγµ(∂µψ± + iqAµψ∓) = mψ± (29)

Contrary to the chiral decomposition (8), the present decomposition decouples the two fermion fields in
their mass term; however, not unexpectedly, it couples the two fields (of opposite eigenvalue ±1 of δ)
via their common gauge four-vector potential. If a fermion field carries no electric charge, i.e., q = 0,
like for the neutrino, the two fields decouple entirely, and either one of them may be chosen, where
the requirement ψ = Cψ, i.e., ψ− = 0, seems to be the most natural [18] choice. We may rename the
so-constrained Dirac field as ψ0, indicating the zero charge by the subscript. Such a field is reduced and
has only two independent components.

The above formal decomposition of the Dirac spinor field can be illustrated explicitly when use is
made of the four known free eigenfields in the chiral representation, as given in Equations (22) and (23),
which we here add up with equal weight to form ψ̂ as a superposition. For the sake of simplicity, we
only keep at this point the spin index (s = ±1), and then can write:

ψ̂ = ψP(+) + ψP(−) + ψA(+) + ψA(−) (30)

for any given time, location and momentum. Using the properties of τ and γ as stated in
Equations (24) and (25), one finds the effect of C or δ operating on the eigenfunctions with the
key result:

δψP(s) = −sψA(−s), and δψA(s) = sψP(−s) (31)
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Correspondingly, one obtains:

δψ̂ = −ψA(−) + ψA(+) + ψP(−)− ψP(+) (32)

Taking the difference, respectively the sum, of Equations (30) and (32), and exploiting the definition of
the projection operator, one obtains:

ψ̂+ = ψP(−) + ψA(+) (33)

ψ̂− = ψP(+) + ψA(−) (34)

This result shows that these two orthogonal fields consist, so to speak, of “half” of the electron and
positron, in so far as they combine a particle state with a state of its antiparticle, yet of opposite helicity.

Let us continue by discussing some further properties of the charge conjugation and chirality
operators. First, by their definitions and according to Equations (4) and (26), these two Hermitian
operators do not commute, but we have:

{γ5, δ} = 0 (35)

and thus, they cannot have common eigenfunctions. Of course, by definition, the left-chiral and
right-chiral Weyl fields obey:

γ5ψR,L = ±ψR,L (36)

and similarly, the charge-conjugated fields obey:

δψ± = ±ψ± (37)

Moreover, because of Equation (35), we find that δPR,L = PL,Rδ and γ5P± = P∓γ
5. Thus, chirality and

charge conjugation are intimately linked.
We may generally write any Dirac four-component spinor field in terms of two two-component

Pauli fields,

ψ =

(
φ

χ

)
(38)

Then, the Weyl fields (eigenfields of γ5) and the eigenfields of C can be written as:

ψL =

(
φ

0

)
and ψR =

(
0

χ

)
(39)

ψ± =
1

2

(
φ± τχ
χ∓ τφ

)
=

1

2

(
1

∓τ

)
(φ± τχ) (40)

Note that the two chiral fields are reduced by two degrees of freedom as compared to the full Dirac field,
which is obvious from Equation (39). The charge-conjugated fields also have two degrees of freedom
less than ψ, as they consist of the linear combination of its independent upper and lower components, as
given in Equation (40), and only their sum gives the full ψ.
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3.2. Links between the Equations as Obtained by Projection through Chirality- or Charge-Conjugation

Let us now consider again the Dirac equation, including an electromagnetic gauge field, and write it
in the chiral decomposition according to Equation (39). The coupled set of two-component chiral spinor
fields reads:

σµ+ (i∂µ − qAµ)χ = mφ (41)

σµ− (i∂µ − qAµ)φ = mχ (42)

The sign in front of the charge is the same in both equations. As a consequence of the previous
discussion, we now use the positive and negative eigenfields (40) of C or δ and insert them into the
Dirac Equation (29), which will result in two coupled fields for linear combinations of φ and χ. We then
obtain four two-component equations, which must be satisfied together. To be explicit for the sake of
clarity, we quote the full result (omitting the common factor of 1/2, which cancels), which is:

σµ+ (i∂µ(χ− τφ)− qAµ(χ+ τφ)) = m(φ+ τχ) (43)

σµ− (i∂µ(φ+ τχ)− qAµ(φ− τχ)) = m(χ− τφ) (44)

σµ+ (i∂µ(χ+ τφ)− qAµ(χ− τφ)) = m(φ− τχ) (45)

σµ− (i∂µ(φ− τχ)− qAµ(φ+ τχ)) = m(χ+ τφ) (46)

When operating with τ on Equations (44) and (46), we find these equations to be identical with
Equations (43) and (45). Therefore, out of four, only two equations are independent. If we take the
sum of Equations (43) and (45) and of Equations (44) and (46), we retain the chiral Equations (41)
and (42). If we take the corresponding differences, operating from left with τ on both equations, then
we obtain again the two chiral Equations (41) and (42). Hereby, use was made of τ † = −τ , i.e., that τ is
an anti-Hermitian operator, and that τ 2 = −12.

We may now define, based on the two chiral fields, two new charge-conjugation-related fields that
we name χ± = φ ± τχ and φ± = χ ∓ τφ, corresponding to the combinations that appear in the above
four equations, and in Equation (40). We thus obtain two sets of still coupled (via the gauge field)
Majorana-type (because of the τ in the mass term) equations, which read as follows:

σµ− (i∂µχ± − qAµχ∓) = ∓mτχ± (47)

σµ+ (i∂µφ± − qAµφ∓) = ±mτφ± (48)

Note that the respective plus and minus fields are not decoupled owing to the gauge field term, but
certainly are so for zero charge. Moreover, the equations for φ± and χ± are equivalent, since, by
definition, φ± = ∓τχ±. Thus, by operating with ∓τ on Equation (47), we get Equation (48), and
vice versa. Therefore, we only need consider one of the two sets, corresponding to the left-chiral version
for the phi-fields and right-chiral form for the chi-fields. This illustrates that the sign of the spin σ, i.e.,
helicity and chirality, and charge conjugation (apparently meaning here the replacement of σµ+ by σµ− by
operation of τ ) are intimately linked.
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3.3. Majorana Equations

With the two Equations (47) or (48), we decomposed the single four-component Dirac field (which
includes the electron and positron) into two two-component fields, which are not linked by their mass
terms for which they yet have opposite signs and which also are, like in the original Equation (29), linked
by the common gauge-field term. Therefore, solving either the set of coupled (via the mass term) chiral
Equations (41) and (42) or the above set of coupled (via the gauge field) Majorana-type equations gives
the complete solution of the Dirac equation of a charged massive lepton in an electromagnetic field.

The original and charge-conjugated Dirac fields ψ and ψ± are in terms of the fields χ± and φ±

according to Equations (38) and (40) given by either:

ψ± =

(
±τφ±
φ±

)
, or ψ± =

(
χ±

∓τχ±

)
(49)

whereby, by definition, the field obeys Cψ± = ±ψ±. This provides a general decomposition of the
Dirac fermion field ψ and differs from the usual Majorana field obtained by imposing the condition that
ψ− = 0 and, thus, ψ = ψ+. Furthermore, once we know the field ψ±, we can readily obtain either χ±
from its upper component, or φ± from its lower component, simply by reading them off from of the
above Equation (49).

To give an important example, when considering in the chiral representation the four free
eigenfields (22) and (23) and exploiting the relations in Equation (31), we find for their
charge-conjugated versions the results:

ψP±(s) =
1

2
(ψP(s)∓ sψA(−s)) (50)

ψA±(s) =
1

2
(ψA(s)± sψP(−s)) (51)

Referring to the general definition of ψ± in Equation (49) and inserting the solutions (22) and (23)
into the above equations, we find the two-component spinor solutions as follows:

χP±(s) =
mus exp(−ixp)± (E + sp) su−s exp(ixp)√

2E(E + sp)
(52)

χA±(s) =
±msu−s exp(−ixp)− (E − sp)us exp(ixp)√

2E(E − sp)
(53)

Here, we use xp = E(p)t − p · x as the abbreviation and, for short, E = E(p) and us = us(p̂).
Furthermore, we renormalized the spinor, such that when calculating the product χ†J±(s)χJ±(s), one
finds it to be unity, so that the spinor χJ±(s) is normalized; however, χJ+(s) is not orthogonal to χJ−(s),
where J stands for the subscript A or P. Finally, we remind the reader that τus = su−s.

Close inspection of Equations (52) and (53) shows that, what looks like eight, actually are only four
independent equations, since one finds the symmetry relations:

χP±(s) = (∓s)χA±(−s), and χA±(s) = (±s)χP±(−s) (54)

Therefore, there is no cross-coupling between the ± indices, which correspond to the eigenvalues of the
charge-conjugation C or its operator δ in the chiral representation of Dirac’s equation. Consequently,
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for both helicity eigenvalues s = ±1, we can associate the plus-minus solutions either with particles
or antiparticles,

χ±(s) = χP±(s), or χ±(s) = χA±(s) (55)

This interpretation is consistent with Equation (47), in which the two-component free spinor fields χ+

and χ− are fully decoupled from each other for a vanishing electromagnetic field. Finally, we quote
again the two sets of possible solutions explicitly as:

χ±(x, t;p, s) =
mus(p̂) exp(−ixp)± (E(p) + sp) su−s(p̂) exp(ixp)√

2E(p)(E(p) + sp)
(56)

or alternatively:

χ±(x, t;p, s) =
±msu−s(p̂) exp(−ixp)− (E(p)− sp)us(p̂) exp(ixp)√

2E(p)(E(p)− sp)
(57)

These two-component spinor fields are normalized to unity. Direct insertion shows that both pairs solve
the two independent complex Majorana equations:

σµ−i∂µχ± = ∓mτχ± (58)

Upon insertion of these solutions into ψ±, as given in Equation (49), we are provided with the
two charge-conjugated solutions of the Dirac equation in its Weyl or chiral representation. Similar
calculations can be done for the φ± fields and deliver equivalent results. These solutions correspond to
a superposition of half of the electron and positron, yet with opposite helicity, and are valid for the two
spin orientations or helicities given by s = ±1.

Now, let us consider an uncharged particle, like the massive neutrino. With q = 0, we get from
Equations (47) and (48) the same equation for χ+ and χ−, with the exception of the opposite sign of the
mass term. Taking one of the fields to be zero, namely χ−, and the other non-zero, namely χ+, whereby
we name that field χ0, indicating zero charge, we obtain the two-component complex Majorana equation,
which for the massive neutrino, reads:

σµ−i∂µχ0 = −mτχ0 (59)

Equivalently, we obtain:
σµ+i∂µφ0 = mτφ0 (60)

The solutions are connected by the relation φ0 = −τχ0. Note the advantage of the two-component Pauli
spinor-field description as given by the three Equations (47), (48) and (59) over the four-component
description using the Dirac matrices, for which the projection constraints are implicit, but still have to be
obeyed, whereas in the two-component theory, they have already been incorporated by the reduction of
the spinor fields from four to two components.
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3.4. Electromagnetic Gauge

As discussed in the previous section, we can describe the coupled charge-conjugated Dirac fields
in terms of two-component Majorana-like fields, which obey the separate equations for the two free
eigenfields of the charge conjugation operator, but become coupled through the electromagnetic gauge
field. This doublet is associated with the σx-like 2× 2 charge matrix:

ε = q

(
0 1

1 0

)
(61)

Inspection of the mass term suggest introducing another σz-like 2× 2 mass matrix:

µ = m

(
1 0

0 −1

)
(62)

The two fields χ+ and χ− (and φ+ and φ−) can now be assembled into a doublet spinor field Ξ (and
Φ), which reads:

Ξ =

(
χ+

χ−

)
, and Φ =

(
φ+

φ−

)
(63)

and which obeys the Dirac–Majorana equation:

σµ− (i∂µ − εAµ) Ξ = −µτΞ (64)

σµ+ (i∂µ − εAµ) Φ = µτΦ (65)

Essentially, these equations are just other forms of the Dirac equation coming in a new guise, with the
main difference (and perhaps complication) being that the operator τ appears at the mass term as in the
complex Majorana equation. For zero mass and Aµ = 0, Equations (64) and (65) then are equivalent to
a doublet of two Weyl fields having the opposite chirality. We recall that τ and i anticommute, and also,
[ε, µ] = 0. Therefore, we have [iε, τµ] = 0. Although it seems less obvious, we can readily establish
gauge invariance by noting that Equations (64) and (65) are invariant under a phase transformation of,
for example, the spinor field Φ of the kind:

Φ→ Φ′ = exp (iελ(x))Φ (66)

with some real gauge function λ(x) (x stands as the abbreviation for xµ). We may write the phase factor
out explicitly, which is in fact a matrix that reads:

exp (iελ(x)) = 12 cos (λ(x)) + iε sin (λ(x)) (67)

This complex phase factor slips through the mass term and, then, can finally be canceled from
Equation (65) if the gauge field is redefined, as usual, by A′µ = Aµ + ∂µλ(x). Finally, we note that
Equation (65) is, as it should be, invariant against charge conjugation, which here means ε is replaced
by −ε. If we introduce the anti-diagonal σy-like matrix:

κ =

(
0 −i

i 0

)
(68)



Symmetry 2015, 7 461

this is found to obey κ = κ−1 and κ2 = 12, and one can readily see that it anticommutes with ε

and µ, but commutes with the mass term, as τ also anticommutes with κ. Therefore, if Φ(ε) solves
Equation (65), then Φ(−ε) = κΦ(ε) solves the charge-conjugated equation.

4. Conclusions

Starting from the chiral Dirac equation, we have shown that its spinor field can be decomposed into
the two eigenfields ψ± of the charge-conjugation operator C, for which appropriate projectors have been
defined in Equation (27). These eigenfields are constrained Dirac spinor fields and are fully determined
by the two complex two-component Majorana fields, as they are given in the left-chiral version by the
solution of Equation (47) or the right-chiral version by Equation (48). The two equations are separated
for the plus and minus sign and, unlike the chiral Weyl fields, are not linked by their respective mass
terms, which have opposite signs. However, they become closely linked via the electromagnetic gauge
field. The resulting Dirac–Majorana equations in the form of either Equations (64) or (65) have, to our
knowledge of the literature, not been derived before.

Thus, with the solutions of the two basic Equations (47) and (48), we can by means of Equation (49)
decompose the single four-component Dirac field into two two-component Majorana fields. Therefore,
solving either the set of coupled (via the mass term) chiral Weyl Equations (41) and (42) or the above
set of coupled (via the gauge field) Majorana equations provides us with a complete solution of the
Dirac equation of a charged massive lepton in an electromagnetic field. The Majorana equations are
by their mass terms characterized by the operator τ , which is at the heart of charge conjugation.
Yet, its explicit appearance is unavoidable, and τ may somewhat complicate the involved algebraic
calculations as compared to those that are usually carried out in the standard or chiral representation
of the Dirac equation.

However, this new decomposition (involving complex conjugation) is not too complicated, even
though we went into considerable algebraic detail in the previous illustrative calculations. Adding
and subtracting the original and charge-conjugated Dirac fields [13] is exactly what is implied by the
decomposition (28) employing the projection operator (27). However, this procedure is not standard, and
in textbooks and the special literature, the eigenfunction ψ− with a negative eigenvalue of C is usually not
considered, but only ψ+ with a positive eigenvalue, corresponding to the“reality condition” [18] imposed
on a Dirac spinor field within the real Majorana representation of the Dirac matrices. The general use of
projection operators for charge conjugation permits more algebraic transparency when proceeding from
the standard Dirac equation to the Majorana equation including an electromagnetic field.
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