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Abstract: Some of the outstanding questions of particle physics today concern the neutrino
sector, in particular whether there are more neutrinos than those already known and whether
they are Dirac or Majorana particles. There are different ways to explore these issues. In this
article we describe neutrino-mediated decays of charged pseudoscalar mesons such as π±,
K± and B±, in scenarios where extra neutrinos are heavy and can be on their mass shell.
We discuss semileptonic and leptonic decays of such kinds. We investigate possible ways
of using these decays in order to distinguish between the Dirac and Majorana character of
neutrinos. Further, we argue that there are significant possibilities of detecting CP violation
in such decays when there are at least two almost degenerate Majorana neutrinos involved.
This latter type of scenario fits well into the known neutrino minimal standard model
(νMSM) which could simultaneously explain the Dark Matter and Baryon Asymmetry of
the Universe.
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1. Introduction

To date it is unclear whether the neutrinos we know are Dirac of Majorana fermions. Unlike
Dirac fermions, Majorana fermions cannot be distinguished from their own antiparticles. As a
consequence, processes involving Dirac neutrinos conserve charges such as Lepton Number, while
processes involving Majorana neutrinos will not conserve them. There exist several processes which
may clarify the Majorana or Dirac nature of neutrinos. Among such processes the most prominent are
neutrinoless double beta decays (0νββ) in nuclei [1–10]. Other such processes are specific scattering
processes [11–21], and rare meson decays [22–40].

A related issue in neutrinos physics is the absolute mass values of the known neutrinos. While the
experimental evidence of neutrino oscillations within the known three flavor states [41–46] clearly shows
that these particles cannot all be massless, the oscillations are only sensitive to mass differences, not to
their absolute values. In contrast, 0νββ decays are sensitive to the absolute mass and may help in their
determination, if neutrinos turn out to be Majorana particles. So far the best bounds on the absolute
masses of the light neutrinos come from Cosmology mν & 0.23 eV [47].

A pending question is then why light neutrinos are so light, specifically so much lighter than all other
Standard Model (SM) fermions. Interesting enough, the existence of such very light neutrinos can be
explained via the seesaw mechanism [48–52] where more neutrinos are required and where all of them
are, in general, Majorana particles. In the simplest form of this mechanism, the masses of the light
neutrinos are ∼ M2

D/MR (.1 eV), where MD is an electroweak scale or lower. At the same time,
additional neutrinos, usually much heavier (with massesMR � 1 TeV) and sterile under electroweak
interactions except through small mixing with the SM flavors, are required. This mixing is suppressed as
∼ MD/MR (�1). Besides the simplest scenario, there are other seesaw scenarios in which the heavy
neutrinos may have lower masses, namely near or below 1 TeV [53–59] and even near the 1 GeV scale
or below [15,60–65], and at the same time their mixing with the SM flavors may not be so extremely
suppressed as in the original scenarios.

In the first part of this work we discuss lepton number violating (LNV) semileptonic decays of charged
pseudoscalar mesons such as K± and B±, mediated by a heavy Majorana neutrino on its mass shell,
cf. Ref. [26]. The pions, which are the lightest mesons, can have only leptonic decays; we discuss
hypothetical leptonic decays that could be mediated by on-shell heavy neutrinos. Such decays could be
either lepton number conserving (LNC) or lepton number violating (LNV) when the mediating neutrinos
are Majorana particles, cf. Ref. [37], while only LNC decays occur when the neutrino is of Dirac type. We
present ways of determining the nature of neutrinos using the differential decay rates of these processes.

Yet another interesting issue in neutrino physics is the possible existence of CP violation in the lepton
sector, a phenomenon that could be measured, for example, in neutrino oscillations [66]. Alternatively,
as we present in the second part of this work, leptonic CP violation may show in leptonic LNC and LNV
decays of charged pions, cf. Ref. [38], or in semileptonic LNV decays of K± and B±, cf. Refs. [39,40].
It turns out that such CP violation becomes appreciable and possibly detectable in these decays if the
scenario contains at least two on-shell heavy neutrinos that are almost degenerate. Interestingly, this
scenario fits well into the neutrino minimal standard model (νMSM) [60,61,67–72] which contains two
almost degenerate Majorana neutrinos of mass∼ 1 GeV and another lighter neutrino of mass∼ 101 keV,
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besides the three light neutrinos of mass .1 eV. This model can explain simultaneously the existence
of neutrino oscillations, dark matter and baryon asymmetry of the Universe. Furthermore, in more
general frameworks of low-scale seesaw, baryon asymmetry (but not dark matter) is explained while
keeping even larger values of the heavy-light mixing [73] than in the νMSM, and in such frameworks
the case of almost degenerate Majorana neutrinos is preferred [74] since it allows larger mixings. CP
violation effects in the neutrino sector in scenarios with nearly degenerate heavy neutrinos have also
been investigated earlier [75,76] using a more detailed formalism, although it amounts to the same
effect described here which is the interference of amplitudes with two slightly different dispersive and
absorptive parts in the neutrino self energy.

In Section 2 we discuss the LNV semileptonic decays of mesons M± → `±1 `
±
2 M

′∓, mediated
by an on-shell Majorana neutrino (which henceforth we call N ) where M is a heavy pseudoscalar
(M = K,D,Ds, B,Bc), M

′ is a lighter pseudoscalar, and `j (j = 1, 2) are charged leptons, and
we present there the corresponding branching ratios. In Section 3 we present the expressions and
values of the branching ratios for the LNC and LNV leptonic decays of charged pions mediated by
on-shell N sterile neutrino, π± → e±N → e±e±µ∓ν, as well as the differential branching ratio
dBr/dEµ for these decays. We discuss the possibilities of detecting such branching ratios and to
discern from them the Majorana or Dirac nature of neutrinos. In Section 4 we then extend the analysis
of the mentioned leptonic and semileptonic decays to a scenario where we have at least two heavy
on-shell sterile neutrinos involved (N1, N2), and we present an analysis of CP-violating asymmetries
ACP ≡ [Γ(M−)−Γ(M+)]/[Γ(M−)+Γ(M+)] for such processes. In Appendices A.1 and A.2 we present
explicit formulas for our LNV semileptonic decays, and in Appendices A.4 and A.5 explicit formulas
needed for the analysis of our LNC and LNV leptonic decays of the charged pion. Appendix A.3 contains
formulas needed for evaluation of the decay width of the heavy neutrino N , and in Appendix A.6
we derive an identity relevant for CP violation asymmetry. In Section 5 we discuss and summarize
our results.

2. Lepton Number Violating Semileptonic Decays of Scalar Mesons

If there is a Majorana sterile neutrino N with mass MN ∼ 1 GeV, its existence could be discerned
by detecting semileptonic LNV decays of heavy mesons mediated by on-shell N . Here we will
consider such LNV decays M± → `±1 N → `±1 `

±
2 M

′∓, where M and M
′ are pseudoscalar mesons

(M = K,D,Ds, B,Bc; M
′
= π,K,D,Ds) while `1 and `2 are charged leptons (e, µ or τ ), cf. Figure 1.

Large part of this Section uses the results of Refs. [26,37], and for certain general formulas, those of
Refs. [39,40].

We consider a scenario where we have at least one heavy sterile neutrinoN , which has (small) mixing
B`N with the three known neutrino flavors ν` (` = e, µ, τ )

ν` =
3∑

k=1

B`νkνk +B`NN + . . . (1)
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Here, νk (k = 1, 2, 3) are the three light mass neutrino eingenstates. The considered decays may be
appreciable only if N can go on its mass shell (in the s-type channel, Figure 1), creating a very large
resonant enhancement of order mN/ΓN , condition which is fulfilled if

(MM ′ +M`2) < MN < (MM −M`1) , or/and

(MM ′ +M`1) < MN < (MM −M`2) (2)

Consequently, only tree level resonant amplitudes need to be considered. The mixing matrix B

appearing in Equation (1) should be unitary, implying that the PMNS 3 × 3 block B`νk (` = e, µ, τ

and k = 1, 2, 3) is in general not unitary. If one adds extra and heavy neutrinos—as in most seesaw
models—the unitarity of B thus provides upper limit constraints on the heavy-to-light mixing
elements [34,77–79]. This is in part one of the reasons for the high suppression suffered by all lepton
flavour violating processes involving heavy neutrinos.

N

M ’M   (p  )+

+
2 (p  )2

1
+ (p  )1

M   (p  )−
M

’

(a)

(p  )
N

NM ’M   (p  )+

+
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M
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(p  )N

Figure 1. The lepton number violating (LNV) semileptonic decay M+(pM) →
`+

1 (p1)`+
2 (p2)M

′−(pM ′) mediated by a Majorana neutrino N : (a) the direct (D) channel;
(b) the crossed (C) channel.

2.1. Branching Ratio for M± → `±1 `
±
2 M

′∓

The decay width of the considered decays can be written as final particles’ phase space integral of the
square of the reduced decay amplitude T (M±) (summed over helicities of charged leptons)

Γ(M± → `±1 `
±
2 M

′∓) = (2− δ`1`2)
1

2!

1

2MM

1

(2π)5

∫
d3 |T (M±)|2 (3)

Factor 1/2! above is the symmetry factor when the two produced leptons are equal; d3 is the
integration differential of the final three-particle phase space

d3 ≡
d3~p1

2E`1(~p1)

d3~p2

2E`2(~p2)

d3~pM ′

2EM ′(~pM ′)
δ(4) (pM − p1 − p2 − pM ′) (4)

The resulting decay width can be written as

Γ(M± → `±1 `
±
2 M

′∓) = (2− δ`1`2)|k|2
[
Γ̃(DD∗) + Γ̃(CC∗) + Γ̃±(DC∗) + Γ̃±(CD∗)

]
(5)

where k is the mixing factor
k = B`1NB`2N (6)
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and Γ̃±(XY ∗) are the normalized (i.e., without the explicit mixing) contributions from the X channel
and the complex-conjugate of the Y channel (X, Y = D,C, where D and C stand for the direct and
crossed channels)

Γ̃±(XY ∗) ≡ K2 1

2!

1

2MM

1

(2π)5

∫
d3 P (X)P (Y )∗M2

NT±(X)T±(Y )∗ (7)

The expressions for T±(X)T±(Y )∗ (X, Y = D,C) are given in Appendix A.1. T±(X) is the
relevant part of the amplitude in the X channel and forms part of the total decay amplitude T (M±),
cf. Appendix A.1. In Equation (5), notice that subscripts ± for the contributions Γ̃(DD∗) and Γ̃(CC∗)

are unnecessary because |T+(D)|2 = |T−(D)|2 and |T+(C)|2 = |T−(C)|2. P (X) (X = D,C) are the
propagator functions of the intermediate neutrino N in the two channels

P (D) =
1

[(pM − p1)2 −M2
N + iΓNMN ]

(8a)

P (C) =
1

[(pM − p2)2 −M2
N + iΓNMN ]

(8b)

The overall constant K2 in Equation (7) is

K2 = G4
Ff

2
Mf

2
M ′|VQuQdVquqd |2 (9)

Here, fM and fM ′ are the decay constants of M± and M ′∓, and VQuQd and Vquqd are the corresponding
CKM matrix elements. We denote the valence quark content of M+ as QuQ̄d; of M ′+ as quq̄d.

When the intermediate neutrino N has such a mass that it is on mass shell, Equation (2), the squares
of the propagators (8) are reduced to Dirac delta functions because ΓN �MN

|P (X)|2 =

∣∣∣∣ 1

(pM − pk)2 −M2
N + iΓNMN

∣∣∣∣2
=

π

MNΓN
δ((pM − pk)2 −M2

N) (ΓN �MN) (10)

where pk = p1, p2 for X = D,C. In this on-shell case, the DD∗ and CC∗ contributions in Equation (5)
are large, and the interference contributions DC∗ and CD∗ are negligible in comparison (cf. Ref. [39]
for details on this point), leading to

Γ(M± → `±1 `
±
2 M

′∓) = (2− δ`1`2)|k|2
[
Γ̃(DD∗) + Γ̃(CC∗)

]
(11a)

≡ Γ(M± → `±1 `
±
2 M

′∓;DD∗) + Γ(M± → `±1 `
±
2 M

′∓;CC∗) (11b)

when `1 = `2, we even have Γ̃(DD∗) = Γ̃(CC∗). The normalized decay width Γ̃(DD∗) can be
calculated explicitly, and it turns out to be

Γ̃(DD∗) =
K2M5

M

128π2

MN

ΓN
λ1/2(1, yN , y`1)λ

1/2

(
1,
y′

yN
,
y`2
yN

)
Q(yN ; y`1 , y`2 , y

′) (12)

and Γ̃(CC∗) is obtained by the simple exchange y`1 ↔ y`2

Γ̃(CC∗) = Γ̃(DD∗)(y`1 ↔ y`2) (13)
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The notations used in Equations (12) and (13) are

λ(y1, y2, y3) = y2
1 + y2

2 + y2
3 − 2y1y2 − 2y2y3 − 2y3y1 (14a)

yN =
M2

N

M2
M

, y`s =
M2

`s

M2
M

, y′ =
M2

M ′

M2
M

, (`s = `1, `2) (14b)

and the function Q(yN ; y`1 , y`2 , y
′) is given in Appendix A.2. In the limit of massless charged leptons

(y`1 = y`2 = 0), the expression (12) reduces to

Γ̃(DD∗)
∣∣
M`1

=M`2
=0

=
K2M5

M

256π2

MN

ΓN
y2
N(1− yN)2

(
1− y′

yN

)2

(15)

We note that the expression (12), although having the explicit mixing dependence factored out
[cf. Equation (11)], contains the dependence on the mixing coefficients B`N in the denominator due
to the N -decay width there ΓN ∝ |B`N |2 (` = e, µ, τ , see below). This factor 1/ΓN in Γ̃(DD∗)

of Equation (12) represents the N -on-shell effect Equation (10). As a result, the considered width
Γ(M± → `±1 `

±
2 M

′∓) is by many orders of magnitude larger when N is on-shell than it would be if
N were off-shell. For more quantitative analyses, it is thus important to have an expression for ΓN as a
function of mass MN . Using the results of Ref. [39], we can write this decay width as

ΓN = K̃ΓN(MN) (16)

where the corresponding canonical (i.e., without any mixing dependence) decay width is

ΓN(MN) ≡ G2
FM

5
N

96π3
(17)

and the factor K̃ contains the dependence on the heavy-light mixing factors

K̃(MN) ≡ K̃ = NeN |BeN |2 +NµN |BµN |2 +NτN |BτN |2 (18)

In this expression, N`N(MN) ≡ N`N (` = e, µ, τ ) are the effective mixing coefficients; these
are numbers ∼ 100–101 which depend on the mass MN . In Appendix A.3 we write down the
relevant formulas for the evaluation of these coefficients. The results of these evaluations are presented
in Figure 2, for the case of Majorana and Dirac neutrino N , in the entire neutrino mass interval
0.1 GeV < MN < 6.3 GeV which will be of interest in this work. For further clarifying remarks
we refer to Appendix A.3. Equations (11) and (12) imply that Γ(M± → `±1 `

±
2 M

′∓) is proportional to
1/K̃ (∝ 1/|B`N |2). Hence, we can define a canonical branching ratio Br, being the part of the branching
ratio Br(DD∗) ≡ Γ(M± → `±1 `2±M

′∓;DD∗)/Γ(M± → all) with no explicit or implicit heavy-light
mixing factors

Br(M± → `±1 `
±
2 M

′∓;DD∗) ≡ Γ(M± → `±1 `
±
2 M

′∓;DD∗)

Γ(M± → all)
=

(2− δ`1`2)|k|2

Γ(M± → all)
Γ̃(DD∗) (19a)

= (2− δ`1`2)
|k|2

K̃
2Br(yN ; y`1 , y`2 ; y

′) (19b)

Use of the expressions (12) and Equations (16) and (17) then gives for the canonical branching ratio
the following expression:

Br(DD∗) ≡ Br(yN ; y`1 , y`2 , y
′)
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=
3π

8

K2MM

G2
FΓ(M± → all)

1

y2
N

λ1/2(1, yN , y`1)λ
1/2

(
1,
y′

yN
,
y`2
yN

)
Q(yN ; y`1 , y`2 , y

′) (20)

where the notations (14) and (9) are used. In the limit of massless charged leptons (M`1 = M`2 = 0) this
expression becomes simpler

Br(yN ; 0, 0, y′) =
3π

16

K2MM

G2
FΓ(M± → all)

(1− yN)2

(
1− y′

yN

)2

(21)
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Figure 2. The effective mixing coefficients N`N (` = e, µ, τ ) appearing in
Equations (16)–(18), as a function of the mass MN of the neutrino N . The left-hand figure
is for the case of Majorana neutrino; the right-hand figure for the case of Dirac neutrino. For
details we refer to Appendix A.3.

2.2. Effect of the Long Neutrino Lifetime on the Observability of M± → `±1 `
±
2 M

′∓

In the mentioned branching ratios, an often important effect of suppression due to the decay (i.e.,
nonsurvival) probability was not included. Namely, if the detector for the considered decays has a
certain length L, the produced (on-shell) massive neutrino N could survive during its flight through the
detector, and would decay later outside it. Such decays are thus not detected and should be eliminated
from the width and the branching ratio of the considered process M± → `±1 `

±
2 M

′∓, by introducing a
suppression factor (nonsurvival probability) PN = 1− exp[−t/(τNγN)], where t ≈ L/βN is the time of
flight of N through the detector (βN is the velocity of N in the lab frame), and γN = (1− β2

N)−1/2 is the
Lorentz time dilation factor. Hence, the suppression factor, which should multiply the branching ratio, is

PN = 1− exp

[
− L

τNγNβN

]
≈ 1− exp

[
−LΓN
γN

]
(22)

In the last relation, we used βN ≈ 1 and τN = 1/ΓN [≡ 1/Γ(N → all)], in the units used here
(c = 1 = ~). This decay-within-the-detector probability PN has been discussed and presented for the
processes with intermediate on-shell particle (such asN ) in Refs. [16,37–39,80–82]. In this respect, here
we follow mostly the notations of Ref. [39]. Usually, the quantity PN is small and is then written as

PN ≈ L/(τNγNβN) (≈ L/(τNγN)) if PN � 1 (23)
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which agrees with Equation (22) in the limit of small PN . The suppression factor (22) can be rewritten as

PN = 1− exp

(
− L

LN

)
= 1− exp

(
− L

LN
K̃
)

(24a)

≈ L

LN
K̃ if PN � 1 (24b)

Here, LN is the decay length, and LN is the canonical decay length (independent of the mixing
parameters B`′N )

L−1
N = L

−1

N K̃ (25a)

L
−1

N =
ΓN(MN)

γN
=

1

γN

G2
FM

5
N

96π3
(25b)

where K̃ and ΓN(MN) are from Equations (16)–(18), cf. also Figure 2. Equation (24b) suggests that it is
convenient to define a canonical (i.e., independent of mixing) probability PN for the decay of N within
the detector as

PN =
1m

LN
⇒ PN ≈ PN

(
L

1m

)
K̃ (26)

We present the inverse canonical decay length, L
−1

N , for γN = 2, in Figure 3 as a function of MN .
We note that L

−1

N increases very fast (as M5
N ) when MN increases. Therefore, the supression due to the

factor PN may not necessarily be strong (i.e., PN 6� 1) for semileptonic LNV decays of heavier mesons
M±, such as B±.

1 2 3 4 5 6
0.001

0.1

10

1000

105

MN HGeVL

L
N

-
1

Im-
1

M

Figure 3. The inverse canonical decay length L
−1

N ≡ ΓN(MN)/γN , Equation (25b), in units
of inverse meters (m−1), as a function of the neutrino mass MN , with the Lorentz lab time
dilation factor chosen to be γN [≡ (1− β2

N)−1/2] = 2. The y axis can also be interpreted as
the canonical probability PN ≡ (1m)/LN (dimensionless), Equation (26).
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If we use eyeball estimates for the coefficientsN`N of the left-hand Figure 2, approximate expressions
for the factor K̃ of Equation (18) for Majorana neutrinos can be written

K̃ ≈ 15|BeNj |2 + 8|BµNj |2 + 2|BτNj |2 (K decays) (27a)

K̃ ≈ 7(|BeNj |2 + |BµNj |2) + 2|BτNj |2 (D,Ds decays) (27b)

K̃ ≈ 8(|BeNj |2 + |BµNj |2) + 3|BτNj |2 (B,Bc decays) (27c)

In order to estimate better the values of K̃ Equations (27) and thus the suppression factor PN
Equation (24), we need to know the present upper bounds for the squares |B`N |2 as a function of M2

N .
These upper bounds we take from compilation of values of Ref. [29], based in turn on upper bound
values obtained in Refs. [83–96]. We present them in Table 1, for specific chosen values of MN in the
mass range of interest. We remark that the upper bounds have in some cases strong dependence on the
precise values of MN , see Ref. [29] for further details. In order to use only rough estimates for the
values of K̃, we present in Table 2 order of magnitude values for upper bounds of |B`N |2. These rough
upper bounds are given for three typical ranges of our interest: MN around 0.25; 1; 3 GeV. They are
relevant for the decays of K; (D,Ds); (B,Bc), respectively. The corresponding values of the inverse of
the canonical decay length, L

−1

N , are included. As seen in Tables 1 and 2, the upper bounds for |BτN |2 are
at present significantly less stringent and are expected to become more stringent in the future. When we
combine Equations (24b) with (27) and Table 2, we obtain for the decay-within-the-detector probability
PN ≡ PNK̃ the following estimates and upper bounds, relevant for the K decays (MN ≈ 0.25 GeV), D
and Ds decays (MN ≈ 1 GeV), and B and Bc decays (MN ≈ 3 GeV), all when L = 1 m and γN = 2:

PN(MN ≈ 0.25GeV) ≈ 1.7|BeNj |2 + 0.9|BµNj |2 (+0.2|BτNj |2)

. 10−8 + 10−7 (+10−5) (28a)

PN(MN ≈ 1GeV) ≈ 0.8 · 103|BeNj |2 + 0.8 · 103|BµNj |2 (+2 · 102|BτNj |2)

. 10−4 + 10−4 (+100) (28b)

PN(MN ≈ 3GeV) ≈ 3 · 105|BeNj |2 + 3 · 105|BµNj |2 (+1 · 105|BτNj |2)

. 100 + 100 (+100) (28c)

In order to have the analysis and the formulas simpler, in the rest of this Section we will assume that
one mixing parameter, |B`N |, dominates over the other two mixing parameters:

|B`N | � |B`′N | (`
′ 6= `) (29)

For example, it may well be that ` = µ, i.e., that |BµN | � |BeN |, |BτN |. Then, of the branching ratios
Br(M± → `±1 `

±
2 M

′∓) the largest will be M± → `±`±M
′∓ which, according to Equations (29) and (19)

(note that DD∗ and CC∗ give the same contribution since `1 = `2 now), is:

Br(M± → `±`±M
′∓) = 4

|B`N |4

K̃
Br (30)

Multiplying this expression by the probability PN of the decay in the detector, Equation (26), we
obtain the effective branching ratio Breff

Breff(M± → `±`±M
′∓) = PNBr(M± → `±`±M

′∓) =

[
PN

(
L

1m

)
K̃
]
×
[
4
|B`N |4

K̃
Br

]
(31a)
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=

(
L

1m

)
4|B`N |4PNBr ≡ |B`N |4

(
L

1m

)
Breff (31b)

Table 1. Presently known upper bounds for the squares |B`N |2 of the heavy-light mixing
matrix elements, for various specific values of MN .

MN [GeV] |BeN |2 |BµN |2 |BτN |2

0.1 (1.5± 0.5)× 10−8 (6.0± 0.5)× 10−6 (8.0± 0.5)× 10−4

0.3 (2.5± 0.5)× 10−9 (3.0± 0.5)× 10−9 (1.5± 0.5)× 10−1

0.5 (2.0± 0.5)× 10−8 (6.5± 0.5)× 10−7 (2.5± 0.5)× 10−2

0.7 (3.5± 0.5)× 10−8 (2.5± 0.5)× 10−7 (9.0± 0.5)× 10−3

1.0 (4.5± 0.5)× 10−8 (1.5± 0.5)× 10−7 (3.0± 0.5)× 10−3

2.0 (1.0± 0.5)× 10−7 (2.5± 0.5)× 10−5 (3.0± 0.5)× 10−4

3.0 (1.5± 0.5)× 10−7 (2.5± 0.5)× 10−5 (4.5± 0.5)× 10−5

4.0 (2.5± 0.5)× 10−7 (1.5± 0.5)× 10−5 (1.5± 0.5)× 10−5

5.0 (3.0± 0.5)× 10−7 (1.5± 0.5)× 10−5 (1.5± 0.5)× 10−5

6.0 (3.5± 0.5)× 10−7 (1.5± 0.5)× 10−5 (1.5± 0.5)× 10−5

Table 2. Rough estimates of upper bounds for |B`N |2 (` = e, µ, τ ), for MN in three different
ranges around the values 0.25, 1, 3 GeV; and the inverse of the canonical decay length, L

−1

N

(in units of m−1 and for γN = 2).

MN [GeV] |BeN |2 |BµN |2 |BτN |2 L
−1

N [m−1]

≈ 0.25 10−8 10−7 10−4 0.11
≈ 1.0 10−7 10−7 10−2 1.1× 102

≈ 3.0 10−6 10−4 10−4 3× 104

We see that in the effective branching ratio, Breff , the complicated dependence on mixing parameters
encoded in K̃ [cf. Equation (18)] disappeared because factors K̃ cancel here. All the mixing effects
in Breff are in the simple factor |B`N |4. Unfortunately, this factor represents a strong suppression, in
comparison with Br of Equations (19) where Br ∝ |k|2/K̃ = |B`1NB`2N |2/K̃ ∼ |B`N |2.

In the last identity (31b) we introduced the canonical (i.e., without any mixing dependence) effective
branching ratio Breff

Breff ≡ 4PNBr = 4

(
1m

LN

)
Br (32)

where we recall that Br was defined in Equations (19) and (20). Here Breff is half the value of Breff

in Ref. [39] because the latter expression referred to the exchange of two Majorana neutrinos instead
of one.

Only when M± = B± or B±c , i.e., when the mass of the on-shell N can be high (MN & 1 GeV),
would it be possible to have PN ∼ 1 [Equation (28c)]; and in such a case Equations (31) do not apply, but
rather Equations (30), i.e., Breff = Br in this case. Figures 4–7 show the effective canonical branching
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ratios (32) as a function of the neutrino mass MN , for various considered LNV decays of the type
M± → `±`±M

′∓: Figure 4 for M = K; Figure 5a, b for M = D,Ds, respectively; Figures 6a and 7a
for M = B,Bc, respectively. We took ` = e, µ, and L = 1 m and γN = 2. For the case when PN ∼ 1

and hence the estimates Equations (30) apply, Figures 6b and 7b present the branching ratios Br(x) as a
function of MN , for M± = B± and B±c , respectively. For the meson decay constants and CKM matrix
elements, needed for the evaluation of K2 factor of Equation (9), and for the masses and lifetimes of the
mesons, we used the values of Ref. [97]. The values of the decay constants fB and fBc were taken from
Ref. [98]: fB = 0.196 GeV, fBc = 0.322 GeV. We note that the presented formulas for Breff and Br can
be evaluated also for the decays M± → `±1 `

±
2 M

′∓ when `1 6= `2. Furthermore, when the final leptons
are τ leptons (and M± = B± or B±c ), the values of branching ratios turn out to be similar to those in
Figures 6 and 7, but the range of MN in this case is shorter: MM ′ + Mτ < MN < MM −Mτ . Table 3
displays values of Breff for representative values of MN in the decays M± → `±`±M

′∓.

Figure 4. The effective canonical branching ratio (32) for the decays K± → `±`±π∓ (` =

e, µ) as a function of the Majorana neutrino mass MN .

Figure 5. The same as in Figure 4, but now for the decay of (a) D± mesons; (b) D±s mesons.
The solid lines are for ` = e, and the dashed lines for ` = µ.
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Figure 6. (a) The effective canonical branching ratio (32) as a function of MN for the lepton
number violating (LNV) decays B± → `±`±M

′∓, where ` = e, µ (no visible difference
between ` = e and ` = µ); (b) the theoretical canonical branching ratio Br, Equations (19)
and (20), for these decays.

Figure 7. The same as in Figure 6, but for the LNV decays of the charmed mesons B±c .

As an illustrative example, let us consider the decays D±s → µ±µ±π∓, which is one of the preferred
decay modes proposed at CERN-SPS [80,81], and, in addition, let us assume that |BµN |2 is the dominant
mixing. In such a case, Equations (31) and Table 3 imply for the experimentally measurable branching
fraction Breff

Breff(D±s → µ±µ±π∓) ≡ PNBr(D±s → µ±µ±π∓) ∼ 102|BµN |4 (33)

Table 3. Values of the factor Breff , Equation (32), with L = 1 m and γN = 2, for some of
the LNV decays M± → `±`±π∓. The value of MN is chosen such that the maximal value
of Breff is obtained (the value of MN is given in parentheses, in GeV). For M± = K±, two
different values are given, for ` = e and ` = µ. For all other cases, ` = µ is taken (when
` = e the values are similar).

M± K± (` = e) K± (` = µ) D± D±
s B± B±

c

Breff 6.8 (0.38) 3.8 (0.35) 3.9 (1.39) 70. (1.47) 0.96 (3.9) 199. (4.7)
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The present rough upper bound on the mixing for MN ≈ 1 GeV is |BµN |2 . 10−7, cf. Table 2.
Equation (33) then implies that Br(eff) . 10−12 for such decays. The proposed experiment at
CERN-SPS [80,81] could produce D and Ds mesons in numbers by several orders of magnitude higher
than 1012, which would open the possibility to explore whether there is a production of sterile Majorana
neutrinos N in the mass range MN ∼ 1 GeV.

If the decays B±c → µ±µ±π∓ are considered (we do not use B± decays as they are CKM-suppressed
compared to B±c ), the results of Figure 7a and Equation (31b) imply an effective branching ratio

Breff(B±c → µ±µ±π∓) ∼ 102|BµN |4 (34)

which is similar to the case of Ds, Equation (33) in a detector of the same length (L = 1 m, in our
example). Since Ds is significantly lighter than Bc, the relevant neutrinos that give a sizeable effect are
also lighter and thus longer living, implying a smaller PN factor for the same detector length. On the
other hand, Ds decays have no CKM suppression compared to Bc (|Vcs| ≈ 1 while |Vcb| ≈ 0.04) and
the Bc channels are more numerous, so that the true branching ratios of the latter are smaller. These
two effects compensate in a given detector, as shown in Equations (33) and (34). However for a longer
detector the observable Ds branching ratio increases considerably [80,81].

3. Charged Pion Decays Mediated by On-Shell Massive Neutrinos

In the previous Section we considered semileptonic decays of mesons heavier than the pion. For pion
decays, there are purely leptonic modes only, since the pion is the lightest meson. In this Section we
present and discuss the branching ratios for the LNC decay π± → e±N → e±e±µ∓νe and the LNV
decay π± → e±N → e±e±µ∓ν̄µ. We also consider the differential branching ratios dBr/dEµ, where Eµ
is the energy of the produced µ∓. In contrast to the previous Section where the intermediate N neutrino
has to be Majorana, here N can be either Majorana or Dirac. In the Dirac case, only the LNC mode
is possible, while both LNC and LNV modes occur in the Majorana case. However, the experimental
distinction between these two modes cannot be resolved by simply examining the final state, since the
produced neutrino (νe or ν̄µ) is not detectable. The major part of this Section refers to Ref. [37], and
for certain details we use here results of Refs. [38,39]. The formalism is somewhat more complicated
now because we have four final particles (in the previous Section there were three). Nonetheless, several
features turn out to be similar as in the previous Section.

N

+

−
(p  )

e+ (p  )1

(a)

(p  )
N

(p  ) e+ (p  )2

e (p  )
N

+

−
(p  )

e+ (p  )1

(b)

(p  )
N

(p  ) e+ (p  )
2

e (p  )

Figure 8. The lepton number conserving (LNC) process π+ → e+N → e+µ−e+νe which
can be mediated by a Dirac or a Majorana on-shell neutrino N : (a) the direct (D) channel;
(b) the crossed (C) channel.
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The considered processes are presented in Figures 8 and 9. As in the previous Section, we consider a
scenario with at least one heavy sterile neutrinoN , which has suppressed heavy-light mixing coefficients
B`N with the first three neutrino flavors ν` (` = e, µ, τ ), cf. Equation (1). The mentioned decay rates
may be nonnegligible only if the intermediate neutrino N is on-shell, i.e.,

(Mµ +Me) < MN < (Mπ −Me) (35)

and the process is of the s-type, Figures 8 and 9. Specifically, this means 106.2 MeV < MN < 139 MeV.
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Figure 9. The lepton number violating (LNV) process π+ → e+N → e+e+µ−νµ which can
be mediated by a neutrino N only if N is a Majorana particle: (a) the direct (D) channel;
(b) the crossed (C) channel.

3.1. Branching Ratios for π± → e±e±µ∓ν

The decay widths Γ(X)(π± → e±e±µ∓ν) (X=LNC, LNV) can be written in terms of the corresponding
reduced decay amplitudes T (X)

π,±

Γ(X)(π± → e±e±µ∓ν) =
1

2!

1

2Mπ

1

(2π)8

∫
d4 |T (X)

π,± |2 (36)

Here, 1/2! represents the symmetry factor from two final state electrons, and d4 is the integration element
of the phase space of the four final particles

d4 =

(
2∏
j=1

d3~pj
2Ee(~pj)

)
d3~pµ

2Eµ(~pµ)

d3~pν
2|~pν |

δ(4) (pπ − p1 − p2 − pµ − pν) (37)

Here, p1 and p2 are the momenta of e; in the direct channel, the e momentum at the first (left-hand)
vertex is p1, and in the crossed channel it is p2, cf. Figures 8 and 9. When we use the expressions for
the amplitudes T (X)

π,± of Appendix A.4, for the specific considered case N1 = N (and no N2), the decay
width (36) can be written as

Γ(X)(π± → e±e±µ∓ν) = |k(X)|2
[
Γ̃(X)
π (DD∗) + Γ̃(X)

π (CC∗) + Γ̃
(X)
π,±(DC∗) + Γ̃

(X)
π,±(CD∗

]
(38)

where X = LNC, LNV; k(X)
± are the corresponding mixing factors

k(LNV) = B2
eN , k(LNC) = BeNB

∗
µN (39)

and Γ̃
(X)
π (Y Z∗) are the normalized (i.e., without explicit mixing dependence) decay widths

Γ̃
(X)
π,±(Y Z∗) = K2

π

1

2!

1

2Mπ

1

(2π)8

∫
d4 P

(X)(Y )P (X)(Z)∗ T
(X)
π,±(Y Z∗) (40)
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The expressions for T (X)
π,±(Y Z∗) are given in Appendix A.4, for the direct (Y Z∗ = DD∗), crossed

(Y Z∗ = CC∗) and direct-crossed interference contributions (Y Z∗ = DC∗, CD∗). We have
T

(X)
π,+(DD∗) = T

(X)
π,−(DD∗) and T (X)

π,+(CC∗) = T
(X)
π,−(CC∗), hence the terms Γ̃

(X)
π (DD∗) and Γ̃

(X)
π (CC∗)

in Equation (38) have no subscripts ±. Further, in Equation (40), P (X)(Y ) represent the N propagator
functions of the direct and crossed channels (Y = D,C)

P (LNC)(D) =
1

[(pπ − p1)2 −M2
N + iΓNMN ]

, P (LNV)(D) = MNP
(LNC)(D) (41a)

P (LNC)(C) =
1

[(pπ − p2)2 −M2
N + iΓNMN ]

, P (LNV)(C) = MNP
(LNC)(C) (41b)

where ΓN ≡ Γ(N → all), and K2
π is the following constant:

K2
π = G4

Ff
2
π |Vud|2 ≈ 2.983× 10−22 GeV−6 (42)

It turns out that in the case when the intermediate N neutrino is on-shell, i.e., when its mass is in the
interval of Equation (35), the squares of the propagators (41) reduce to simple delta functions due to the
inequality ΓN �MN

|P (LNC)(X)|2 =

∣∣∣∣ 1

(pπ − pk)2 −M2
N + iΓNMN

∣∣∣∣2
=

π

MNΓN
δ((pπ − pk)2 −M2

N) (ΓN �MN) (43)

where pk = p1, p2 for X = D,C. In this on-shell case, the DD∗ and CC∗ contributions in Equation (38)
are large and equal, and the interference contributions DC∗ and CD∗ are negligible in comparison; we
refer to [38] for details on this point. Hence the decay width (38) can be written in the on-shell case as

Γ(X)(π± → e±e±µ∓ν) = 2|k(X)|2Γ̃(π± → e±e±µ∓ν) (44)

Here, the normalized decay width Γ̃
(X)
π (DD∗) = Γ̃

(X)
π (CC∗) ≡ Γ̃(π± → e±e±µ∓ν) turns out to be the

same for X = LNC and X = LNV,

Γ̃(π± → e±e±µ∓ν) ≡ Γ̃(X)
π (DD∗) ≡ Γ̃π(CC∗)

=
K2
π

192(2π)4

M11
N

M3
πΓN

λ1/2(xπ, 1, xe) [xπ − 1 + xe(xπ + 2− xe)]F(xµ, xe) (45)

where the following notations are used:

λ(y1, y2, y3) = y2
1 + y2

2 + y2
3 − 2y1y2 − 2y2y3 − 2y3y1 (46a)

xπ =
M2

π

M2
N

, xe =
M2

e

M2
N

, xµ =
M2

µ

M2
N

(46b)

and the function F(xµ, xe) is given in Appendix A.5. In the approximation Me = 0, the above result
becomes simpler

lim
Me→0

Γ̃(π± → e±e±µ∓ν) =
K2
π

192(2π)4

M11
N

ΓNM3
π

(xπ − 1)2f(xµ) (47)
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where the function f(xµ) = F(xµ, 0) is

f(xµ) = 1− 8xµ + 8x3
µ − x4

µ − 12x2
µ lnxµ (48)

It can be checked that the decay rate (44), with N on shell, coincides with the factorized expression

Γ(π+ → e+e+µ−ν) = Γ(π+ → e+N)Br(N → e+µ−ν) (49)

In Appendix A.5 we also provide the differential decay rates dΓ(X)(π± → e±e±µ∓ν)/dEµ with
respect to the final muon energy in the rest frame of N neutrino. They turn out to have quite different
forms for X = LNC and X = LNV cases (we will return to this later in this Section).

In order to obtain the branching fractions of the considered processes, we need to divide the decay
width by the total decay width of the charged pion, Γ(π± → all)

Γ(π+ → all) = 2.529× 10−17 GeV (50a)

≈ 1

8π
G2
Ff

2
πM

2
µMπ|Vud|2

(
1−

M2
µ

M2
π

)2

(1 + δgπ) (50b)

where the expression (50b) represents the by far most dominant decay mode π± → µ±νµ, and

δgπ =
M2

e

M2
µ

(1−M2
e /M

2
π)2

(1−M2
µ/M

2
π)2

(51)

represents a (very small) relative correction coming from the π± → e±νe decay (δgπ ≈ 1.3× 10−4).
As we can see in Equations (44) and (45), the decay width Γ(π± → e±e±µ∓ν) and its

normalized counterpart Γ̃(π± → e±e±µ∓ν) are inversely proportional to the (very small) decay
width Γ(N → all) ≡ ΓN , which in turn is proportional to the mixings K̃ ∼ |B`N |2 (` = e, µ, τ ),
cf. Equations (16)–(18) and Figure 2. As in Section 2.1, this effect represents the N -on-shell effect
Equation (43) and it makes the considered width Γ(π± → e±e±µ∓ν) by many orders of magnitude
larger than it would be in the case of off-shell N . In the (narrow) mass interval (35) for on-shell N in the
considered pion decays, the factor K̃ in the width ΓN Equation (16) has the following approximate form
(cf. Appendix A.3 and Figure 2):

K̃(π± → e±e±µ∓ν) ≈ 1.6|BeN |2 + 1.1(|BµN |2 + |BτN |2) (52)

This expression, within the precision given here, is valid equally for the Majorana and for the Dirac N
and agrees with that given in Ref. [38] for the Majorana case. However, the affirmation in Ref. [38] that
K̃ for Dirac N is smaller by a factor of two is not correct.

In certain analogy with Section 2.1, we can define here the canonical branching ratio Brπ as the part
of the branching ratio Br(X)

π ≡ Γ(π± → e±e±µ∓ν)/Γ(π → all) which contains no explicit or implicit
heavy-light mixing dependence (and is independent of X = LNC or LNV)

Brπ ≡ 2
K̃
Γπ

Γ̃(π± → e±e±µ∓ν) =
K̃
|k(X)|2

Br(X)(π± → e±e±µ∓ν) (53a)

=
1

16π

K2
πM

3
π

G2
FΓ(π+ → all)

1

x3
π

λ1/2(xπ, 1, xe) [xπ − 1 + xe(xπ + 2− xe)]F(xµ, xe) (53b)
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=
1

2

1

xµ(xπ − xµ)2(1 + δgπ)
λ1/2(xπ, 1, xe) [xπ − 1 + xe(xπ + 2− xe)]F(xµ, xe) (53c)

where the notations (46) are used, and in Equation (53c) we used the expression (125) in Appendix A.5.
We note that K̃ ∼ |B`N |2 and |k(X)|2 ∼ |B`N |4, and Br(X)

π ∝ |k(X)|2/K̃ ∼ |B`N |2, where B`N stands
for a generic heavy-light mixing coefficient (|B`N | ∼ |BeN | ∼ |BµN |). Naively, we should have very
strong suppression Br(X)

π ∝ |k(X)|2 ∝ |B`N |4; however, the on-shellness (43) brings in factor 1/ΓN ∝
1/K̃ ∼ 1/|B`N |2, reducing the suppression to Br(X)

π ∝ |B`N |2. In Figure 10 we present the canonical
branching fraction Brπ as a function of MN in the entire interval of on-shellness (35). In Figure 11
this canonical branching fraction is presented at the lower edge of the on-shellness interval, where the
effects of Me 6= 0 turn out to be appreciable. We can see that the branching ratio is the largest when
MN ≈ 0.130 GeV.
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B
r Π

Figure 10. The canonical branching ratio Brπ, Equation (53), as a function of the mass MN .
The full formula was used (with Me = 0.511 × 10−3 GeV). The formula for Me = 0 case
gives a line which is in this Figure indistinguishable from the depicted line.
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Figure 11. The canonical branching ratio Brπ near the lower end point Mµ + Me

(=0.1062 GeV): (a) in the interval below 0.107 GeV; (b) in the interval below 0.110 GeV.
The dashed line is for Me = 0, the full line includes the effects of Me = 0.511× 10−3 GeV.
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The differential branching ratios dBr(X)/dEµ, where Eµ is the final muon energy in the N -rest
frame, are obtained directly from the differential branching ratios dΓ̃

(X)
π /dEµ, and the latter quantity for

X = LNV is given explicitly in Appendix A.5. The canonical differential branching ratios, free of
any mixing dependence, can be defined in analogy with the definition of the canonical total branching
ratio (53a), and, in contrast to canonical branching ratios (53) they do depend on whether X = LNC or
X = LNV

dBr
(X)

π

dEµ
≡ 2

K̃
Γπ

dΓ̃(π± → e±e±µ∓ν)

dEµ
=

K̃
|k(X)|2

dBr(X)(π± → e±e±µ∓ν)

dEµ
(54)

Explicit expressions for these quantities, when X = LNV and X = LNC, are given in Appendix A.5 in
Equations (126) and (128), and in the limit Me = 0 in Equation (129).

The differential (and full) branching ratios for the process π± → e±e±µ∓ν differ in the cases when
the on-shell N is Majorana or Dirac. When N is Dirac, only the X = LNC process contributes. When N
is Majorana, both LNC and LNV processes contribute. We can write the differential and full branching
ratios in these cases in terms of their canonical counterparts, by defining first the combined canonical
differential branching ratios

dBrπ(α)

dEµ
≡ α

dBr
(LNV)

π

dEµ
+ (1− α)

dBr
(LNC)

π

dEµ
(55)

where 0 ≤ α ≤ 1. Then it is straightforward to check that in the cases of Dirac and MajoranaN neutrino,
the branching ratios can be expressed in terms of the above quantites (55)

dBr(Dir.)(π± → e±e±µ∓ν)

dEµ
=
|k(LNC)|2

K̃(Dir.)

dBrπ(α = 0)

dEµ
(56a)

dBr(Maj.)(π± → e±e±µ∓ν)

dEµ
=

(|k(LNV)|2 + |k(LNC)|2)

K̃(Maj.)

dBrπ(αM)

dEµ
(56b)

where we recall the definition (39) of the coefficients k(X), and the “Majorana LNV admixture” parameter
αM appearing in Equation (56b) is defined as

αM =
|k(LNV)|2

(|k(LNV)|2 + |k(LNC)|2)
=

|BeN |2

(|BeN |2 + |BµN |2)
(57)

Integration of the relations (56) over Eµ leads to the full branching ratios

Br(Dir.)(π± → e±e±µ∓ν) =
|k(LNC)|2

K̃(Dir.)
Brπ =

|BeN |2|BµN |2∑
`=e,µ,τ N

(Dir.)
`N |B`N |2

Brπ, (58a)

Br(Maj.)(π± → e±e±µ∓ν) =
(|k(LNV)|2+|k(LNC)|2)

K̃(Maj.)
Brπ =

|BeN |2(|BeN |2+|BµN |2)∑
`=e,µ,τ N

(Maj.)
`N |B`N |2

Brπ (58b)

where we used the fact that the Eµ-integrated expression Brπ(α) is independent of α, cf. Equations (53).
In Figures 12 we present these canonical differential branching ratios as a function of the muon energy
Eµ in the rest frame of N , for four different values of mass MN in the on-shell interval (35), and for
five different values of the admixture parameter (αM = 1, 0.8, 0.5, 0.2 and 0), The value αM = 0
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corresponds to the case of Dirac N . From the curves of Figure 12 we can conclude: if N is Majorana
neutrino with a significant value of the admixture parameter αM and with mass in the interval (35), then
the measurement of such differential branching ratios may be able to confirm the Majorana nature of N .
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Figure 12. The canonical differential branching ratio dBrπ(αM)/dEµ as a function of
the muon energy in the neutrino N rest frame, Eµ, as defined via Equations (55), for the
decays π± → e±e±µ∓ν mediated by a Majorana neutrino N , for various neutrino masses:
(a) MN = 0.112 GeV; (b) MN = 0.119 GeV; (c) MN = 0.126 GeV; (d) MN = 0.133 GeV.
In each graph there are five curves, corresponding to different values of the admixture
parameter αM [Equation (57)]: αM = 1.0 is the solid (M) curve; 0.8 (dotted); 0.5

(dot-dashed); 0.2 (dashed). The case mediated by a Dirac neutrino (αM = 0) is also
presented as the solid line labelled (D). In comparison with Figure 5 of Ref. [37] (where
Me = 0 was taken and linear y-scale was used), the true value of Me = 0.511 MeV is taken
here and logarithmic y-scale is used.

If the differential branching ratios are studied with respect to the muon energy E ′
µ in the pion rest

frame, the distinction between the Dirac and Majorana case is more difficult, cf. Ref. [37].

3.2. Effect of the Long Neutrino Lifetime on the Observability of π± → e±e±µ∓ν

The branching ratios presented in this Section so far, Equations (58) in conjunction with
Equations (53), should be multiplied by the probability PN for the on-shell neutrino N to decay
within the detector (of length L), as explained in Section 2.2, Equations (22)–(26) and Figure 3. As a
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consequence, the effective (true, measurable) branching ratios are not Br (∼ |B`N |2) of Equations (58),
but Breff = PNBr

Br
(Dir.)
eff (π± → e±e±µ∓ν) = P

(Dir.)
N Br(Dir.)(π± → e±e±µ∓ν)

=

[
PN

(
L

1m

)
K̃(Dir.)

] [
|BeN |2|BµN |2

K̃(Dir.)
Brπ

]
(59a)

= |BeN |2|BµN |2
(
L

1m

)
PNBrπ = |BeN |2|BµN |2

(
L

1m

)
Brπ,eff (59b)

Br
(Maj.)
eff (π± → e±e±µ∓ν) = P

(Maj.)
N Br(Maj.)(π± → e±e±µ∓ν)

=

[
PN

(
L

1m

)
K̃(Maj.)

] [
|BeN |2(|BeN |2 + |BµN |2)

K̃(Maj.)
Brπ

]
(60a)

= |BeN |2(|BeN |2 + |BµN |2)

(
L

1m

)
PNBrπ = |BeN |2(|BeN |2 + |BµN |2)

(
L

1m

)
Brπ,eff (60b)

In Equations (59a) and (60a) we used the expressions (58) for Br and Equation (26) for PN . In
Equations (59b) and (60b) we introduced canonical (i.e., without any mixing dependence) effective
branching ratio Brπ,eff

Brπ,eff ≡ PNBrπ (61)

with Brπ given in Equations (53), and the canonical nonsurvival probability PN presented in Figure 3
in Section 2.2 for a wide range of N neutrino masses. In Figure 13 we present PN in the here relevant
narrower mass interval (35).

0.10 0.11 0.12 0.13 0.14
0.001

0.002

0.003
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0.007

MN (GeV)

P
N

Figure 13. The canonical probability PN ≡ (1m)/LN , Equation (26), as a function of the
neutrino mass MN in the approximate interval where it is on shell (35) for decays π± →
e±e±µ∓ν. The Lorentz lab time dilation factor is chosen to be γN [≡ (1− β2

N)−1/2] = 2.

As in the case of semileptonic LNV decays of Section 2.2, we notice that also here in the effective
branching ratios, Equations (59) and (60), the complicated dependence on the mixing parameters entailed
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by the factors K̃ =
∑

`N`N |B`N |2 of ΓN [cf. Equation (18)], cancels out, and there remains only simple
dependence on the mixing parameters, in the form |BeN |2|BµN |2 or |BeN |2(|BeN |2 + |BµN |2). Further,
in comparison with the branching ratios Br of Equations (58), which are ∼ |B`N |2, the effective (true)
branching ratios Breff of Equations (59) and (60) are unfortunately significantly more suppressed by the
mixing parameters, namely Breff ∼ |B`N |4.

The presently known experimental bounds on the mixing parameters |B`N |2 (` = e, µ, τ ) in the here
relevant narrow mass range (35), are: |BeN |2 . 10−8 [99]; |BµN |2 . 10−6 [100–102]; |BτN |2 .

10−4 [103]; cf. also Refs. [29,74,104,105].
The future pion factories, such as the Project X at Fermilab, will be designed to produce charged pions

with lab energies Eπ of a few GeV and luminosities ∼ 1022 cm−2s−1 [106,107], and ∼ 1029 charged
pions could be expected per year.

The canonical effective branching ratio (61) can be estimated as

Brπ,eff . 10−6 (62)

as can be inferred from Equation (61) and Figures 13 and 10. Equations (59) and (60) then imply
that the effective (true) branching ratios for the considered reactions are (we assume L = 1 m for the
detector length)

Br
(Dir.)
eff . |BeN |2|BµN |210−6, (63a)

Br
(Maj.)
eff . |BeN |2(|BeN |2 + |BµN |2)10−6 (63b)

If the larger among the mixing elements (|B`N |2, ` = e, µ) is |BµN |2 (. 10−6), the LNC processes
dominate, and the effective branching ratios (63) have the common upper bounds

Br
(Dir.,Maj.)
eff . |BeN |2|BµN |210−6 . |BeN |210−12 (64)

If in this case |BeN |2 is close to its present upper bound, |BeN |2 ∼ 10−8, we obtain Br
(Dir.,Maj.)
eff .

10−20. This implies that up to 109 events π± → e±e±µ∓ν could be detected per year in such a scenario.
On the other hand, if the larger among the mixing elements (B`N |2, ` = e, µ) is |BeN |2 (. 10−8), the

LNV processes dominate, and the effective branching ratios (63) have the following upper bounds:

Br
(Dir.)
eff . |BµN |210−14 (65a)

Br
(Maj.)
eff . 10−22 (65b)

In such a case we have |BµN |2 < |BeN |2 . 10−8, and up to 107 events could be detected per year.
The present upper bounds on |B`N |2 suggest that the first scenario, Equation (64), is more likely.
The measurement of the effective branching ratios alone cannot distinguish between the Dirac and

the Majorana character of intermediate neutrino N . However, as argued in Section 3.1 and presented
in Figure 12, the measurement of the differential branching ratios for the considered processes is a
promising way to discern the character of the neutrinos. However, the differential branching ratios (56)
must be multiplied by the nonsurvival probability PN , in order to obtain the effective (true, measurable)
differential branching ratios dBreff/dEµ. In analogy with Equations (59) and (60) we obtain, using
Equation (56)

dBr
(Dir.)
eff (π± → e±e±µ∓ν)

dEµ
= PN

dBr(Dir.)(π± → e±e±µ∓ν)

dEµ
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= |BeN |2|BµN |2
(
L

1m

)
dBrπ,eff(α = 0)

dEµ
(66a)

dBr
(Maj.)
eff (π± → e±e±µ∓ν)

dEµ
= PN

dBr(Maj.)(π± → e±e±µ∓ν)

dEµ

= |BeN |2(|BeN |2 + |BµN |2)

(
L

1m

)
dBrπ,eff(αM)

dEµ
(66b)

where the canonical differential effective branching ratios were introduced, in analogy with
Equation (55)

dBrπ,eff(α)

dEµ
≡ PN

dBrπ(α)

dEµ
(67)

with dBrπ(α)/dEµ given in Equation (55). The parameter αM appearing in Equation (66b) was defined
in Equation (57). In analogy with Figure 12, and using the values of PN from Figure 13, we deduce that
the values of the y-axes of Figure 12a–d, must be multiplied by PN ≈ 2.0×10−3, 2.8×10−3, 3.7×10−3,
and 4.8 × 10−3, respectively (assuming L = 1 m and γN = 2), in order to obtain the representation for
the curves of the canonical differential effective ratios dBrπ,eff(α)/dEµ.

4. CP Violation in Charged Meson Decays Mediated by Massive Sterile Neutrinos

CP violation in the lepton sector could be measured by neutrino oscillations [66]. Here we consider
the possibilities of measuring CP violation in meson decays mediated by sterile neutrinos N , such as the
semileptonic LNV decays of charged heavy pseudoscalar mesons considered in Section 2, or the leptonic
(LNV and LNC) decays of charged pions considered in Section 3.

It turns out that CP violation in all such decays is possible in scenarios with at least two massive
sterile neutrinos Nj (j = 1, 2). CP violation in the neutrino sector is expected whether neutrinos are
Dirac or Majorana particles. However, in the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) mixing
matrix [108–110], the number of possible CP-violating phases is larger when the neutrinos are Majorana
particles. If n = 3+N is the total number of neutrinos (N is the number of sterile neutrinos), the number
of CP-violating phases is n(n − 1)/2 if neutrinos are Majorana, and (n − 1)(n − 2)/2 if neutrinos are
Dirac, cf. Ref. [111].

CP violation in the decays π± → e±Nj → e±e±µ∓ν was investigated in Ref. [38], and in the decays
M± → `1Nj → `1`2M

′∓ in Refs. [39,40]. In both cases, it turns out that, even though the rates are
extremely small, the CP violation asymmetry in these charged decays may become appreciable, even
close to order unity, when the two intermediate neutrinos can go on shell and are almost degenerate
in mass MN1 ≈ MN2 . This is to be contrasted with CP violation in charged meson decays due to the
standard CKM mechanism in the quarks sector, where the rates are larger but the asymmetries are much
smaller, e.g., of order 10−4 in K± → 3π decays [112].

4.1. CP Violation in Semileptonic LNV Decays M± → `±1 `
±
2 M

′∓

As mentioned above, we will consider the scenario with at least two sterile neutrinos, Nj (j = 1, 2),
both of which can go on shell in the intermediate state, i.e., with masses MNj satisfying the condition
shown in Equation (2). The processes of interest are again those of Figure 1, except that now in both the
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direct (D) and crossed (C) channels there are two possible neutrinos exchanged: N1 or N2. The relative
measure of CP violation for these processes will be the asymmetry:

ACP(M) ≡ Γ(M− → `−1 `
−
2 M

′+)− Γ(M+ → `+
1 `

+
2 M

′−)

Γ(M− → `−1 `
−
2 M

′+) + Γ(M+ → `+
1 `

+
2 M

′−)
(68)

The corresponding LNV decay widths Γ(M± → `±1 `
±
2 M

′∓) will be obtained now, in the scenario of
two sterile neutrinos (N = 2), in close analogy with the calculation in Section 2.1 which was performed
for the case of one neutrino N (N = 1). The relations (3) and (4) and (9) there hold without change
now, but the relations (5)–(8) obtain the following slightly more general form when N = 2:

Γ(M± → `1`2M
′∓) =

(2− δ`1`2)
2∑
i=1

2∑
j=1

k
(±)
i k

(±)∗
j

[
Γ̃(DD∗)ij + Γ̃(CC∗)ij + Γ̃±(DC∗)ij + Γ̃±(CD∗)ij

]
(69)

Here, k(±)
j are the mixing coefficients

k
(−)
j = B`1NjB`2Nj , k

(+)
j = (k

(−)
j )∗ (70)

and Γ̃±(XY ∗)ij are 2 × 2 matrices, and represent the normalized (i.e., without the explicit mixing
dependence) contributions of Ni exchange in the X channel and complex-conjugate of the Nj exchange
in the Y channel (X, Y = C,D)

Γ̃±(XY ∗)ij ≡ K2 1

2!

1

2MM

1

(2π)5

∫
d3 Pi(X)Pj(Y )∗MNiMNjT±(X)T±(Y )∗ (71)

The expressions for T±(X)T±(Y )∗ (where X, Y = D,C) are the same as in Equation (7) and are
given in Appendix A.1, and Pj(X) (X = D,C) are the propagators of the exchanged neutrinos Nj in
the direct and crossed channels

Pj(D) =
1[

(pM − p1)2 −M2
Nj

+ iΓNjMNj

] (72a)

Pj(C) =
1[

(pM − p2)2 −M2
Nj

+ iΓNjMNj

] (72b)

We will disregard effects due to non-diagonal neutrino widths in their mass basis. For these details
we refer to Ref. [40]. The total decay width of Nj , ΓNj , is given by Equations (16)–(18), where each Nj

has its own mixing parameter K̃j Equation (18), i.e., K̃j =
∑

`N`Nj |B`Nj |2, where the coefficientsN`Nj
as a function of MNj are given by the left-hand Figure 2 in Section 2.1.

As we will see below, the CP asymmetry parameter ACP(M), Equation (68), may acquire a
significant nonzero value if simultaneously: (a) the phases φ`j of the PMNS heavy-light mixing elements
B`Nj = |B`Nj | exp(iφ`j) fulfill certain conditions: | sin θ21| ≡ | sin(φ`12 + φ`22 − φ`11 − φ`21)| 6� 1; and
(b) the mass difference ∆MN ≡MN2 −MN1 is sufficiently small (|∆MN | 6� ΓNj ) .

First let us calculate the quantities

S∓(M) ≡ Γ(M− → `−1 `
−
2 M

′+)∓ Γ(M+ → `+
1 `

+
2 M

′−) (73)
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appearing in the numerator and the denominator of the CP violation parameter ACP(M) Equation (68).
We introduce the following notations which will be needed below:

κ`1 =
|B`1N2|
|B`1N1|

, κ`2 =
|B`2N2|
|B`2N1|

(74a)

B`kNj ≡ |B`kNj |eiφ`kj (k, j = 1, 2) (74b)

θij ≡ (φ`1i + φ`2i − φ`1j − φ`2j) (i, j = 1, 2) (74c)

For example, in the specific case when `1 = `2 = µ, we have θ21 = 2(φµ2 − φµ1) = 2(arg(BµN2) −
arg(BµN1)). As in Section 2.1, when both Nj are on-shell, it turns out that the interference contributions
to the quantities S∓(M) from the direct (D) and crossed (C) channels (DC∗ and CD∗) are suppressed
by several orders of magnitude in comparison with the contributions from the direct (DD∗) and crossed
(CC∗) channels, and we will neglect them (we refer to [39] for details on this point). Then it follows
from the expression (69)

S−(M) ≡ Γ(M− → `−1 `
−
2 M

′+)− Γ(M+ → `+
1 `

+
2 M

′−)

= 4(2− δ`1`2)|B`1N1 ||B`2N1||B`1N2||B`2N2|
{

sin θ21

[
ImΓ̃(DD∗)12 + ImΓ̃(CC∗)12

]}
(75)

and

S+(M) ≡ Γ(M− → `−1 `
−
2 M

′+) + Γ(M+ → `+
1 `

+
2 M

′−)

= 2(2− δ`1`2)|B`1N1|2|B`2N1|2
{

Γ̃(DD∗)11

[
1 + κ2

`1
κ2
`2

Γ̃(DD∗)22

Γ̃(DD∗)11

+ 2κ`1κ`2 cos θ21δ1

]

+Γ̃(CC∗)11

[
1 + κ2

`1
κ2
`2

Γ̃(CC∗)22

Γ̃(CC∗)11

+ 2κ`1κ`2 cos θ21δ1

]}
(76)

In the sum (76), the coefficient δ1 represents the effect of N1-N2 overlap contributions

δj ≡
ReΓ̃(XX∗)12

Γ̃(XX∗)jj
, (X = D;C; j = 1; 2) (77)

We expect δ1 ≈ 0 when ∆MN � ΓNj (where: ∆MN ≡MN2−MN1 > 0); numerical calculations (see
later) confirm this expectation and show that δj is practically independent of the channelX = D,C. The
normalized decay widths Γ̃(DD∗)jj and Γ̃(CC∗)jj are those of Equations (12) and (13) of Section 2.1,
with the substitutions MN 7→ MNj , yN 7→ yNj ≡ M2

Nj
/M2

M [cf. Equation (14b)] and ΓN 7→ ΓNj
(= K̃jΓN )

Γ̃(DD∗)jj =
K2M5

M

128π2

MNj

ΓNj
λ1/2(1, yNj , y`1)λ

1/2

(
1,

y′

yNj
,
y`2
yNj

)
Q(yNj ; y`1 , y`2 , y

′) (78)

where j = 1 or j = 2; Γ̃(CC∗)jj is obtained from Γ̃(DD∗)jj by the simple exchange y`1 ↔ y`2 [cf.
Equation (13)].

For evaluation of the CP-violating difference S−(M), Equation (75), the quantity ImΓ̃(XX∗)12

(X = D;C) is of central importance. In the integrand of ImΓ̃(XX∗)12 appears as a factor the following
combination of the propagators of N1 and N2 [cf. Equation (71)]:

Im (P1(D)P2(D)∗) =

(
p2
N −M2

N1

)
ΓN2MN2 − ΓN1MN1

(
p2
N −M2

N2

)[(
p2
N −M2

N1

)2
+ Γ2

N1
M2

N1

] [(
p2
N −M2

N2

)2
+ Γ2

N2
M2

N2

] (79a)
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= η × π

M2
N2
−M2

N1

[
δ(p2

N −M2
N2

) + δ(p2
N −M2

N1
)
]

(79b)

In Equation (79b) we used the narrow width approximation:

ΓNjMNj[(
p2
N −M2

Nj

)2

+ Γ2
Nj
M2

Nj

] = πδ(p2
N −M2

Nj
) (for ΓNj �MNj) (80)

and in Equation (79b) the parameter η was introduced which parametrizes any deviation from the naive
expectation η = 1. We expect η ≈ 1 when ∆M2

N � ΓN1 ,ΓN2 , where ∆M2
N ≡ M2

N2
− M2

N1
> 0.

In Appendix A.6 we argue that this parameter η, in the case of near degeneracy ∆MN � MN1 ,
is a simple function of only one variable y ≡ ∆M/ΓN , where ∆MN ≡ MN2 − MN1 > 0 and
ΓN ≡ (1/2)(ΓN1 + ΓN2)

η(y) =
y2

(y2 + 1)

∣∣∣
y=∆MN/ΓN

(81)

when ∆MN �MN1 ≡MN (⇒ ∆M2
N = 2MN∆MN ), and where

ΓN ≡
1

2
(ΓN1 + ΓN2), y ≡ ∆MN

ΓN
(82)

This implies that in the case of two almost degenerate sterile neutrinos (∆MN � MN1) we have for
the factor in Equation (79b) the following identities:

η × 1

∆M2
N

=
1

2MNΓN

η(y)

y
=

∆M2
N

(∆M2
N)2 + 4M2

NΓ2
N

(83)

We note that the factor 4 in the denominator on the right-hand side of Equation (83) is nontrivial,
because a somewhat different result would have been obtained by a more simple and direct consideration
of the expression (79a) in the limit ΓNj � MNj (j = 1, 2). The result (81) [or equivalently,
Equation (83)] has been confirmed also by numerical evaluation of ImΓ̃(XX∗)12, Refs. [38,39] (see
below). The mechanism (79) [with the identity (83)] is of central importance for the CP violation in
the processes considered here. The quantity η/∆M2

N , at fixed ΓN and fixed MN ≡ MN1 , achieves its
maximum when ∆M2

N = 2MNΓN , i.e., y = 1 [⇔ ∆MN = ΓN (� MN )], i.e., when the two sterile
neutrinos are almost degenerate. If ∆MN 6∼ ΓN (i.e., y 6∼ 1), then the quantity η(y)/y = y/(y2 + 1) in
Equation (83) is very small and CP violation effects disappear.

The mechanism (79) was used in Ref. [38] in the context of CP violation of leptonic decays of charged
pions, and in Refs. [39,40] in the here presented context of CP violation of semileptonic LNV decays of
heavy pseudoscalars.

We recall that the expression (79) has the same structure with Dirac delta functions as Equation (10)
in Section 2.1; however, the factors in front of these Dirac delta functions are different now. Therefore,
integration over the final particles’ phase space can be performed now in the same way as in Section 2.1,
i.e., analytically. This leads, in analogy with Equation (12), to the result

ImΓ̃(DD∗)12 = η(y)× 1

∆M2
N

K2M5
M

128π2
MN1MN2

×
2∑
j=1

λ1/2(1, yNj , y`1)λ
1/2

(
1,

y′

yNj
,
y`2
yNj

)
Q(yNj ; y`1 , y`2 , y

′) (84a)
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ImΓ̃(CC∗)12 = ImΓ̃(DD∗)12(y`1 ↔ y`2) (84b)

where we recall the notations Equations (14) and (82), yNj ≡ M2
Nj
/M2

M , the function Q is presented in
Appendix A.2, and we denoted ∆MN ≡MN2 −MN1 > 0 and ∆M2

N ≡M2
N2
−M2

N1
> 0. We note that

in Equation (84) we have not yet assumed the near degeneracy of the two sterile neutrinos.
From here on in this Section, we will consider the case of near degeneracy of the two on-shell sterile

neutrinos (∆MN � MN , where MN ≡ MN1), in which case Equations (81) and (82) hold and the
quantities Equations (83) and (84) become appreciable and CP violation can thus become significant.
Therefore, we have

yN2 ≈ yN1 ≡ yN ≡
M2

N

M2
M

(85)

where MN ≡ MN1 ≈ MN2 . In this case the identity (81) holds, cf. Appendix A.6, and the
expression (84a) becomes simpler

ImΓ̃(DD∗)12 =
η(y)

y
× K2M5

MMN

128π2ΓN
λ1/2(1, yN , y`1)λ

1/2

(
1,
y′

yN
,
y`2
yN

)
Q(yN ; y`1 , y`2 , y

′) (86a)

=
η(y)

y
Γ̃(DD∗)11

2K̃1

(K̃1 + K̃2)
(86b)

where in the last identity we used the expression (12), the identity (82), and the fact that
ΓN2/ΓN1 = K̃2/K̃1 [cf. Equation (18) for N1 and N2].

The normalized decay matrix elements Γ̃±(XY ∗)ij , Equation (71), were evaluated in Ref. [39] also
numerically, by Monte Carlo integration and using finite small widths ΓNj in the propagators. The
numerical calculations confirmed the presented formulas, among them the expressions (78), (86), and
(81)–(83). The form (81) of η(y) was confirmed numerically with a precision better than a few per mille.
The numerical evaluations also confirmed that the direct-crossed interference terms (DC∗ and CD∗) are
really negligible. We refer to [39] for details.

Further, the mentioned numerical evaluations gave us values of the N1-N2 overlap parameter δ1 as
defined in Equation (77), i.e., the parameter which appears in the expression (76) and represents the
N1-N2 overlap effects. It turned out that the numerical values of the parameters δj (j = 1, 2), as well
as of η, are practically independent of: the channel contribution considered (DD∗ or CC∗), of the type
of pseudoscalar mesons (M±, M ′∓), and of the light leptons (`1, `2 = e, µ) involved in the considered
decays. The numerical results show that the parameter δ ≡ (1/2)(δ1 + δ2) is a function of only one
variable, namely y ≡ ∆MN/ΓN (the same is true for η)

δ = δ(y) , δ ≡ 1

2
(δ1 + δ2) (87a)

δ1

δ2

=
Γ̃(DD∗)22

Γ̃(DD∗)11

=
ΓN1

ΓN2

=
K̃1

K̃2

(87b)

The numerical values of the parameter δ are given in Table 4 as a function of y. It is not clear whether
there exists a simple analytic expression for δ as a function of y. Further, in Figure 14 we present the
quantities η/y and δ as a function of y. The values for δ in Table 4 are practically equal to the values of
the corresponding δ parameter in the rare leptonic decays of the charged pions π± → e±N → e±e±µ∓ν,
cf. next Section 4.1 and Ref. [38].
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Table 4. Values of theN1-N2 overlap parameter δ(y) as a function of y ≡ ∆MN/ΓN .

y ≡ ∆MN

ΓN
log10 y δ(y)

0.10 −1.000 0.989 ± 0.001
0.30 −0.523 0.917 ± 0.001
0.50 −0.301 0.800 ± 0.001
0.70 −0.155 0.673 ± 0.001
0.80 −0.097 0.610 ± 0.001
0.90 −0.046 0.551 ± 0.002
1.00 0.000 0.499 ± 0.002
1.25 0.097 0.390 ± 0.003
1.67 0.222 0.264 ± 0.003
2.50 0.398 0.138 ± 0.001
5.00 0.699 0.038 ± 0.001
10.0 1.000 0.0098 ± 0.0010
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Figure 14. The suppression factors η(y)/y and δ(y) as a function of y ≡ ∆MN/ΓN : (a) for
y < 1 (on the linear y scale); (b) for 1 < y < 10 (on the logarithmic y scale).

Branching ratios of experimental significance here can be defined by dividing the expressions S∓(M),
Equations (73) and (75) and (76), by the corresponding sum of total decay widths [Γ(M+ → all) +

Γ(M− → all)], which is practically equal to 2Γ(M± → all)

Br+(M) ≡ S+(M)

2Γ(M± → all)
(88a)

Br−(M) ≡ ACP(M)Br+(M) =
S−(M)

2Γ(M± → all)
(88b)

If employing the canonical (independent of mixing) branching ratio Br(yN ; y`1 , y`2 , y
′) ≡ Br(DD∗)

defined in Equation (20) of Section 2.1, and itsCC∗ analog, Br(CC∗) ≡ Br(yN ; y`2 , y`1 , y
′), then it turns

out that the branching ratios Br±(M) of Equation (88) can be rewritten in terms of Br, of the heavy-light
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mixing parameters |B`Nj | and K̃j =
∑

`N`Nj |B`Nj |2, of function η(y)/y = y/(y2 + 1) and the overlap
function δ(y) tabulated in Table 4

Br+(M) ≡ Γ(M− → `−1 `
−
2 M

′+) + Γ(M+ → `+
1 `

+
2 M

′−)

2Γ(M± → all)
= 2(2− δ`1`2)

[
2∑
j=1

|B`1Nj |2|B`2Nj |2

K̃j

+4δ(y)
|B`1N1 ||B`2N1||B`1N2||B`2N2 |

(K̃1 + K̃2)
cos θ21

] (
Br(DD∗) + Br(CC∗)

)
(89a)

Br−(M) ≡ ACP(M)Br+(M) ≡ Γ(M− → `−1 `
−
2 M

′+)− Γ(M+ → `+
1 `

+
2 M

′−)

2Γ(M± → all)

= 8(2− δ`1`2)
|B`1N1 ||B`2N1||B`1N2||B`2N2 |

(K̃1 + K̃2)
sin θ21

η(y)

y

(
Br(DD∗) + Br(CC∗)

)
(89b)

This leads to an expression for the CP violation parameter ACP(M) defined in Equation (68), which
now involves only the heavy-light mixing parameters |B`Nj | and K̃j [cf. Equation (18)], the function
η(y)/y = y/(y2 + 1), where y ≡ ∆MN/ΓN , and the overlap function δ(y) tabulated in Table 4:

ACP(M) ≡ Br−(M)

Br+(M)
≡ Γ(M− → `−1 `

−
2 M

′+)− Γ(M+ → `+
1 `

+
2 M

′−)

Γ(M− → `−1 `
−
2 M

′+) + Γ(M+ → `+
1 `

+
2 M

′−)

=
4 sin θ21[∑2

j=1

|B`1Nj |
2|B`2Nj |

2

|B`1N1
||B`2N1

||B`1N2
||B`2N2

|
(K̃1+K̃2)

K̃j
+ 4δ(y) cos θ21

] y

(y2 + 1)
(90a)

=
4 sin θ21{[

κ`1κ`2

(
1 + K̃1

K̃2

)
+ 1

κ`1κ`2

(
1 + K̃2

K̃1

)]
+ 4δ(y) cos θ21

} y

(y2 + 1)
(90b)

In the usually considered case `1 = `2 (≡ `), i.e., when the considered decays are M± → `±`±M
′∓,

the formulas (89) and (90) get simpler, because in such a case Br(CC∗) = Br(DD∗) ≡ Br, and
B`2Nj = B`1Nj ≡ B`Nj , and κ`2 = κ`1 = κ`

Br+(M) = 4

[
2∑
j=1

|B`Nj |4

K̃j
+ 4δ(y)

|B`N1 |2|B`N2|2

(K̃1 + K̃2)
cos θ21

]
Br (91a)

Br−(M) ≡ ACP(M)Br+(M) = 16
|B`N1 |2|B`N2 |2

(K̃1 + K̃2)
sin θ21

η(y)

y
Br (91b)

ACP(M) =
4 sin θ21{[

κ2
`

(
1 + K̃1

K̃2

)
+ 1

κ2`

(
1 + K̃2

K̃1

)]
+ 4δ(y) cos θ21

} y

(y2 + 1)
(91c)

These formulas become even simpler if the absolute values of the heavy-light mixings of N1 and N2

are equal (but not their phases), i.e., when

|B`′N2
|2 ≈ |B`′N1

|2 ≡ |B`′N |2 (`
′
= e, µ, τ) (92)

In such a case, we have all κ`′ ≈ 1, and K̃2 ≈ K̃1 ≡ K̃, and therefore the expressions (91) reduce to

Br+(M) ≈ 8
|B`N |4

K̃
Br (1 +O(δ)) (93a)

Br−(M) ≡ ACP(M)Br+(M) ≈ 8
|B`N |4

K̃
sin θ21

η(y)

y
Br (93b)
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ACP(M) ≈ sin θ21
y

y2 + 1
(1 +O(δ)) ≤ 1

2
sin θ21 (1 +O(δ)) (93c)

In these expressions, we assumed, in addition, that the N1-N2 overlap terms are small (O(δ)).
In order to obtain the corresponding effective (true) branching ratios, we have to multiply the

above branching ratios Br± by the decay-within-the-detector probability PNj ≡ PNK̃j(L/1m), as in
Section 2.2 (L is the length of the detector). Again, the complicated mixing dependence entailed in
the parameters K̃j gets cancelled in this multiplication. When adopting the simplifying assumption
Equation (92), i.e., the validity of Equations (93), we obtain the following effective branching ratio Breff

and the CP violation effective branching ratio ACPBreff :

Breff(M± → `±`±M
′∓) = PNBr+(M) ≈

[
PN

(
L

1m

)
K̃
] [

8
|B`N |4

K̃
Br

]
=

(
L

1m

)
8|B`N |4PNBr ≡ 2|B`N |4

(
L

1m

)
Breff (94a)

ACPBreff(M± → `±`±M
′∓) = sin θ21

y

y2 + 1
× 2|B`N |4

(
L

1m

)
Breff

. |B`N |4
(
L

1m

)
sin θ21Breff (94b)

In these formulas, we used the canonical effective branching ratio Breff as defined via Equations (32)
and (20) and depicted in Figures 4–7 as a function of MN (≡ MN1 ≈ MN2). The values of the Lorentz
factors in the lab system are taken to be γN = 2 for both N1 and N2, keeping in mind that Breff scales as
1/γN . We recall that θ21 = 2(φ`2−φ`1) = 2(arg(B`N2)− arg(B`N1)). We notice that on the right-hand
side of Equation (94a) there is an additional factor two in comparison with Equation (31b) of Section 2.2;
this factor two comes from the fact that we now have contributions of two intermediate neutrinos N1 and
N2, and we neglected the contributions from the N1-N2 overlap (O(δ)).

As at the end of Section 2.2, let us consider now as an illustrative example the decaysD±s → µ±µ±π∓.
In addition, let us assume that |BµN |2 is the dominant mixing. In such a case, the estimate Equation (33)
is still valid, and the CP-violating difference of the effective branching ratios, ACPBreff , is obtained by
comparison of Equations (94a) and (94b)

ACPBreff(D±s → µ±µ±π∓) ∼ 102|BµN |4 sin θ21
y

y2 + 1

∣∣∣
y≡∆MN/ΓN

. 102|BµN |4 sin θ21 (95)

Since for MN ≈ 1 GeV we have at present |BµN |2 . 10−7, cf. Table 2, Equation (95) means that
ACPBr(eff) . 10−12 for such decays. As already mentioned at the end of Section 2.2, the proposed
CERN-SPS experiment [80,81] could produce D and Ds mesons in numbers by several orders of
magnitude higher than 1012, and production of the sterile Majorana neutrinos Nj could be explored.
Further, if there exist two almost degenerate sterile neutrinos of mass MN ∼ 1 GeV (this is so in the
νMSM model [60,61,67–72]), such that y ≡ ∆MN/ΓN ∼ 1, then we would have η(y)/y ≡ y/(y2+1) ∼
1. In such a case the estimate (95) would imply that the CP-violating difference of effective branching
ratios, ACPBr(eff)(Ds), is of the same order as the effective branching ratio Br(eff)(Ds) (if the phase
difference |θ21| 6� 1). Therefore, if experiments can discover the mentioned νMSM-type Majorana
neutrinos, they will possibly detect also CP violation effects coming from the Majorana neutrinos.
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The case of B±c → µ±µ±π∓ is similar to the case of D±s → µ±µ±π∓ described above,
cf. Equations (33) and (34) at the end of Section 2.2. Therefore, Equation (95) is valid also for CP
violation in such decays of B±c . For the relative advantages and disadvantages of D±s and B±c decays,
we refer to the comments at the end of Section 2.2.

4.2. CP Violation in Pion Decays π± → e±e±µ∓ν

In this Section, we will only briefly outline the calculation of the CP violation asymmetry in the
(LNC and LNV) semileptonic decays π± → e±e±µ∓ν as described in Section 3. We will assume the
presence of at least two nearly degenerate sterile neutrinos Nj (j = 1, 2) that can go on shell in the
intermediate state, as in Section 4.1. The present Section is a similar extension of the analysis of the
decays π± → e±e±ν of Section 3 to two sterile neutrinos. The results of the present Section are largely
based on Ref. [38]. Only few details will be presented here, for further details we refer to Ref. [38].

Similarly to the previous Section 4.1, the quantities relevant for the CP violation will be

Br
(X)
π,± =

S
(X)
± (π)

2Γ(π± → all)
≡ Γ(X)(π− → e−e−µ+ν)± Γ(X)(π+ → e+e+µ−ν)

2Γ(π± → all)
(96a)

A(X)
π,CP =

Br
(X)
π,−

Br
(X)
π,+

=≡ Γ(X)(π− → e−e−µ+ν)− Γ(X)(π+ → e+e+µ−ν)

Γ(X)(π− → e−e−µ+ν) + Γ(X)(π+ → e+e+µ−ν)
(96b)

where X = LNC, LNV. The total branching ratios are Br± = Br
(LNV)
± + Br

(LNC)
± when Nj are Majorana

neutrinos, and Br± = Br
(LNC)
± when Nj are Dirac neutrinos. We adopt the same conventions and the

same notations as in the previous Section 4.1. In addition, since we have now LNV and LNC processes,
we introduce the additional notations

θ(LNV) = 2(φe2 − φe1) (97a)

θ(LNC) = (φe2 − φe1)− (φµ2 − φµ1) (97b)

As in Section 4.1, the requirement that the quantities sin θ(X) (here: X = LNV, LNC) be nonzero, and
the requirement of the near degeneracy of the two neutrinos (∆MN �MN1 ≡MN ) in conjunction with
the expressions Equations (79)–(83) for Im(P1(D)P2(D)∗), are needed in order that the CP violation
parameters A(X)

π,CP 6= 0 acquire nonnegligible values. Analysis similar to that of the previous Section 4.1
(but algebraically more complicated) leads then to the results for the quantities defined in Equations (96).
More specifically, the results for the Dirac case, Br

(Dir.)
π,+ ≡ Br

(LNC)
π,+ and A(Dir.)

π,CP ≡ A(LNC)
π,CP , are

the following:

Br
(Dir.)
π,+ ≡ Γ(LNC)(π− → e−e−µ+ν) + Γ(LNC)(π+ → e+e+µ−ν)

2Γ(π± → all)

=

[ 2∑
j=1

|BeNj |2|BµNj |2

K̃j
+ 4δ(y)

|BeN1||BeN2||BµN1 ||BµN2|
(K̃1 + K̃2)

cos θ(LNC)

]
Brπ (98a)

A(Dir.)
π,CP ≡ Γ(LNC)(π− → e−e−µ+ν)− Γ(LNC)(π+ → e+e+µ−ν)

Γ(LNC)(π− → e−e−µ+ν) + Γ(LNC)(π+ → e+e+µ−ν)

=
4 sin θ(LNC)[

|BeN1
|

|BeN2
|
|BµN1

|
|BµN2

|

(
1 + K̃2

K̃1

)
+
|BeN2

|
|BeN1

|
|BµN2

|
|BµN1

|

(
1 + K̃1

K̃2

)
+ 4δ(y) cos θ(LNC)

] η(y)

y
(98b)
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The expression for the canonical quantity Brπ, appearing in Equation (98a), is given in
Equation (53) in conjunction with the notation (46) in Section 3.1 The results for the Majorana case,
Br

(Maj.)
π,+ ≡ Br

(LNV)
π,+ + Br

(LNC)
π,+ and A(Maj.)

π,CP are the following:

Br
(Maj.)
π,+ ≡

∑
X=LNV,LNC

(
Γ(X)(π− → e−e−µ+ν) + Γ(X)(π+ → e+e+µ−ν)

)
2Γ(π± → all)

=

[ 2∑
j=1

|BeNj |2(|BeNj |2 + |BµNj |2)

K̃j
+ 4δ(y)

|BeN1||BeN2 |
(K̃1 + K̃2)

×
(
|BeN1||BeN2| cos θ(LNV) + |BµN1||BµN2| cos θ(LNC)

) ]
Brπ (99a)

A(Maj.)
π,CP ≡

∑
X=LNV,LNC

(
Γ(X)(π− → e−e−µ+ν)− Γ(X)(π+ → e+e+µ−ν)

)∑
X=LNV,LNC (Γ(X)(π− → e−e−µ+ν) + Γ(X)(π+ → e+e+µ−ν))

= 4

(
sin θ(LNV) +

|BµN1||BµN2|
|BeN1||BeN2|

sin θ(LNC)

)
×

[
(|BeN1|2 + |BµN1|2)

|BeN2|2

(
1 +
K̃2

K̃1

)
+

(|BeN2|2 + |BµN2|2)

|BeN1|2

(
1 +
K̃1

K̃2

)

+4δ(y)

(
cos θ(LNV) +

|BµN1||BµN2|
|BeN1||BeN2|

cos θ(LNC)

)]−1

× η(y)

y
(99b)

The function η(y)/y = y/(y2 +1) is the same as in Section 4.1 (with: y ≡ ∆MN/ΓN ). Even more so,
numerical evaluations give for the N1-N2 overlap parameter δ(y) the same values as in the semileptonic
decays of Section 4.1, cf. Table 4 and Figure 14 there.

If we assume that |B`N2 | ≈ |B`N1| (for ` = e, µ, τ ), i.e., Equation (92), then we have K̃1 ≈ K̃2 ≡ K̃,
and the expressions for Aπ,CP simplify significantly

A(Dir.)
π,CP =

sin θ(LNC)

(1 + δ(y) cos θ(LNC))

η(y)

y
= sin θ(LNC) η(y)

y
(1 +O(δ)) (100a)

A(Maj.)
π,CP =

(
|BeN1|2 sin θ(LNV) + |BµN1|2 sin θ(LNC)

|BeN1|2 + |BµN1|2

)
η(y)

y
(1 +O(δ)) (100b)

As in the case of semileptonic LNV decays of the previous Section 4.1, we see that the CP asymmetry
parameter Aπ,CP can become appreciable and even of order one if the following two conditions are
fulfilled simultaneously: (a) at least one of the angles θ(X) (X=LNC,LNV), defined in Equation (97), is
appreciable; (b) the quantity y ≡ ∆MN/ΓN is y ∼ 1 (near degeneracy). In such cases, the estimates for
the effective (true) branching ratios Br

(X)
eff of Equations (63) and (64) would apply also to the CP-violating

difference of effective branching ratios, A(X)
π,CPBr

(X)
eff , where (X) = (Dir.),(Maj.).
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5. Conclusions

We have studied lepton number violating (LNV) semileptonic decays of charged pseudoscalar
mesons, specifically π±, K±, D±, D±s , B± and B±c , mediated by heavy neutrinos that can go on their
mass shell.

We first presented the LNV semileptonic decays of charged Kaons and of the heavier mesons D±,
D±s , B± and B±c , in processes of the form M± → `±1 `

±
2 M

′∓, mediated by on-shell massive neutrinos,
where M is the decaying meson and M ′ a correspondingly lighter meson. We estimated the branching
ratios as functions of the neutrino masses and mixing parameters, and found the scenarios where upper
limits on the mixing parameters can be obtained. We also studied the effect on the observability of
these decays due to the long neutrino lifetime, as the secondary decay vertex is likely to fall outside the
detector for the range of neutrino masses that are relevant to these processes.

We then presented our corresponding study of charged pion decays, which in this case are purely
leptonic since pions are the lightest mesons. Here we can have modes that conserve lepton number
(LNC) as well as modes that violate lepton number (LNV), if the intermediate neutrinos are of Majorana
type, while only the former modes occur if the intermediate neutrino is of Dirac type. However, these
modes are not distinguished by the final state because the latter involves a standard neutrino, which is
not experimentally observable. We find that it could be possible to discern the Majorana or Dirac nature
of neutrinos if one is able to observe features in the final state distribution.

We finally explored the possibility of observing CP violation in the lepton sector using these meson
decays mediated by massive neutrinos on shell. The CP signal in charged meson decays is the usual
asymmetry between the decays of opposite charge mesons. We found that leptonic CP violation may
show in semileptonic LNV decays of charged Kaons and charged B mesons, as well as in LNC and LNV
decays of charged pions, depending on the mass of the intermediate neutrinos. It turns out that such CP
violation becomes appreciable and possibly detectable if there are at least two heavy neutrinos almost
degenerate in mass that can go on their mass shell. The neutrino mass splitting that gives maximal
CP asymmetries is close to the neutrino decay width. This type scenario fits well into the so called
neutrino minimal standard model (νMSM), which contains two almost degenerate Majorana neutrinos
of mass near 1 GeV and another lighter neutrino of mass of order 101 keV, a model that can explain
simultaneously neutrino oscillations, the dark matter and the baryon asymmetry of the Universe.
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Appendix

A.1. Explicit Formulas for Amplitudes of the Nj-mediated Decay M± → `±1 `
±
2 M

′∓

In this Appendix we provide, for completeness, formulas which are used in Sections 2 and 4.1. The
formulas were presented in Ref. [39] for the case of exchange of two different neutrinos N1 and N2.
Here we present them in a slightly more general form, when the number of exchanged neutrinos is N
(N1, . . . , NN ). In Section 2 the simpler case of N = 1 is taken, because such a case is representative
enough for the consideration of the branching ratios there. On the other hand, the case N = 2 (or:
N ≥ 2) is taken in Section 4, with two of the neutrinos (N1, N2) considered on-shell and
almost degenerate, because in such a case significant CP violation effects can arise in the Majorana
neutrino sector.

The amplitude squared |T (M±)|2 for the decay of Figure 1 appears in the expression Equation (3)
for the decay width Γ(M± → `±1 `

±
2 M

′∓), and can be written in the form

|T (M±)|2 = K2

N∑
i=1

N∑
j=1

k
(±)
i k

(±)∗
j MNiMNj

×
[
Pi(D)Pj(D)∗T±(D)T±(D)∗ + Pi(C)Pj(C)∗T±(C)T±(C)∗

+ (Pi(D)Pj(C)∗T±(D)T±(C)∗ + Pi(C)Pj(D)∗T±(C)T±(D)∗)
]

(101)

Here, i, j = 1, . . . ,N are indices of contributions of the exchanges of intermediate neutrinos Ni, Nj ,
and X = D,C denote contributions of amplitudes of the direct and crossed channels, respectively,
cf. Figure 1. Further, k(±)

j are the heavy-light mixing factors for Nj defined in Equation (70); Pj(X)

(j = 1, 2;X = D,C) are the propagator functions of Nj neutrino for the D and C channel,
Equation (72). K2 is the constant originating from the vertices and is given in Equation (9). These
expressions appear in the normalized decay widths Γ̃±(XY ∗) in Equation (7) when N = 1, and
in Γ̃±(XY ∗)ij in Equation (71) when N ≥ 2. The quadratic expressions of T±(X)T±(Y )∗ in
Equation (101) get simplified after summation over the final helicities of the leptons `1 and `2, and
acquire the following form:

T±(D)T±(D)∗ = 8
[
M2

MM
2
M ′(p1 · p2)− 2M2

M(p1 · pM ′)(p2 · pM ′)− 2M2
M ′(p1 · pM)(p2 · pM)

+4(p1 · pM)(p2 · pM ′)(pM · pM ′)
]
≡ T (D)T (D)∗ (102a)

T±(C)T±(C)∗ = 8
[
M2

MM
2
M ′(p1 · p2)− 2M2

M(p1 · pM ′)(p2 · pM ′)− 2M2
M ′(p1 · pM)(p2 · pM)

+4(p2 · pM)(p1 · pM ′)(pM · pM ′)
]
≡ T (C)T (C)∗ (102b)

T±(D)T±(C)∗ = 16
{
M2

M(p1 · pM ′)(p2 · pM ′) +M2
M ′(p1 · pM)(p2 · pM)− 1

2
M2

MM
2
M ′(p1 · p2)

+(pM · pM ′) [−(p1 · pM)(p2 · pM ′)− (p2 · pM)(p1 · pM ′) + (pM · pM ′)(p1 · p2)]

∓i(pM · pM ′)ε(pM , p1, p2, pM ′)
}

(102c)
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T±(C)T±(D)∗ = (T±(D)T±(C)∗)∗ = T∓(D)T∓(C)∗ = (T∓(C)T∓(D)∗)∗ (102d)

where we used the notation

ε(q1, q2, q3, q4) ≡ εη1η2η3η4(q1)η1(q2)η2(q3)η3(q4)η4 (103)

Here, εη1η2η3η4 is the totally antisymmetric Levi-Civita tensor with the sign convention ε0123 = +1.
The expression (102), together with the definition (71), imply for the normalized decay widths

Γ̃±(XY ∗)ij of Equation (71) various symmetry relations, namely that Γ̃±(DD∗) and Γ̃±(CC∗) are
self-adjoint (N × N ) matrices, and that elements of the D-C interference matrices Γ̃±(CD∗) and
Γ̃±(DC∗) are simply related

Γ̃(DD∗)ij =
(

Γ̃(DD∗)ji

)∗
, Γ̃(CC∗)ij =

(
Γ̃(CC∗)ji

)∗
, (104a)

Γ̃±(CD∗)ij =
(

Γ̃±(DC∗)ji

)∗
(104b)

If the two final leptons are of the same flavor (`1 = `2), one can use the property that the integration d3

over the final particles is symmetric under exchange of p1 and p2 (because M`1 = M`2), and we have the
following additional symmetries:

Γ̃(DD∗)ij = Γ̃(CC∗)ij (105a)

Γ̃±(CD∗)ij = Γ̃±(DC∗)ij (105b)

and the N ×N D-C interference matrices Γ̃±(CD∗) become self-adjoint, too.
When N = 1, as in Section 2, then we have in the case of `1 = `2

Γ̃(DD∗) = Γ̃(CC∗) (N = 1 and `1 = `2) (106)

A.2. Explicit Expression for the Function Q

The expression in Equations (12) and (78) is arrived at by using in the integration over the phase space
of three final particles [Equations (3) and (4)], for the contribution of the N neutrino, the identity

d3

(
M(pM)→ `1(p1)`2(p2)M

′
(pM ′)

)
=

d2 (M(pM)→ `1(p1)Nj(pN)) dp2
Nd2

(
Nj(pN)→ `2(p2)M

′
(pM ′)

)
(107a)

d2 (M(pM)→ `2(p2)Nj(pN)) dp2
Nd2

(
Nj(pN)→ `1(p1)M

′
(pM ′)

)
(107b)

The first identity can be used for the DD∗ contribution (where pN = pM − p1) and the second for
the CC∗ contribution (where pN = pM − p2). When one uses the identity (10) in the DD∗ contribution,
and the analogous identity for the CC∗ contribution, the integration over dp2

N becomes trivial, and the
d2-type of integrations can be performed. Notice that this is equivalent to the factorization approach
Γ(M → `1N)Br(N → `2M

′
), which holds when N is on-shell. The obtained expression for Γ̃(DD∗)

is then the expression Equation (12) when N = 1 [Equation (78) when N ≥ 2] with the notations (14),
where the obtained function Q has the following form:

Q(yN ; y`1 , y`2 , y
′) =

{
1

2
(yN − y`1)(yN − y`2)(1− yN − y`1)

(
1− y′

yN
+
y`2
yN

)
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+
[
− y`1y`2(1 + y′ + 2yN − y`1 − y`2)− y2

`1
(yN − y′) + y2

`2
(1− yN)

+y`1(1 + yN)(yN − y′)− y`2(1− yN)(yN + y′)
]}

(108)

In the limit of massless charged leptons (y`1 = y`2 = 0), this reduces to

Q(yN ; 0, 0, y′) =
1

2
y2
N(1− yN)

(
1− y′

yN

)
(109)

A.3. Calculation of the Total Decay Width of Neutrino N

In this Appendix, for completeness, we summarize the formulas needed for evaluation of the total
decay width of a massive sterile neutrino N , cf. Equations (16)–(18) and Figure 2.

In Ref. [29] (Appendix C there), the formulas for the leptonic decay and semimesonic decay widths
of a sterile neutrino N have been obtained, for the masses MN . 1 GeV. For higher values of the masses
MN , the calculation of the semileptonic decay widths becomes difficult because not all the resonances
are known. Hence, for such masses the authors of Refs. [30,113] proposed an inclusive approach, based
on duality, for the calculation of the total contribution of the semileptonic decay width of N . It consists
of representing the various (pseudoscalar and vector) meson channels by quark-antiquark channels. This
approach was applied for MN ≥Mη′ ≈ 0.958 GeV. Here we summarize the formulas given in Ref. [30]
for the decay width channels (cf. also: [29]). In some of these formulas, twice the decay width is
given [2Γ(N → . . .)], signalling the fact that for each possible decay of Majorana neutrino in charged
particles, there is an equally possible decay into charge conjugate channel (something not possible if N
is Dirac particle).

2Γ(N → `−`
′+ν`′ ) = |B`N |2

G2
F

96π3
M5

NI1(x`, 0, x`′ )(1− δ``′ ) , (110a)

Γ(N → ν``
′−`

′+) = |B`N |2
G2
F

96π3
M5

N

[
(g

(lept)
L g

(lept)
R + δ``′g

(lept)
R )I2(0, x`′ , x`′ )

+
(

(g
(lept)
L )2 + (g

(lept)
R )2 + δ``′ (1 + 2g

(lept)
L )

)
I1(0, x`′ , x`′ )

]
(110b)∑

ν`

∑
ν′

Γ(N → ν`ν
′ν̄ ′) =

∑
`

|B`N |2
G2
F

96π3
M5

N (110c)

In Equation (110a) factor 2 was included because for Majorana neutrinoN both decaysN → `−`
′+ν`′

and N → `+`
′−ν`′ contribute (` 6= `

′).
When MN < Mη′ ≈ 0.968 GeV, the following semimesonic decays contribute, which involve

presudoscalar (P ) and vector (V ) mesons:

2Γ(N → `−P+) = |B`N |2
G2
F

8π
M3

Nf
2
P |VP |2FP (x`, xP ) (111a)

Γ(N → ν`P
0) = |B`N |2

G2
F

64π
M3

Nf
2
P (1− x2

P )2 (111b)

2Γ(N → `−V +) = |B`N |2
G2
F

8π
M3

Nf
2
V |VV |2FV (x`, xV ) (111c)

Γ(N → ν`V
0) = |B`N |2

G2
F

2π
M3

Nf
2
V κ

2
V (1− x2

V )2(1 + 2x2
V ) (111d)
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where factor 2 in the charged meson channels appears because both decays N → `−M
′+ and N →

`+M
′− contribute (M ′

= P, V ) if N is Majorana. The factors VP and VV are the CKM matrix elements
involving the valence quarks of the mesons; and fP and fV are the corresponding decay constants,
whose values are given, e.g., in Table 1 in Ref. [30]. The pseudoscalar mesons which contribute here
are: P± = π±, K±; P 0 = π0, K0, K̄0, η. The vector mesons which contribute are: V ± = ρ±, K∗±;
V 0 = ρ0, ω,K∗0, K̄∗0. If MN ≥ Mη′ (=0.9578 GeV), due to duality the (many) semimesonic decay
modes are represented by the following quark-antiquark decay modes [30]:

2Γ(N → `−UD̄) = |B`N |2
G2
F

32π3
M5
N |VUD|2I1(x`, xU , xD) (112a)

Γ(N → ν`qq̄) = |B`N |2
G2
F

32π3
M5
N

[
g

(q)
L g

(q)
R I2(0, xq, xq)+

(
(g

(q)
L )2+(g

(q)
R )2

)
I1(0, xq, xq)

]
(112b)

In the formulas (110)–(112) the notations xY ≡ MY /MN (Y = `, ν`, P, V, q) are used; and in
Equation (112) we denoted: U = u, c; D = d, s, b; q = u, d, c, s, b. The values of quark masses
which we used in our evaluations are: Mu = Md = 3.5 MeV; Ms = 105 MeV; Mc = 1.27 GeV;
Mb = 4.2 GeV.

We note that in the evaluation of the total decay width ΓN , the expressions (112a) and (112b)
should be added when N is Majorana; if N is Dirac, the same summation should be taken, but the
expressions (112a) should be multiplied by 1/2. The same approach is valid also in the case of
summation of expressions (110) and (111).

In Equations (110b) and (112b) there appear the following SM neutral current couplings:

g
(lept)
L = −1

2
+ sin2 θW , g

(lept)
R = sin2 θW (113a)

g
(U)
L =

1

2
− 2

3
sin2 θW , g

(U)
R = −2

3
sin2 θW (113b)

g
(D)
L = −1

2
+

1

3
sin2 θW , g

(U)
R =

1

3
sin2 θW (113c)

Further, the neutral current couplings κV of the neutral vector mesons in Equation (111d) are

κV =
1

3
sin2 θW (V = ρ0, ω) (114a)

κV = −1

4
+

1

3
sin2 θW (V = K∗0, K̄∗0) (114b)

The following kinematical expressions I1, I2, FP and FV were used:

I1(x, y, z) = 12

∫ (1−z)2

(x+y)2

ds

s
(s− x2 − y2)(1 + z2 − s)λ1/2(s, x2, y2)λ1/2(1, s, z2) (115a)

I2(x, y, z) = 24yz

∫ (1−x)2

(y+z)2

ds

s
(1 + x2 − s)λ1/2(s, y2, z2)λ1/2(1, s, x2) (115b)

FP (x, y) = λ1/2(1, x2, y2)
[
(1 + x2)(1 + x2 − y2)− 4x2

]
(115c)

FV (x, y) = λ1/2(1, x2, y2)
[
(1− x2)2 + (1 + x2)y2 − 2y4

]
(115d)

with λ function defined in Equation (46a). These formulas allow us to obtain the total decay width
Γ(N → all) as a function of MN . Using these formulas, we evaluated the coefficients N`N , appearing
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in Equation (18) at the mixing terms |B`N |2, and presented them in Figure 2 as a function of MN for
the cases of Majorana and Dirac neutrino N . One may notice a small kink in the curves of Figure 2
at MN = Mη′ (=0.9578 GeV). This kink appears because at MN ≥ Mη′ the use of duality is
made (the replacement of the semileptonic decay channel contributions by the quark-antiquark channel
contributions). We can see that the duality works quite well at MN ≥ Mη′ , with the possible exception
for the case ` = τ because τ lepton has a large mass.

A.4. Explicit Amplitudes for Nj-Mediated Decays π± → e±e±µ∓ν

In this Appendix we summarize, for completeness, formulas needed in Sections 3 and 4.2. These
formulas were derived and presented in Ref. [38], for the case of exchange of two different neutrinos N1

and N2. Here we summarize them in a slightly more general form, for the case of N different neutrinos
Nj (j = 1, . . . ,N ). In Section 3 the simpler case N = 1 is taken, as it is sufficiently representative for
the branching ratios considered there. In Section 4 the case N = 2 (or: N ≥ 2) is considered, with two
(on-shell) neutrinos N1 and N2 almost degenerate, as in such a case significant CP violation effects can
occur in the neutrino sector.

The squared amplitude |T (X)
π,± |2 for the Nj-mediated leptonic decays of neutrinos, appearing, for

example, in Equation (36) (where X = LNC, LNV), is a combination of contributions from the two
channels D (direct) and C (crossed) (cf. Figures 8 and 9), and, in general, of the contributions of N
neutrinos Nj

|T (X)
π,± |2 = K2

π

N∑
i=1

N∑
j=1

k
(X)∗
i,± k

(X)
j,±

×
[
P

(X)
i (D)P

(X)
j (D)∗T

(X)
π,± (DD∗) + P

(X)
i (C)P

(X)
j (C)∗T

(X)
π,± (CC∗)

+
(
P

(X)
i (D)P

(X)
j (C)∗T

(X)
π,± (DC∗) + P

(X)
i (C)P

(X)
j (D)∗T

(X)
π,± (CD∗)

)]
(116)

The constant K2
π is given in Equation (42), and the mixing factors k(X)

j,± are

k
(LNV)
j,+ = B2

eNj
, k

(LNC)
j,+ = BeNjB

∗
µNj

, k
(X)
j,− =

(
k

(X)
j,+

)∗
(117)

In the case ofN = 1, these coefficients are in Equation (39). P (X)
j (Y ) are theNj-propagator functions

[whenN = 1: N -propagator functions of Equation (41)] of the direct and crossed channels (Y = D,C).
Explicit expressions for the direct (DD∗), crossed (CC∗) and direct-crossed interference (DC∗ and

CD∗) terms [T (X)
π,±(DD∗), T (X)

π,±(CC∗), T (X)
π,±(DC∗), T (X)

π,± (CD∗)], appearing in Equations (116), get
simplified when summed over the helicities of all the final leptons. In the case of the X = LNV processes
(cf. Figure 9) they acquire the following form:

T
(LNV)
π,± (DD∗) = 256(p2 · pν)

[
−M2

π(p1 · pµ) + 2(p1 · pπ)(pµ · pπ)
]
≡ T (LNV)

π (DD∗) , (118a)

T
(LNV)
π,± (CC∗) = 256(p1 · pν)

[
−M2

π(p2 · pµ) + 2(p2 · pπ)(pµ · pπ)
]
≡ T (LNV)

π (CC∗) , (118b)

T
(LNV)
π,± (DC∗) = 128

{
(p1 · pν)

[
M2

π(p2 · pµ)− 2(p2 · pπ)(pµ · pπ)
]
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+(p2 · pν)
[
M2

π(p1 · pµ)− 2(p1 · pπ)(pµ · pπ)
]

−(p1 · p2)
[
M2

π(pν · pµ)− 2(pν · pπ)(pµ · pπ)
]}

∓i
{
− (p1 · pπ)ε(p2, pν , pµ, pπ) + (p2 · pπ)ε(p1, pν , pµ, pπ)

−(pν · pπ)ε(p1, p2, pµ, pπ)− (pµ · pπ)ε(p1, p2, pν , pπ)

}
(118c)

T
(LNV)
π,± (CD∗) =

(
T

(LNV)
π,± (DC∗)

)∗
= T

(LNV)
π,∓ (DC∗) (118d)

where we used the notation Equation (103) for ε.
In the case of X = LNC processes (cf. Figure 8), the expressions are

T
(LNC)
π,± (DD∗) = 256(pµ · pν)

[
(p1 · p2)

(
M4

π −M2
πM

2
e − 4M2

π(p1 · pπ) + 4(p1 · pπ)2
)

+2M2
e (p2 · pπ)(M2

π − p1 · pπ)

]
≡ T (LNC)

π (DD∗) (119a)

T
(LNC)
π,± (CC∗) = 256(pµ · pν)

[
(p1 · p2)

(
M4

π −M2
πM

2
e − 4M2

π(p2 · pπ) + 4(p2 · pπ)2
)

+2M2
e (p1 · pπ)(M2

π − p2 · pπ)

]
≡ T (LNC)

π (CC∗) (119b)

T
(LNC)
π,± (DC∗) = 256(pµ · pν)

[
(p1 · p2)(M2

π − 2p1 · pπ)(M2
π − 2p2 · pπ)

+M2
e

(
−2(p1 · pπ)2 − 2(p2 · pπ)2 +M2

π(p1 + p2) · pπ +M2
πM

2
e

) ]
(119c)

≡ T (LNC)
π (DC∗) ,

T (LNC)
π (CD∗) =

(
T (LNC)
π (DC∗)

)∗
(119d)

These expressions appear in the definition of the normalized (i.e., without explicit mixing dependence)
decay width matrices Γ̃

(X)
π,±(Y Z∗)ij (X = LNV, LNC; Y, Z = D,C; i, j = 1, . . . ,N )

Γ̃
(X)
π,±(Y Z∗)ij = K2 1

2!

1

2Mπ

1

(2π)8

∫
d4 P

(X)
i (Y )P

(X)
j (Z)∗ T

(X)
± (Y Z∗) (120)

where P (X)
j are the propagator functions of neutrino Nj (with mass MNj ), cf. the definitions (41) written

when N = 1. When N = 1, the definition (120) reduces to the definition (40) in Section 3.1.
When we use the symmetry of the d4 integration under the exchange p1 ↔ p2 (we note:

M1 = M2 = Me in our considered case), this leads to the following identities:

Γ̃(X)
π (DD∗)ij = Γ̃(X)

π (CC∗)ij , Γ̃(X)
π (DD∗)ji =

(
Γ̃(X)
π (DD∗)ij

)∗
(121a)

Γ̃
(X)
π,±(CD∗)ij = Γ̃

(X)
π,±(DC∗)ij =

(
Γ̃

(X)
± (CD∗)ji

)∗
(121b)

In the case of N = 1 this reduces simply to

Γ̃(X)
π (DD∗) = Γ̃(X)

π (CC∗) (122)
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A.5. Explicit Expression for Γ̃
(X)
π and dΓ̃

(X)
π /dEµ for π± → e±e±µ∓ν with On-Shell N

Equation (45) refers to the expression obtained by performing the integration (36) over the phase
space of the four final particles [cf. Equation (37)], of the integrand written explicitly in Appendix 4. In
the integration, the on-shellness (43) is assumed, which makes the integration over p2

N trivial. At the
final stage of integration, the differential decay width dΓ̃(X)/dEµ over the muon energy Eµ, in the rest
frame of the N neutrino, is performed. The expressions for dΓ̃(X)/dEµ were written in Refs. [37,38],
and we write them down here for completeness. In the case of X = LNV it is

dΓ̃(LNV)(π± → e±e±µ∓ν)

dEµ

=
K2
π

2(2π)4

1

ΓNM3
π

λ1/2(M2
π ,M

2
N ,M

2
e )×

[
M2

πM
2
N −M4

N +M2
e (M2

π + 2M2
N −M2

e )
]

×Eµ
√
E2
µ −M2

µ

(M2
N − 2MNEµ +M2

µ −M2
e )2

(M2
N − 2MNEµ +M2

µ)

(
Mµ ≤ Eµ ≤

(M2
N +M2

µ −M2
e )

2Me

)
.(123)

The integration of this expression over Eµ can be performed explicitly (in Ref. [37] it was performed
only in the limit Me = 0). The result is Equation (45) with notations (46), where the function F(xµ, xe)

was obtained in Ref. [38]. We write it down here again, for completeness.

F(xµ, xe) =

{
λ1/2(1, xµ, xe)

[
(1 + xµ)(1− 8xµ + x2

µ)− xe(7− 12xµ + 7x2
µ)

−7x2
e(1 + xµ) + x3

e

]
− 24(1− x2

e)x
2
µ ln 2

+12

[
− x2

µ(1− x2
e) lnxµ + (2x2

µ − x2
e(1 + x2

µ)) ln(1 + xµ + λ1/2(1, xµ, xe)− xe)

+x2
e(1− x2

µ) ln

(
(1− xµ)2 + (1− xµ)λ1/2(1, xµ, xe)− xe(1 + xµ)

xe

)]}
(124)

We can obtain the LNV canonical differential decay width, according to Equation (54), from the
normalized differential decay width Equation (123). For this, it turns out to be convenient to use the
following identity:

2K̃
Γ(π± → all)

K2
π

(2π)4ΓNM3
π

= 96
1

M5
NM

2
µ(M2

π −M2
µ)2(1 + δgπ)

(125)

which is obtained by using Equations (42), (16) and (17) and (50). This then gives us

dBr
(LNV)

π

dEµ
≡ 2
K̃
Γπ

dΓ̃(LNV)(π± → e±e±µ∓ν)

dEµ

= 48
1

M5
NM

2
µ(M2

π −M2
µ)2(1 + δgπ)

λ1/2(M2
π ,M

2
N ,M

2
e )

×
[
M2

πM
2
N −M4

N +M2
e (M2

π + 2M2
N −M2

e )
]

×Eµ
√
E2
µ −M2

µ

(M2
N − 2MNEµ +M2

µ −M2
e )2

(M2
N − 2MNEµ +M2

µ)
(Mµ ≤ Eµ ≤ (Eµ)max) (126)

where

(Eµ)max =
(M2

N +M2
µ −M2

e )

2MN

(127)
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The LNC canonical differential decay width turns out to be

dBr
(LNC)

π

dEµ
≡ 2
K̃
Γπ

dΓ̃(LNC)(π± → e±e±µ∓ν)

dEµ

=
1

M6
NM

2
µ(M2

π −M2
µ)2(1 + δgπ)

λ1/2(M2
π ,M

2
N ,M

2
e )

1[
M2

µ +MN(−2Eµ +MN)
]3

×
{

8
√

(E2
µ −M2

µ)MN

[
(2Eµ −MN)MN −M2

µ +M2
e

]2
×
[
M2

πM
2
N −M4

N +M2
e (M2

π + 2M2
N)−M4

e

]
×
[
8E3

µM
2
N − 2M2

µMN(M2
µ +M2

N + 2M2
e )− 2E2

µMN

(
5(M2

µ +M2
N) +M2

e

)
+Eµ

(
3M4

µ + 10M2
µM

2
N + 3M4

N + 3M2
e (M2

µ +M2
N)
) ]}

(Mµ ≤ Eµ ≤ (Eµ)max) (128)

It turns out that, upon integration of this expression over Eµ, we obtain the same result as in the
X = LNV case, i.e., Equations (53c) with (46) and (124), or equivalently, Equations (45) with (46)
and (124). We must add that we found a typographical error in Equation (A.16) of Ref. [37], where
E2
` must be replaced by 2E2

` , and in Equations (B.1c) and (B3) of Ref. [38], where (Eµ)max should read
(M2

Nj
+M2

µ −M2
e )/(2MN).

In the limit Me = 0 (which is a good approximation), the canonical differential decay widths (126)
and (128) get simplified

dBr
(LNV)

π

dEµ

∣∣∣∣∣
Me=0

=
48(M2

π −M2
N)2

M3
NM

2
µ(M2

π −M2
µ)2

√
E2
µ −M2

µEµ(M2
N − 2MNEµ +M2

µ), (129a)

dBr
(LNC)

π

dEµ

∣∣∣∣∣
Me=0

=
48(M2

π −M2
N)2

M3
NM

2
µ(M2

π −M2
µ)2

√
E2
µ −M2

µ

×
[

1

2
Eµ(M2

N +M2
µ)− 1

3
MN(2E2

µ +M2
µ)

]
(129b)

The full (integrated) canonical branching ratio in the Me = 0 limit is obtained by taking the xe = 0 limit
of Equation (53c)

Brπ
∣∣
Me=0

=
1

2

M2
N

M2
µ

(M2
π −M2

N)2

(M2
π −M2

µ)2
f

(
M2

µ

M2
N

)
(130)

where the function f is written in Equation (48).

A.6. Delta Function Approximation for the Imaginary Part of the Propagator Product

In this Appendix we investigate the expression for the imaginary part of the propagator product,
Im(P1(D)P2(D)∗), Equation (79a) of Section 4.1. For convenience we introduce in this Appendix the
following simplified notations x, M2, ∆ and ξ:

x ≡ p2
N , M2 ≡M2

N1
(131a)

∆ ≡ ∆M2
N ≡M2

N2
−M2

N1
(131b)

ΓN1 = ξΓN , ΓN2 = (2− ξ)ΓN (131c)
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We note that ∆ > 0 by convention; and 0 < ξ < 2. Further, ΓN1 + ΓN2 = 2ΓN , in accordance with
the definition of ΓN Equation (82). Since we always have ΓNj �MNj (the neutrinos Nj are sterile), the
relation (80) holds, i.e.,

ΓNjMNj

(x−M2
Nj

)2 + Γ2
Nj
M2

Nj

= πδ(x−M2
Nj

) (132)

We can write the right-hand side of Equation (79a) for Im(P1(D)P2(D)∗) as

Im (P1(D)P2(D)∗) = R1 +R2 (133)

whereR1 andR2 can be written, in our notation, as

R1 =
(x−M2)(2− ξ)ΓN

√
M2 + ∆

[(x−M2)2 + ξ2Γ2
NM

2] [(x−M2 −∆)2 + (2− ξ)2Γ2
N(M2 + ∆)]

(134a)

= η1 ×
π

∆
δ(x−M2 −∆) (134b)

R2 = − ξΓNM(x−M2 −∆)

[(x−M2)2 + ξ2Γ2
NM

2] [(x−M2 −∆)2 + (2− ξ)2Γ2
N(M2 + ∆)]

(134c)

= η2 ×
π

∆
δ(x−M2) (134d)

In Equations (134b) and (134d), the identity (132) was used, and we introduced two (dimensionless)
parameters ηj (j = 1, 2). We want to obtain these two parameters ηj . They can be obtained by integrating
analytically the explicit expressions (134a) and (134c) for Rj(x) over x. For example, integration of
R1(x) gives∫ +∞

−∞
dx

(x−M2)(2− ξ)ΓN
√
M2 + ∆

[(x−M2)2 + ξ2Γ2
NM

2] [(x−M2 −∆)2 + (2− ξ)2Γ2
N(M2 + ∆)]

=
π∆

(∆2 + 4Γ2
NM

2
∗ )
(135)

where

M2
∗ =

1

2
M2

[
(2− ξ(2− ξ)) + ξ(2− ξ)

√
1 + ∆/M2

]
+

1

4
(2− ξ)2∆ (136a)

= M2

[
1 + (1− ξ/2)

∆

M2
+O

(
∆2

M4

)]
(136b)

Therefore, in the case of near degeneracy (∆ � M2) we have M2
∗ = M2. If we now use in

the integration over dx the expression (134b) instead, take into account M2
∗ = M2 in the case of

near degeneracy, and compare with (135), we obtain the following expression for the parameter η1 by
comparison with (135):

η1
1

∆
=

∆

(∆2 + 4Γ2
NM

2)
(∆�M2) (137a)

η1 =
y2

y2 + 1

(
y ≡ ∆

(2MΓN)
, ∆�M2

)
(137b)

where in Equation (137b) we use the usual notation in this paper y ≡ (MN2−MN1)/ΓN = ∆/(2MΓN).
Here we note that ∆ ≡ (M2

N2
− M2

N1
) = (MN2 − MN1)2MN1 in the case of near degeneracy

∆�M2 ≡M2
N1

.
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Doing the same procedure with the quantityR2, we obtain for η2 the very same result as for η1

η1 = η2 =
y2

y2 + 1
(∆�M2) (138)
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