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Abstract:

 In this paper, we extend the classical Lie symmetry analysis from partial differential equations to integro-differential equations with functional derivatives. We continue the work of Oberlack and Wacławczyk (2006, Arch. Mech. 58, 597), (2013, J. Math. Phys. 54, 072901), where the extended Lie symmetry analysis is performed in the Fourier space. Here, we introduce a method to perform the extended Lie symmetry analysis in the physical space where we have to deal with the transformation of the integration variable in the appearing integral terms. The method is based on the transformation of the product [image: there is no content] appearing in the integral terms and applied to the functional formulation of the viscous Burgers equation. The extended Lie symmetry analysis furnishes all known symmetries of the viscous Burgers equation and is able to provide new symmetries associated with the Hopf formulation of the viscous Burgers equation. Hence, it can be employed as an important tool for applications in continuum mechanics.
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1. Introduction


1.1. Three Complete Descriptions of Turbulence

Turbulence research knows three complete descriptions of turbulence. In each of these descriptions, the aim is to calculate the statistics of a turbulent flow by determining the so-called multi-point velocity correlations or simply multi-point correlations:



Ui1t([image: there is no content]1)…Uint([image: there is no content]n),i1,…,in=1,2,3








In this term, [image: there is no content] is a random vector describing the velocity field in time t, and [image: there is no content] are the positions of different fluid particles in the space occupied by the fluid. [image: there is no content] is given by:



[image: there is no content]([image: there is no content]i)=U1t([image: there is no content]i),U2t([image: there is no content]i),U3t([image: there is no content]i)=U1([image: there is no content]i,t),U2([image: there is no content]i,t),U3([image: there is no content]i,t)








In the language of stochastics, the multi-point correlations are the covariances of the velocity components.

We briefly introduce three complete descriptions of turbulence research.




	In the multi-point correlation approach, an infinite dimensional chain of linear, but non-local differential equations has to be solved. On the n-th level, the unknown [image: there is no content]-point correlation is present. Solving the infinitely many equations directly provides all multi-point correlations. In [1], the Lie symmetries of the infinite set of multi-point correlation equations are investigated.


	In the Lundgren–Monin–Novikov approach [2], it is assumed that the velocity field [image: there is no content] admits probability density functions (PDFs):



[image: there is no content]








given in terms of the Dirac delta distribution and describing the correlation of the velocity components at multiple points in space. To be more precise, [image: there is no content]([image: there is no content]1;[image: there is no content]1)d[image: there is no content]1 expresses the probability that the velocity vector [image: there is no content]([image: there is no content]1)=U([image: there is no content]1,t) is contained within the infinitesimal interval [image: there is no content]. The Lundgren–Monin–Novikov hierarchy is an infinite dimensional chain of non-local differential equations for the PDFs, where on the n-th level, the unknown [image: there is no content]-point PDF fn+1t=[image: there is no content]([image: there is no content]1,…,[image: there is no content][image: there is no content];[image: there is no content]1,…,[image: there is no content][image: there is no content]) is present. Solving the infinitely many equations provides all PDFs. The multi-point correlations can be calculated by integrating the PDFs via:



Ui1t([image: there is no content]1)…Uint([image: there is no content]n)=∫[image: there is no content]⋯∫[image: there is no content]vi1…vin[image: there is no content]([image: there is no content]1,…,[image: there is no content]n;[image: there is no content]1,…,[image: there is no content]n)d[image: there is no content]1…d[image: there is no content]n








In [3], the Lie symmetries of the Lundgren–Monin–Novikov hierarchy are investigated.


	In the Hopf approach, the characteristic functions ϕ of the PDFs [image: there is no content] for [image: there is no content] are investigated, cf. [4]. The n-point characteristic function is defined as:



ϕ(y1,…,yn,t):=ei(Ut,y)=∫[image: there is no content]⋯∫[image: there is no content]ei([image: there is no content],y)[image: there is no content]([image: there is no content]1,…,[image: there is no content]n;[image: there is no content]1,…,[image: there is no content]n)d[image: there is no content]1…d[image: there is no content]n








with Ut:=[image: there is no content]([image: there is no content]1),…,[image: there is no content]([image: there is no content]n).[image: there is no content] is defined as the Euclidean scalar product



[image: there is no content]








for [image: there is no content], [image: there is no content] with [image: there is no content], [image: there is no content].




In hydromechanics, we assume that the mean free path is negligible; hence, we take the continuum limit [image: there is no content]. Thus, instead of the n velocity vectors [image: there is no content], we consider a continuous set [image: there is no content], such that the velocity [image: there is no content] is a continuous function depending on the spatial variable [image: there is no content]. In the continuum limit, the probability density function [image: there is no content] becomes a probability density functional, and the function ϕ becomes the functional:



ϕ([y([image: there is no content])],t)=ei([image: there is no content],y)=∫ei([image: there is no content],y)[image: there is no content]([[image: there is no content]([image: there is no content])])d[[image: there is no content]([image: there is no content])]



(1)




In this paper, we pursue the Hopf approach defined in Equation (1). A relation between the Hopf and Lundgren approach is discussed in [5], where also equations in a Lagrangian multi-particle framework are investigated.



1.2. Hopf Functional and Multi-Point Correlations

In Equation (1), it is not directly apparent what is meant by [image: there is no content] and how the integration domain should be chosen. In order to define ϕ=ϕ([y([image: there is no content])],t) properly, we introduce the [image: there is no content] space.

Definition 1 ([image: there is no content] space). For [image: there is no content], define



[image: there is no content](G,[image: there is no content]):=[image: there is no content]:G⟶[image: there is no content]|∫G[image: there is no content]([image: there is no content])·[image: there is no content]([image: there is no content])d[image: there is no content]=∫G∑i=13vi([image: there is no content])vi([image: there is no content])d[image: there is no content]<∞








and equip [image: there is no content](G,[image: there is no content]) with [image: there is no content] defined by:


([image: there is no content],y):=∫G[image: there is no content]([image: there is no content])·y([image: there is no content])d[image: there is no content]=∫G∑i=13vi([image: there is no content])yi([image: there is no content])d[image: there is no content]



(2)




for [image: there is no content],y∈[image: there is no content](G,[image: there is no content]).
If we equip [image: there is no content](G,[image: there is no content]) with [image: there is no content] defined by Equation (2), it is a Hilbert space; cf. [6].

Definition 2 (Hopf functional, Hopf functional differential equation). Let y∈[image: there is no content](G,[image: there is no content]), and let [image: there is no content] be the [image: there is no content] scalar product defined by Equation (2). The characteristic functional or Hopf functional is defined by:



ϕ([y([image: there is no content])],t):=ei([image: there is no content],y)=∫[image: there is no content](G,[image: there is no content])ei([image: there is no content],y)[image: there is no content]([[image: there is no content]([image: there is no content])])d[[image: there is no content]([image: there is no content])]



(3)




Instead of dealing with an infinite dimensional chain of differential equations, the Hopf approach works with one scalar functional differential equation (FDE).

An FDE is a generalization of a partial differential equation (PDE). A PDE becomes an FDE if the number of independent variables tends to infinity. Precisely:

Definition 3 (Functional, functional derivative, functional differential equation).




	Let [image: there is no content] be a function space. A functional is a mapping:



ϕ:[image: there is no content]⟶[image: there is no content]









	Let ϕ=ϕ([y([image: there is no content])]) be a functional. We define the functional derivative of ϕ as the limit:



∂ϕ([y([image: there is no content])])∂yα(z)dz:=limh→0ϕ([y([image: there is no content])+h[image: there is no content]δ([image: there is no content]−z)])−ϕ([y([image: there is no content])])h,α=1,2,3








Here, [image: there is no content] denotes the α-th unit vector and δ denotes the Dirac delta distribution. (In fact, this is a corollary of the definition of the Gâteaux derivative; cf. [7]. As the presented formula is more suitable for calculations, we use it as definition.) We denote the functional derivative by:



[image: there is no content]









	Let ϕ=ϕ([y([image: there is no content]′)],[image: there is no content],t) be a functional. A functional differential equation (FDE) of order q is an equation [image: there is no content] where F is a functional relating ϕ and all its derivatives up to order q, which can include partial derivatives with respect to t, partial derivatives with respect to x and functional derivatives with respect to each yα([image: there is no content]′), α = 1,2,3:



F([y([image: there is no content]′)],[image: there is no content],t,ϕ,ϕ1,ϕ2,…,ϕq)=0



(4)







In an FDE, the finite set [image: there is no content] is replaced by an infinite set [y([image: there is no content]′)]∈[image: there is no content] with a continuous parameter [image: there is no content]′ representing the continuum analogon of the discrete counting parameter [image: there is no content]. Hence, the dependent variables are functionals, as they depend on functions.

It is important to note that we may obtain all multi-point correlations by differentiating ϕ and evaluating the derivatives at [image: there is no content] via:



Uα1t([image: there is no content]1)…Uαnt([image: there is no content]n)=1inϕ,yαn([image: there is no content]n)…yα1([image: there is no content]1)|[image: there is no content]



(5)




Consequently, the Hopf functional ϕ provides the full statistical description of velocity field [image: there is no content], since all multi-point correlations can be expressed in terms of ϕ and its functional derivatives.

In order to solve FDEs containing the Hopf functional ϕ, so-called Hopf FDEs, we use an extension of the classical Lie symmetry analysis. The extension is done in [8], where it is shown how the Lie symmetry analysis is performed with FDEs. The extended Lie symmetry analysis is applied to the Hopf formulation of the viscous and inviscid Burgers equation in [9].

In order to circumvent the partial derivatives [image: there is no content] appearing both in the viscous and in the inviscid Hopf–Burgers FDE, in [8,9], the extended Lie symmetry analysis is performed in Fourier space by considering the Fourier transform of the Hopf–Burgers FDE. In the Fourier space, derivatives with respect to x become multipliers with [image: there is no content]. Hence, in [8,9], k was not transformed separately, but was treated as a continuous index. In [9], we also derived invariant solutions for the Hopf equations; however, due to the restriction of the method (no transformation of k), the solutions contained unknown functions of k governed by an infinite chain of equations. We note here that the Hopf–Burgers functional was also considered in [10,11], where, using a numerical integration, scaling in k and the decay of energy was calculated. As far as symmetry methods are concerned, interesting aspects of energy scaling for turbulence were discovered in [12] based on self-similar solutions of the Leith model.

In this paper, the extended Lie symmetry analysis is performed on the viscous Hopf–Burgers FDE in the physical space. Hence, we have to deal with partial derivatives with respect to x. There are several approaches for how to do that. The approaches are introduced in Section 3.1.


1.2.1. Viscous Hopf–Burgers Functional Integro-Differential Equation

Our primary long-term goal is to investigate the Hopf functional of turbulent velocity, i.e., the Hopf–Navier–Stokes FDE. For the sake of convenience, we presently restrict ourselves to the one-dimensional case, i.e., replace [image: there is no content] by [image: there is no content]. Instead of the incompressible Navier–Stokes equations, we use the viscous Burgers equation to derive the so-called viscous Hopf–Burgers FDE. We assume that y,[image: there is no content]∈[image: there is no content](G,[image: there is no content]) with



y=y(x),[image: there is no content]=[image: there is no content](x)=U(x,t),








and that [image: there is no content] fulfills the viscous Burgers equation:


∂[image: there is no content]∂t+[image: there is no content]∂[image: there is no content]∂x=ν∂2[image: there is no content]∂x2








which can equivalently by written as


∂[image: there is no content]∂t+12∂([image: there is no content])2∂x=ν∂2[image: there is no content]∂x2








By simple rescaling, we may eliminate the factor [image: there is no content]. We call the following equation the viscous Burgers equation:



∂[image: there is no content]∂t+∂([image: there is no content])2∂x=ν∂2[image: there is no content]∂x2



(6)




We differentiate the Hopf functional (3) with respect to t to get:



[image: there is no content]([y(x)],t)=∂∂tei([image: there is no content],y)=i∂[image: there is no content]∂t,yei([image: there is no content],y)=i−∂([image: there is no content])2∂x+ν∂2[image: there is no content]∂x2ei([image: there is no content],y)



(7)




where Equation (6) was inserted in order to eliminate ∂[image: there is no content]/∂t. Using the definition of the characteristic functional (1), the following relations can be calculated:


−∂([image: there is no content])2∂xei([image: there is no content],y)=∂∂xδ2ϕδy(x)δy(x)=[image: there is no content],










iν∂2[image: there is no content]∂x2ei([image: there is no content],y)=ν∂∂x2δϕδy(x)=ν[image: there is no content]








After introducing the above formulas into Equation (7), we finally obtain the viscous Hopf–Burgers FDE:



[image: there is no content]([y(x)],t)=∫Gy(x)i[image: there is no content]+ν[image: there is no content]dx



(8)




with y∈[image: there is no content](G,[image: there is no content]). Since ϕ is part of the integrand, the viscous Hopf–Burgers FDE is an integro-differential equation.
In the following, we want to perform the extended Lie symmetry analysis on the viscous Hopf–Burgers FDE. Before doing that, we review the extended Lie symmetry analysis developed in [8,9] and advance it for our purposes.

This paper is structured as follows: In the second section, we present an extension of the classical Lie symmetry analysis based on the two papers [8,9], which allows us to analyze functional equations in physical space. The third section presents the main part of the paper: we apply the extended Lie symmetry analysis to the viscous Hopf–Burgers functional integro-differential equation. First, we present three different approaches to perform the extended Lie symmetry analysis on the viscous Hopf–Burgers FDE. Subsequently, we solve the system of equations for the infinitesimals. Then, we discuss symmetry breaking restrictions and indicate physically-relevant symmetries. At the end of the third section, we compare the symmetries of the viscous Hopf–Burgers FDE with the symmetries of the viscous Burgers equation and calculate the associated global transformations. Finally, a conclusion and perspectives are given in the fourth section.





2. Extension of the Lie Symmetry Analysis towards Functional Integro-Differential Equations


2.1. One-Parameter Lie Point Transformations

To start with, we introduce some basic notions; cf. [8]. As in this paper we consider the viscous Hopf–Burgers FDE being of third order, we set [image: there is no content] in Equation (4). Furthermore, as we use the viscous Burgers equation as the underlying equation for fluid motion instead of the incompressible Navier–Stokes equations, we replace [image: there is no content] by [image: there is no content]. The whole theory can easily be extended to higher dimensions and to differential equations of arbitrary order q.

In Lie symmetry analysis, we only consider continuous symmetry transformations depending on a continuous parameter [image: there is no content] where S is a Lie group. We restrict ourselves to so-called one-parameter Lie point transformations; cf. [13]:

Definition 4 (One-parameter Lie point transformations of PDEs). Consider the PDE:



[image: there is no content]








and let:


[image: there is no content]=[image: there is no content](y1,…,[image: there is no content],x1,…,xn,t,ϕ,ϵ),i=1,…,n,[image: there is no content]=[image: there is no content](y1,…,[image: there is no content],x1,…,xn,t,ϕ,ϵ),i=1,…,n,[image: there is no content]=[image: there is no content](y1,…,[image: there is no content],x1,…,xn,t,ϕ,ϵ),[image: there is no content]=[image: there is no content](y1,…,[image: there is no content],x1,…,xn,t,ϕ,ϵ)








be the transformed variables. The transformation is called a one-parameter Lie point transformation if and only if the transformed variables are given by:


[image: there is no content]=yi+ξyi(y1,…,[image: there is no content],x1,…,xn,t,ϕ)ϵ,i=1,…,n,[image: there is no content]=xi+ξxi(y1,…,[image: there is no content],x1,…,xn,t,ϕ)ϵ,i=1,…,n,[image: there is no content]=t+[image: there is no content](y1,…,[image: there is no content],x1,…,xn,t,ϕ)ϵ,[image: there is no content]=ϕ+[image: there is no content](y1,…,[image: there is no content],x1,…,xn,t,ϕ)ϵ








In a one-parameter Lie point transformation, the derivatives of ϕ are not transformed separately. The transformations of [image: there is no content] are calculated as functions of [image: there is no content]. We write:



[image: there is no content],[image: there is no content]=[image: there is no content]+[image: there is no content](y1,…,[image: there is no content],x1,…,xn,t,ϕ,ϕ1)ϵ,[image: there is no content],[image: there is no content]=ϕ,yi+ζ;yi(y1,…,[image: there is no content],x1,…,xn,t,ϕ,ϕ1)ϵ,i=1,…,n,[image: there is no content],[image: there is no content]yj¯=ϕ,yiyj+ζ;yiyj(y1,…,[image: there is no content],x1,…,xn,t,ϕ,ϕ1,ϕ2)ϵ,i,j=1,…,n,⋮








The functions [image: there is no content] are called infinitesimals. Notice that we separate indices of ζ by a semicolon to distinguish them from derivatives. The transformations are expanded in a Taylor series:



[image: there is no content]



(9)




about [image: there is no content]; hence, the infinitesimals are defined by:


ξyi:=∂[image: there is no content]∂ϵ|ϵ=0,ξxi:=∂[image: there is no content]∂ϵ|ϵ=0,[image: there is no content]:=∂[image: there is no content]∂ϵ|ϵ=0,[image: there is no content]:=∂[image: there is no content]∂ϵ|ϵ=0,[image: there is no content]:=∂[image: there is no content],[image: there is no content]∂ϵ|ϵ=0,ζ;yi:=∂[image: there is no content],[image: there is no content]∂ϵ|ϵ=0,….








We extend this definition to FDEs.

Definition 5 (One-parameter Lie point transformations of FDEs). Consider the FDE



[image: there is no content]








and let:


[image: there is no content]=[image: there is no content]([image: there is no content],z,x,t,ϕ,ϵ),x′,z∈G,[image: there is no content]=[image: there is no content]([image: there is no content],x,t,ϕ,ϵ),x′∈G,[image: there is no content]=[image: there is no content]([image: there is no content],x,t,ϕ,ϵ),x′∈G,[image: there is no content]=[image: there is no content]([image: there is no content],x,t,ϕ,ϵ),x′∈G,








be the transformed variables where G⊆[image: there is no content] is an uncountable set. The transformation is called the one-parameter Lie point transformation if and only if the transformed variables are given by:


[image: there is no content]=y(z)dz+ξ[image: there is no content]dz([image: there is no content],z,x,t,ϕ)ϵ,x′,z∈G,[image: there is no content]=x+[image: there is no content]([image: there is no content],x,t,ϕ)ϵ,x′∈G,[image: there is no content]=t+[image: there is no content]([image: there is no content],x,t,ϕ)ϵ,x′∈G,[image: there is no content]=ϕ+[image: there is no content]([image: there is no content],x,t,ϕ)ϵ,x′∈G








Again, the derivatives of ϕ are not transformed separately. The transformations of [image: there is no content] are calculated as functionals depending on [image: there is no content]. We write:



[image: there is no content],[image: there is no content]=[image: there is no content]+[image: there is no content]([image: there is no content],x,t,ϕ,ϕ1)ϵ,x′∈G,[image: there is no content],y(z1)¯=ϕ,y(z1)+ζ;y(z1)([image: there is no content],z1,x,t,ϕ,ϕ1)ϵ,x′,z1∈G,[image: there is no content],y(z2)¯y(z1)¯=ϕ,y(z2)y(z1)+ζ;y(z2)y(z1)([image: there is no content],z1,z2,x,t,ϕ,ϕ1,ϕ2)ϵ,x′,z1,z2∈G,⋮








The functionals [image: there is no content] are called infinitesimals. Again, we separate indices of ζ by a semicolon to distinguish them from derivatives. The transformations are expanded in a Taylor series (9) about [image: there is no content]; hence, the infinitesimals are defined by:



ξ[image: there is no content]dz:=∂[image: there is no content]∂ϵ|ϵ=0,[image: there is no content]:=∂[image: there is no content]∂ϵ|ϵ=0,[image: there is no content]:=∂[image: there is no content]∂ϵ|ϵ=0,[image: there is no content]:=∂[image: there is no content]∂ϵ|ϵ=0,[image: there is no content]:=∂[image: there is no content],[image: there is no content]∂ϵ|ϵ=0,ζ;y(z):=∂[image: there is no content],[image: there is no content]¯∂ϵ|ϵ=0,….








Comparing the notion of one-parameter Lie point transformations of PDEs and of FDEs, one sees that the considered transformed functions [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] are replaced by functionals [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] depending on the infinite set [image: there is no content]. Notice that we do not transform [image: there is no content], but [image: there is no content], as



∫Gy(z)dzisthecontinuumanalogonof∑i=1nyi








Following [14], the variable [image: there is no content] can be represented as a test series:



[image: there is no content]



(10)




where [image: there is no content] is a set of orthogonal functions. In this respect, the transformed variable [image: there is no content] reads:


[image: there is no content]=∑n=1∞[image: there is no content]¯hn(z¯)dz¯



(11)




A possible approach to extending Lie group analysis would be to account for the transformations of [image: there is no content] and z, separately. However, due to the presence of functional derivatives in Equation (8), i.e., derivatives with respect to [image: there is no content], we prefer to consider [image: there is no content] as a variable to be transformed. Still, the decomposition (10) will be taken into account in the definitions of infinitesimals in Section 2.3.

An additional option would be to transform [image: there is no content] instead of [image: there is no content]. Then, one has to take into consideration the transformation of [image: there is no content]. There are two ways that this could be done (cf. Section 3.1); however, we do not pursue those methods here. In order to be consistent, the infinitesimal associated with the transformation [image: there is no content] is called ξ[image: there is no content]dz instead of ξ[image: there is no content]. The infinitesimal ξ[image: there is no content]dz has to depend explicitly on z, as it defines a new variable for each [image: there is no content]. Analogous considerations hold true for the transformations of the functional derivatives of the dependent variable [image: there is no content],⋯ and their infinitesimals [image: there is no content].



2.2. Differential Operators

In the classical Lie symmetry analysis, the variables (y1,…,[image: there is no content],x1,…,xn,t,ϕ,ϕ1,ϕ2,ϕ3) are treated as independent variables. Hence, in the extended Lie symmetry analysis, we treat the variables ([image: there is no content],x,t,ϕ,ϕ1,ϕ2,ϕ3) as independent variables. The Hopf functional ϕ does not depend explicitly on x; hence, all derivatives of ϕ with respect to x vanish, except when ϕ is derived first with respect to [image: there is no content] and then with respect to x. Neglecting the vanishing summands and considering the non-commutativity:



[image: there is no content]








we can define:
Definition 6 (Differential operators for Hopf FDEs). For a Hopf FDE of third order:



F([image: there is no content],x,t,ϕ,ϕ1,ϕ2,ϕ3)=0








we introduce:


DDt=∂∂t+[image: there is no content]∂∂ϕ+ϕ,tt∂∂[image: there is no content]+∫Gϕ,ty(x′)dx′∂∂ϕ,y(x′)dx′+ϕ,ttt∂∂ϕ,tt+∫Gϕ,tty(x′)dx′∂∂ϕ,ty(x′)dx′+∫Gϕ,txy(x′)dx′∂∂ϕ,xy(x′)dx′+∫G∫Gϕ,ty(x′′)y(x′)dx′dx′′∂∂ϕ,y(x′′)y(x′)dx′dx′′,DDx=∂∂x+∫Gϕ,xy(x′)dx′∂∂ϕ,y(x′)dx′+∫Gϕ,xty(x′)dx′∂∂ϕ,ty(x′)dx′+∫Gϕ,xxy(x′)dx′∂∂ϕ,xy(x′)dx′+∫G∫Gϕ,xy(x′′)y(x′)dx′dx′′∂∂ϕ,y(x′′)y(x′)dx′dx′′,DDy(z)dz=∂∂y(z)dz+ϕ,y(z)∂∂ϕ+ϕ,y(z)t∂∂[image: there is no content]+∫Gϕ,y(z)y(x′)dx′∂∂ϕ,y(x′)dx′+ϕ,y(z)tt∂∂ϕ,tt+∫Gϕ,y(z)ty(x′)dx′∂∂ϕ,ty(x′)dx′+∫Gϕ,y(z)xy(x′)dx′∂∂ϕ,xy(x′)dx′+∫G∫Gϕ,y(z)y(x′′)y(x′)dx′dx′′∂∂ϕ,y(x′′)y(x′)dx′dx′′










2.3. Infinitesimals

By means of the differential operators presented in Definition 6, we can calculate the infinitesimals [image: there is no content] as functionals of the infinitesimals [image: there is no content]. For the viscous Hopf–Burgers FDE, we need the three infinitesimals [image: there is no content], [image: there is no content] and [image: there is no content].




	In order to calculate [image: there is no content], we differentiate the transformed Hopf functional [image: there is no content] with respect to t, taking into account the decomposition (10):



D[image: there is no content]Dt=D[image: there is no content]D[image: there is no content]D[image: there is no content]Dt+D[image: there is no content]D[image: there is no content]D[image: there is no content]Dt+∫G¯D[image: there is no content]D[image: there is no content]∑n=1∞D[image: there is no content]¯Dthn(x′¯)dx′¯



(12)




Hence, in the definition above, we account for the fact that t, x and the infinite set {[image: there is no content]} are the independent variables. Still, as argued in Section 2.1, in the extended Lie group analysis, we transform the continuum variable [image: there is no content]; hence, we will express the last RHS term in Equation (12) in terms of [image: there is no content]. This step is crucial for further successful recovery of the symmetries of the Burgers equation. Using (10) again, the time differential operator applied to [image: there is no content] can be decomposed into:



D[image: there is no content]¯Dt=∑n=1∞D[image: there is no content]¯Dthn([image: there is no content])d[image: there is no content]+∑n=1∞[image: there is no content]Dhn([image: there is no content])d[image: there is no content]Dt



(13)




The second RHS term can be rewritten as:



∑n=1∞D[image: there is no content]¯Dthn([image: there is no content])d[image: there is no content]=D[image: there is no content]¯Dt−D[image: there is no content]¯D[image: there is no content]D[image: there is no content]Dt



(14)




and substituted into Equation (12). Taking into account the fact that [image: there is no content] does not depend explicitly on [image: there is no content], from Equation (12), we obtain:



D[image: there is no content]Dt=D[image: there is no content]D[image: there is no content]D[image: there is no content]Dt+∫G¯D[image: there is no content]D[image: there is no content]D[image: there is no content]Dt−∫G¯D[image: there is no content]D[image: there is no content]Dx′¯DtD[image: there is no content]Dx′¯



(15)




We integrate the last term by parts and assume that ϕ and its derivatives are zero at the boundaries. This step is necessary, as we further want to introduce Lie point transformations (cf. Definition 5) for the quantities in the integral. We finally obtain:



D[image: there is no content]Dt=D[image: there is no content]D[image: there is no content]D[image: there is no content]Dt+∫G¯D[image: there is no content]D[image: there is no content]D[image: there is no content]Dt+∫G¯DDx′¯D[image: there is no content]D[image: there is no content]Dx′¯Dt[image: there is no content]



(16)




With the one-parameter Lie point transformations (cf. Definition 5), Equation (16) reads:



D(ϕ+ϵ[image: there is no content])Dt=([image: there is no content]+ϵ[image: there is no content])D(t+ϵ[image: there is no content])Dt+∫G(ϕ,y(x′)+ϵζ;y(x′))D(y(x′)dx′+ϵξ[image: there is no content]dx′)Dt+∫G(ϕ,x′y(x′)+ϵζ;x′y(x′))D(x′+ϵξx′)Dty(x′)dx′+ϵξ[image: there is no content]dx′



(17)




Evaluating this equation in [image: there is no content], we get



[image: there is no content]








Using this, evaluating in [image: there is no content] leads to:



D[image: there is no content]Dt=[image: there is no content]D[image: there is no content]Dt+[image: there is no content]+∫Gϕ,y(x′)Dξ[image: there is no content]dx′Dt+∫Gϕ,x′y(x′)Dξx′Dty(x′)dx′








which constitutes an equation for [image: there is no content]:



[image: there is no content]=D[image: there is no content]Dt−[image: there is no content]D[image: there is no content]Dt−∫Gϕ,y(x′)Dξ[image: there is no content]dx′Dt−∫Gϕ,x′y(x′)Dξx′Dty(x′)dx′








Since the appearing infinitesimals ξ[image: there is no content]dx′,[image: there is no content],[image: there is no content] do not depend on derivatives of ϕ, we immediately get:



[image: there is no content]=∂[image: there is no content]∂t+[image: there is no content]∂[image: there is no content]∂ϕ−∂[image: there is no content]∂t−([image: there is no content])2∂[image: there is no content]∂ϕ−∫Gϕ,y(x′)∂ξ[image: there is no content]dx′∂t−∫Gϕ,y(x′)[image: there is no content]∂ξ[image: there is no content]dx′∂ϕ










−∫Gϕ,x′y(x′)∂ξx′∂ty(x′)dx′−∫Gϕ,x′y(x′)[image: there is no content]∂ξx′∂ϕy(x′)dx′



(18)





	In order to calculate [image: there is no content], we differentiate [image: there is no content] with respect to [image: there is no content]. An analogouscalculation leads to:



[image: there is no content]=D[image: there is no content]Dy(x)dx−[image: there is no content]D[image: there is no content]Dy(x)dx−∫Gϕ,y(x′)Dξ[image: there is no content]dx′Dy(x)dx−∫ϕ,x′y(x′)Dξx′Dy(x)dxy(x′)dx′=∂[image: there is no content]∂y(x)dx+[image: there is no content]∂[image: there is no content]∂ϕ−[image: there is no content]∂[image: there is no content]∂y(x)dx−[image: there is no content][image: there is no content]∂[image: there is no content]∂ϕ−∫Gϕ,y(x′)∂ξ[image: there is no content]dx′∂y(x)dx−∫Gϕ,y(x′)[image: there is no content]∂ξ[image: there is no content]dx′∂ϕ−∫ϕ,x′y(x′)∂ξx′∂y(x)dxy(x′)dx′−∫ϕ,x′y(x′)[image: there is no content]dξx′∂ϕy(x′)dx′








In order to calculate [image: there is no content], we differentiate [image: there is no content],[image: there is no content]¯ with respect to [image: there is no content]. As [image: there is no content],[image: there is no content]¯ does depend on [image: there is no content], we have:



D[image: there is no content],[image: there is no content]¯Dy(x)dx=D[image: there is no content],[image: there is no content]¯D[image: there is no content]D[image: there is no content]Dy(x)dx+∫G¯D[image: there is no content],[image: there is no content]¯D[image: there is no content]D[image: there is no content]Dy(x)dx−D[image: there is no content]Dx′¯Dx′¯Dy(x)dx+D[image: there is no content],[image: there is no content]¯D[image: there is no content]D[image: there is no content]Dy(x)dx=[image: there is no content],[image: there is no content][image: there is no content]¯D[image: there is no content]Dy(x)dx+∫G¯[image: there is no content],[image: there is no content]¯[image: there is no content]¯D[image: there is no content]Dy(x)dx+∫G[image: there is no content],x′¯[image: there is no content]¯[image: there is no content]¯Dx′¯Dy(x)dx[image: there is no content]+[image: there is no content],[image: there is no content][image: there is no content]¯D[image: there is no content]Dy(x)dx








If we insert the one-parameter Lie point transformations (cf. Definition 5), we get:



[image: there is no content]=D[image: there is no content]Dy(x)dx−[image: there is no content]D[image: there is no content]Dy(x)dx−∫Gϕ,y(x′)y(x)Dξ[image: there is no content]dx′Dy(x)dx−[image: there is no content]D[image: there is no content]Dy(x)dx−∫Gϕ,x′y(x′)y(x)Dξx′Dy(x)dxy(x′)dx′








In order to get [image: there is no content], we differentiate [image: there is no content],[image: there is no content]¯[image: there is no content]¯ with respect to x:



D[image: there is no content],[image: there is no content]¯[image: there is no content]¯Dx=D[image: there is no content],[image: there is no content]¯[image: there is no content]¯D[image: there is no content]D[image: there is no content]Dx+∫G¯D[image: there is no content],[image: there is no content]¯[image: there is no content]¯D[image: there is no content]D[image: there is no content]Dx+D[image: there is no content],[image: there is no content]¯[image: there is no content]¯D[image: there is no content]D[image: there is no content]Dx=[image: there is no content],[image: there is no content][image: there is no content]¯[image: there is no content]¯D[image: there is no content]Dx+∫G¯[image: there is no content],[image: there is no content]¯[image: there is no content]¯[image: there is no content]¯D[image: there is no content]Dx+[image: there is no content],[image: there is no content][image: there is no content]¯[image: there is no content]¯D[image: there is no content]Dx








If we insert the one-parameter Lie point transformations (cf. Definition 5), we get:



[image: there is no content]=D[image: there is no content]Dx−ϕ,ty(x)y(x)D[image: there is no content]Dx−∫Gϕ,y(x′)y(x)y(x)Dξ[image: there is no content]dx′Dx−[image: there is no content]D[image: there is no content]Dx



(19)





	In order to calculate [image: there is no content], we differentiate [image: there is no content],[image: there is no content]¯ with respect to x. We have:



D[image: there is no content],[image: there is no content]¯Dx=D[image: there is no content],[image: there is no content]¯D[image: there is no content]D[image: there is no content]Dx+∫G¯D[image: there is no content],[image: there is no content]¯D[image: there is no content]D[image: there is no content]Dx+D[image: there is no content],[image: there is no content]¯D[image: there is no content]D[image: there is no content]Dx=[image: there is no content],[image: there is no content][image: there is no content]¯D[image: there is no content]Dx+∫G¯[image: there is no content],[image: there is no content]¯[image: there is no content]¯D[image: there is no content]Dx+[image: there is no content],[image: there is no content][image: there is no content]¯D[image: there is no content]Dx








If we insert the one-parameter Lie point transformations (cf. Definition 5), we get:



[image: there is no content]=D[image: there is no content]Dx−[image: there is no content]D[image: there is no content]Dx−∫Gϕ,y(x′)y(x)Dξ[image: there is no content]dx′Dx−[image: there is no content]D[image: there is no content]Dx








In order to get [image: there is no content], we differentiate [image: there is no content],[image: there is no content][image: there is no content]¯ with respect to x:



D[image: there is no content],[image: there is no content][image: there is no content]¯Dx=D[image: there is no content],[image: there is no content][image: there is no content]¯D[image: there is no content]D[image: there is no content]Dx+∫G¯D[image: there is no content],[image: there is no content][image: there is no content]¯D[image: there is no content]D[image: there is no content]Dx+D[image: there is no content],[image: there is no content][image: there is no content]¯D[image: there is no content]D[image: there is no content]Dx=[image: there is no content],[image: there is no content][image: there is no content][image: there is no content]¯D[image: there is no content]Dx+∫G¯[image: there is no content],[image: there is no content]¯[image: there is no content][image: there is no content]¯D[image: there is no content]Dx+[image: there is no content],[image: there is no content][image: there is no content][image: there is no content]¯D[image: there is no content]Dx








If we insert the one-parameter Lie point transformations (cf. Definition 5), we get:



[image: there is no content]=D[image: there is no content]Dx−[image: there is no content]D[image: there is no content]Dx−∫Gϕ,y(x′)xy(x)Dξ[image: there is no content]dx′Dx−[image: there is no content]D[image: there is no content]Dx



(20)







Applying the differential operators introduced in Definition 6, one can represent the infinitesimals (19) and (20) as sums of partial and functional derivatives of ξ[image: there is no content]dz, [image: there is no content], [image: there is no content], [image: there is no content]; cf. Appendix.



2.4. Infinitesimal Generator and the Determining System of Equations for the Infinitesimals

Let F([[image: there is no content]¯],[image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content]1,[image: there is no content]2,[image: there is no content]3)=0 be a transformed FDE. Consider F as a function depending on the group parameter ϵ, and expand F in a Taylor series (9) about [image: there is no content], i.e., consider the equation:



[image: there is no content]



(21)




We calculate:



∂F∂ϵ|ϵ=0=[∫Gξ[image: there is no content]dx′∂∂y(x′)dx′+[image: there is no content]∂∂x+[image: there is no content]∂∂t+[image: there is no content]∂∂ϕ+[image: there is no content]∂∂[image: there is no content]+∫Gζ;y(x′)dx′∂∂ϕ,y(x′)dx′+…]F








and define:
Definition 7 (Infinitesimal generator and its prolongation).


	The differential operator:



X:=∫Gξ[image: there is no content]dx′∂∂y(x′)dx′+[image: there is no content]∂∂x+[image: there is no content]∂∂t+[image: there is no content]∂∂ϕ








is called the infinitesimal generator or simply the generator.


	The differential operator:



[image: there is no content]:=X+[image: there is no content]∂∂[image: there is no content]+∫Gζ;y(x′)dx′δδϕ,y(x′)+ζ;tt∂∂ϕ,tt+∫Gζ;ty(x′)dx′δδϕ,ty(x′)+∫Gζ;xy(x′)dx′δδϕ,xy(x′)+∫G∫Gζ;y(x′′)y(x′)dx′dx′′δδϕ,y(x′′)y(x′)+ζ;ttt∂∂ϕ,ttt+∫Gζ;tty(x′)dx′δδϕ,tty(x′)+∫G∫Gζ;ty(x′′)y(x′)dx′dx′′δδϕ,ty(x′′)y(x′)+∫Gζ;txy(x′)dx′δδϕ,txy(x′)+∫G∫G∫Gζ;y(x′′′)y(x′′)y(x′)dx′dx′′dx′′′δδϕ,y(x′′′)y(x′′)y(x′)+∫G∫Gζ;y(x′′)xy(x′)dx′dx′′δδϕ,y(x′′)xy(x′)+∫G∫Gζ;xy(x′′)y(x′)dx′dx′′δδϕ,xy(x′′)y(x′)+∫Gζ;xxy(x′)dx′δδϕ,xxy(x′)








is called the prolongation of X.




Using this definition and employing [image: there is no content], Equation (21) reads:



[image: there is no content]








This equation is fulfilled in [image: there is no content] if and only if:



[image: there is no content]F[image: there is no content]=0



(22)




Equation (22) constitutes an overdetermined system of linear FDEs for the infinitesimals ξ[image: there is no content]dz, [image: there is no content], [image: there is no content], [image: there is no content]. In order to formulate the system of equations, one has to insert the necessary infinitesimals, calculated in Section 2.3, into Equation (22). Since ξ[image: there is no content]dz, [image: there is no content], [image: there is no content], [image: there is no content] do not depend on the derivatives of ϕ, all coefficients of all appearing derivatives of ϕ have to vanish, which leads to a system of linear FDEs.



2.5. Global Transformations

Knowing [image: there is no content], one obtains the global transformations using Lie’s first theorem, cf. [13]:

Theorem 8 (Lie’s first theorem). The global transformation can be obtained by solving the following initial value problems:



∂[image: there is no content]∂ϵ=ξ[image: there is no content]¯[image: there is no content]¯,∂[image: there is no content]∂ϵ=ξ[image: there is no content],∂[image: there is no content]∂ϵ=ξ[image: there is no content],∂[image: there is no content]∂ϵ=η[image: there is no content]








with the initial values:


[image: there is no content](ϵ=0)=y(z)dz,[image: there is no content](ϵ=0)=x,[image: there is no content](ϵ=0)=t,[image: there is no content](ϵ=0)=ϕ











3. Lie Symmetry Analysis of the Viscous Hopf–Burgers Functional Integro-Differential Equation


3.1. Three Different Approaches to Lie Symmetry Analysis

As already mentioned in the Introduction, when working in the physical space, the main problem is to deal with the partial derivatives [image: there is no content] and the transformation of the integration variable x. Different Lie symmetry analysis approaches for integro-differential equations have been proposed in the literature; see [15]. In the following, we present three methods that could possibly be applied in our case of functional equations with functional derivatives.


	We transform [image: there is no content] instead of [image: there is no content] and have to take into account the transformation of the integral term appearing in Hopf FDEs. In [13,16], Ibragimov suggests to use the fact that X given by Definition 7 is equivalent to a canonical Lie–Bäcklund operator [image: there is no content], which does not contain the term [image: there is no content]∂/∂x. This implies that [image: there is no content] is very suitable for the symmetry analysis of integro-differential equations. Hence, one might replace X by [image: there is no content] and perform the extended Lie symmetry analysis on functional integro-differential equations.


	We transform [image: there is no content] instead of [image: there is no content] and consider the differential equation as an equation [image: there is no content], where F depends on an integral term I and an integral-free term H, i.e., [image: there is no content]. In order to get the correct determining system of equations for the infinitesimals, the transformation of F is expanded in a two-dimensional Taylor series about H and I. This method is presented by Zawistowski in [17].

In [18], it is shown that using Zawistowski’s approach leads to results being equivalent to the results presented in Ibragimov’s study and that the Lie algebra of symmetry group transformations spanned by the infinitesimal generators containing integral terms is solvable; cf. [17] for the Vlasov–Maxwell integro-differential equation and [18] for the Benney integro-differential equations. Zawistowski’s approach leads to the following determining system of equations for the infinitesimals ξ[image: there is no content]dz, [image: there is no content], [image: there is no content], [image: there is no content]:



[image: there is no content]F−∫G∂ξx′∂x′fdx′[image: there is no content]=0








One has to pay attention that the analogous formula for the transformed integral should be used during the calculation of [image: there is no content], [image: there is no content] and [image: there is no content] (cf. Section 2.3) in order to determine the generator [image: there is no content] given by Definition 7, which, in our particular case of the equation with functional derivatives, makes this approach more complicated.


	We transform [image: there is no content] instead of [image: there is no content] and introduce a transformation of x. Then, we perform the extended Lie symmetry analysis on the viscous Hopf–Burgers FDE (8). Presently, this approach is successfully applied to (8), and we rediscover all known symmetries of the usual viscous Burgers Equation (6). The results and a discussion comparing the symmetries of the viscous Hopf–Burgers FDE and the symmetries of the viscous Burgers equation are presented in the following subsections.






3.2. Local Transformations of the Viscous Hopf–Burgers Functional Integro-Differential Equation


3.2.1. Determining the System of Equations for the Infinitesimals

In this section, we perform the extended Lie symmetry analysis on the viscous Hopf–Burgers FDE:



F=[image: there is no content]−∫Gy(x)i[image: there is no content]+ν[image: there is no content]dx=0








We consider the one-parameter Lie point transformations given by Definition 5.

In order to calculate the determining system of equations for the infinitesimals ξ[image: there is no content]dz, [image: there is no content], [image: there is no content], [image: there is no content], we consider Equation (22):



[image: there is no content]F[image: there is no content]=0








The generator [image: there is no content] is given by Definition 7. The contributing summands of [image: there is no content] are given by:



[image: there is no content]=∫Gξ[image: there is no content]dx′∂∂y(x′)dx′+[image: there is no content]∂∂[image: there is no content]+∫G∫Gζ;xy(x′′)y(x′)dx′dx′′∂∂ϕ,xy(x′′)y(x′)dx′dx′′+∫Gζ;xxy(x′)dx′∂∂ϕ,xxy(x′)dx′








Applying [image: there is no content] to F, we get the equation:



[image: there is no content]F=[image: there is no content]−∫Gξ[image: there is no content]dxi[image: there is no content]+ν[image: there is no content]−∫Gy(x)i[image: there is no content]dx+ν[image: there is no content]dx=0



(23)




We insert the infinitesimals [image: there is no content] (cf. Equation (18)), [image: there is no content] and [image: there is no content] (cf. Appendix) and employ [image: there is no content] in order to eliminate [image: there is no content].

In the extended Lie symmetry analysis, we deal with different types of derivatives. Inside the integral, the functional derivatives [image: there is no content] are present. It was argued that these derivatives correspond to partial derivatives [image: there is no content] in the discrete case; cf. Section 2.1. Additionally, in (8), partial derivatives with respect to x are present [image: there is no content] and [image: there is no content], which do not have a correspondence in the discrete case. Furthermore, different types of mixed functional-partial derivatives are present in the final formula (23) In the further procedure, in order to obtain proper symmetry transformations, for the mixed derivatives, we had to assume that:


	[image: there is no content] is not independent of [image: there is no content],


	[image: there is no content] is not independent of [image: there is no content],


	[image: there is no content] is not independent of [image: there is no content],




etc. Hence, in the final step, we integrate by parts in order to remove the x-derivatives from the functional derivatives of ϕ. In order to do this, we have to eliminate the boundary integrals. One may choose between the following two options:

	The first option is to demand that G⊆[image: there is no content] is bounded: [image: there is no content] with [image: there is no content]. If this holds true, one has to demand additionally that all appearing terms evaluated at [image: there is no content] are equal to the same terms evaluated at [image: there is no content]. Then, all boundary integrals vanish. As this demands a huge number of restrictions, we do not choose G to be bounded. Instead, we choose the second option.


	The second option is to demand that G⊆[image: there is no content] is not bounded. We restrict ourselves to the case [image: there is no content]. If this holds true, one may impose the condition:



[image: there is no content](x=±∞)=0



(24)




As Equation (5) states:



[image: there is no content]=i[image: there is no content](x)ei([image: there is no content],y)








we have:



[image: there is no content]|x=±∞=0








Additionally, we impose that all functional derivatives of ϕ vanish for [image: there is no content], i.e.,



[image: there is no content]|x=±∞=0,[image: there is no content]|x=±∞=0,ϕ,y(x)y(x)|x=±∞=0,…








Hence, all appearing boundary integrals vanish. For example,



∫Gξ[image: there is no content]dx[image: there is no content]=−∫G∂ξ[image: there is no content]dx∂xϕ,y(x)y(x)+ξ[image: there is no content]ϕ,y(x)y(x)x=−∞x=+∞︸=0











The resulting Equation (23) has the form:



0=A+∫Gϕ,y(z)Bdz+∫G∫G[image: there is no content]Cdzdx+∫G∫G[image: there is no content]ϕ,y(z)Ddzdx+∫G∫G∫Gϕ,y(x)y(a)ϕ,y(z)Edadzdx+∫G∫G([image: there is no content])2ϕ,y(z)[image: there is no content]dzdx+∫G[image: there is no content]Gdx+∫G∫G([image: there is no content])2ϕ,y(z)y(z)Hdzdx+∫G[image: there is no content][image: there is no content]Idx+∫Gϕ,ty(x)y(x)Jdx+∫G∫Gϕ,y(z)y(x)y(x)Kdzdx+∫G∫Gϕ,y(x)y(x)ϕ,y(z)y(z)Ldzdx








Since the infinitesimals ξ[image: there is no content]dz, [image: there is no content], [image: there is no content], [image: there is no content] do not depend on derivatives of ϕ, all coefficients of all appearing derivatives of ϕ have to vanish:



A=B=C=D=E=[image: there is no content]=G=H=I=J=K=L=0








This leads to the following system of linear FDEs for the infinitesimals ξ[image: there is no content]dz, [image: there is no content], [image: there is no content], [image: there is no content]:


	[image: there is no content] reads:



∂[image: there is no content]∂t−∫Gy(x)i∂3[image: there is no content]∂x∂(y(x)dx)2+ν∂3[image: there is no content]∂x2∂y(x)dxdx=0



(25)





	[image: there is no content] reads:



0=ν∂2∂z2y(z)∂[image: there is no content]∂ϕ−ν∂2∂z2y(z)∂[image: there is no content]∂t−∂ξ[image: there is no content]∂t−ν∂2ξ[image: there is no content]∂z2−2iy(z)∂3[image: there is no content]∂z∂y(z)dz∂ϕ+iν∫G∂2∂z2y(x)y(z)∂3[image: there is no content]∂x∂(y(x)dx)2dx+i∫Gy(x)∂3ξ[image: there is no content]∂x∂(y(x)dx)2dx−i∂∂zy(z)∂2[image: there is no content]∂z∂y(z)dz+2i∂∂zy(z)∂2[image: there is no content]∂y(z)dz∂ϕ−i∫G∂∂xy(x)∂2ξ[image: there is no content]∂(y(x)dx)2dx+i∂2∂z2y(z)∂[image: there is no content]∂y(z)dz+ν2∫G∂2∂z2y(x)y(z)∂3[image: there is no content]∂x2∂y(x)dxdx+ν∫Gy(x)∂3ξ[image: there is no content]∂x2∂y(x)dxdx−2ν∫G∂∂xy(x)∂2ξ[image: there is no content]∂x∂y(x)dxdx−ν∂∂zy(z)∂2[image: there is no content]∂z2−ν∂2∂z2y(z)∂[image: there is no content]∂ϕ+ν∫G∂2∂x2y(x)∂ξ[image: there is no content]∂y(x)dxdx+2ν∂2∂z2y(z)∂[image: there is no content]∂z+[image: there is no content](z)∂[image: there is no content]∂t+y(z)∂2[image: there is no content]∂x∂t+i∂2∂z2y(z)∂[image: there is no content]∂y(z)dz−i∂∂zy(z)∂2[image: there is no content]∂z∂y(z)dz+i∫G∂2∂z∂xy(z)y(x)∂2[image: there is no content]∂y(x)dx∂y(x)dxdx−i∫Gy(x)∂∂zy(z)∂3[image: there is no content]∂x(∂y(x)dx)2dx−ν∫G[image: there is no content](z)y(x)∂3[image: there is no content]∂x2∂y(x)dxdx−ν∫Gy(z)y(x)∂4[image: there is no content]∂z∂x2∂y(x)dxdx−ν∫G∂3∂x2∂zy(z)y(x)δ[image: there is no content]δy(x)dx+2ν∫G∂2∂x∂zy(z)y(x)∂[image: there is no content]∂x∂y(x)dxdx



(26)





	[image: there is no content] reads:



0=−i∂∂xy(x)∂[image: there is no content]∂ϕδ(x−z)+i∂∂xy(x)∂[image: there is no content]∂tδ(x−z)+i∂ξ[image: there is no content]∂xδ(x−z)+∫G∂∂zy(a)y(z)∂3[image: there is no content]∂a∂(y(a)da)2δ(x−z)da+2iy(x)∂2ξ[image: there is no content]∂x∂y(x)dx−2i∂∂xy(x)∂ξ[image: there is no content]∂y(x)dx+i∂∂xy(x)∂[image: there is no content]∂ϕδ(x−z)−i∂∂xy(x)∂[image: there is no content]∂xδ(x−z)−iν∫G∂∂zy(a)y(z)∂3[image: there is no content]∂a2∂y(a)daδ(x−z)da+νy(x)∂3ξ[image: there is no content]∂x2∂ϕ+νy(x)∂2ξ[image: there is no content]∂x2−ν∂∂xy(x)∂ξ[image: there is no content]∂x−ν∂∂xy(x)∂ξ[image: there is no content]∂x−2iy(x)∂∂zy(z)∂2[image: there is no content]∂x∂y(x)dx+2i∂2∂x∂zy(x)y(z)∂[image: there is no content]∂y(x)dx



(27)





	[image: there is no content] reads:



0=−ν2∂4∂z2∂x2y(x)y(z)∂[image: there is no content]∂ϕ−ν∂2∂x2y(x)∂ξ[image: there is no content]∂ϕ+2iν∂2∂z2y(x)y(z)∂3[image: there is no content]∂x∂y(x)dx∂ϕ+2iy(x)∂3ξ[image: there is no content]∂x∂y(x)dx∂ϕ−i∂∂xy(x)∂2[image: there is no content]∂x∂ϕδ(x−z)−2iν∂3∂z2∂xy(x)y(z)∂2[image: there is no content]∂y(x)dx∂ϕ−2i∂∂xy(x)∂2ξ[image: there is no content]∂y(x)dx∂ϕδ(x−z)−2i∂∂xy(x)∂2ξ[image: there is no content]∂y(x)dx∂ϕ+2i∂∂xy(x)∂2[image: there is no content]∂ϕ2δ(x−z)+i∂2∂x2y(x)∂[image: there is no content]∂ϕδ(x−z)+i∂2∂x2y(x)∂[image: there is no content]∂ϕδ(x−z)−ν∂∂xy(x)∂2ξ[image: there is no content]∂x∂ϕ−2ν∂∂xy(x)∂2ξ[image: there is no content]∂x∂ϕ−ν∂∂xy(x)∂2ξ[image: there is no content]∂x∂ϕ+2ν∂2∂x2y(x)∂ξ[image: there is no content]∂ϕ+ν2∂4∂z2∂x2y(x)y(z)∂[image: there is no content]∂ϕ+ν∂2∂x2y(x)∂ξ[image: there is no content]∂ϕ+ν∂2∂x2y(x)∂ξ[image: there is no content]∂ϕ−2ν2∂3∂z2∂xy(x)y(z)∂2[image: there is no content]∂x∂ϕ+ν2∂2∂z2y(x)y(z)∂3[image: there is no content]∂x2∂ϕ+i∂2∂x2y(x)∂[image: there is no content]∂ϕδ(x−z)+i∂2∂x∂zy(x)∂[image: there is no content]∂ϕδ(x−z)−i∂∂xy(x)∂2[image: there is no content]∂ϕ∂xδ(x−z)−i∂∂zy(x)y(z)∂3[image: there is no content]∂x∂ϕδy(x)+2i∂2∂z∂xy(x)y(z)∂2[image: there is no content]∂ϕδy(x)



(28)





	[image: there is no content] reads:



0=2iν∂3∂z2∂xy(x)y(z)∂[image: there is no content]∂ϕδ(x−a)+i∂∂xy(x)∂ξ[image: there is no content]∂ϕδ(x−a)+2∂∂xy(x)y(z)∂3[image: there is no content]∂z∂y(z)dz∂ϕδ(x−a)+2iy(z)∂2ξ[image: there is no content]∂z∂ϕδ(a−z)+iy(x)∂2ξ[image: there is no content]∂x∂ϕδ(x−a)−2∂2∂z∂xy(x)y(z)∂2[image: there is no content]∂y(z)dz∂ϕδ(x−a)−2i∂∂zy(z)∂ξ[image: there is no content]∂ϕδ(a−z)−i∂∂xy(x)∂ξ[image: there is no content]∂ϕδ(x−a)−2i∂∂zy(z)∂ξ[image: there is no content]∂ϕδ(a−z)−iν∂3∂z2∂xy(x)y(z)∂[image: there is no content]∂ϕδ(x−a)−i∂∂xy(x)∂ξ[image: there is no content]∂ϕδ(x−a)−iν∂3∂z2∂xy(x)y(z)∂[image: there is no content]∂ϕδ(x−a)+iν∂2∂z2y(x)y(z)∂2[image: there is no content]∂x∂ϕδ(x−a)+2iν∂2∂z∂xy(x)y(z)∂2[image: there is no content]∂z∂ϕδ(x−a)−2iν∂∂xy(x)y(z)∂3[image: there is no content]∂z2∂ϕδ(x−a)+i[image: there is no content](z)[image: there is no content](x)δ(a−z)∂[image: there is no content]∂ϕ



(29)





	[image: there is no content]=0 reads:



0=iy(x)∂3ξ[image: there is no content]∂x∂ϕ2−2iν∂3∂z2∂xy(x)y(z)∂2[image: there is no content]∂ϕ2−i∂∂xy(x)∂2ξ[image: there is no content]∂ϕ2−2i∂∂xy(x)∂2ξ[image: there is no content]∂ϕ2+iν∂2∂z2y(x)y(z)∂3[image: there is no content]∂x∂ϕ2



(30)





	[image: there is no content] reads:



0=2iy(x)∂2[image: there is no content]∂x∂y(x)dx−2i∂∂xy(x)∂[image: there is no content]∂y(x)dx−ν∂∂xy(x)∂[image: there is no content]∂x+νy(x)∂2[image: there is no content]∂x2−ν∂∂xy(x)∂[image: there is no content]∂x



(31)





	[image: there is no content] reads



0=−2∂2∂z∂xy(x)y(z)∂2[image: there is no content]∂ϕ2+∂∂zy(x)y(z)∂3[image: there is no content]∂x∂ϕ2



(32)





	[image: there is no content] reads:



0=−2i∂∂xy(x)∂[image: there is no content]∂ϕ−2i∂∂xy(x)∂[image: there is no content]∂ϕ+2iy(x)∂2[image: there is no content]∂x∂ϕ



(33)





	[image: there is no content] reads:



0=iy(x)∂[image: there is no content]∂x



(34)





	[image: there is no content] reads:



0=iy(x)∂ξ[image: there is no content]∂x



(35)





	[image: there is no content] reads



0=∂2∂z∂xy(x)y(z)∂[image: there is no content]∂ϕ−∂2∂z∂xy(x)y(z)∂[image: there is no content]∂ϕ−∂∂zy(x)y(z)∂2[image: there is no content]∂x∂ϕ



(36)









3.2.2. Solution of the Determining System of Equations for the Infinitesimals




	First of all, consider Equation (35). Since this equation has to hold for all choices of y∈[image: there is no content](G,[image: there is no content]), the coefficient of y has to vanish, and we get:



∂ξ[image: there is no content]∂x=0



(37)





	Now, consider Equation (34). Similarly, we get:



∂[image: there is no content]∂x=0



(38)





	Then, consider Equation (33). Similarly, we get:



∂[image: there is no content]∂ϕ=0



(39)





	Due to Equation (39), Equations (32) and (36) are fulfilled identically.


	Next, we consider Equation (31). We apply the product rule and make use of Equation (38). We get:



∂[image: there is no content]∂y(x)dx=0



(40)




Considering Equations (38) and (39), we have [image: there is no content]=[image: there is no content](t).


	If we apply Equations (39) and (37) to Equation (29), we obtain:



−4i∂∂zy(z)∂ξ[image: there is no content]∂ϕδ(a−z)−i∂∂xy(x)∂ξ[image: there is no content]∂ϕδ(x−a)+i[image: there is no content](z)[image: there is no content](x)δ(a−z)∂[image: there is no content]∂ϕ=0



(41)




Considering the case [image: there is no content], and taking into account that [image: there is no content] is an arbitrary function, we get:



∂ξ[image: there is no content]∂ϕ=0



(42)




With the above relation, Equation (41) for [image: there is no content] leads to:



[image: there is no content]



(43)




which holds for each [image: there is no content]. If we substitute this result back into Equation (41) and assume [image: there is no content], we find again Formula (42), which has to hold for each [image: there is no content]. As [image: there is no content] is an arbitrary function, Equation (41) is fulfilled for [image: there is no content], as well.


	By virtue of Equations (39) and (42), Equation (30) is fulfilled identically.


	Now, we take a look at the remaining four Equations (25)–(28). We start with Equation (28). Considering Equations (39), (42) and (43), Equation (28) reads:



2i∂∂xy(x)∂2[image: there is no content]∂ϕ2δ(x−z)=0








hence:



∂2[image: there is no content]∂ϕ2=0



(44)




Equation (44) means that there are functionals [image: there is no content], such that:



[image: there is no content]=f([image: there is no content],t)ϕ+g([image: there is no content],t)



(45)




For f, we choose the ansatz:



f([image: there is no content],t)=∫Gf1(x′,t)y(x′)dx′+f2(t)



(46)





	The next equation we solve is Equation (27). If we use Equations (40) and (37) and apply the product rule, Equation (27) reads:



0=i∂∂xy(x)∂[image: there is no content]∂tδ(x−z)+i∂ξ[image: there is no content]∂xδ(x−z)−i∂∂xy(x)∂[image: there is no content]∂xδ(x−z)−2i[image: there is no content](x)∂ξ[image: there is no content]∂y(x)dx+2i[image: there is no content](z)[image: there is no content](x)∂[image: there is no content]∂y(x)dx



(47)




Considering the case [image: there is no content], we get:



[image: there is no content](z)∂[image: there is no content]∂y(x)dx−∂ξ[image: there is no content]∂y(x)dx=0



(48)




Although Equation (48) allows a broader range of solutions, we will restrict our considerations to the case:



∂[image: there is no content]∂y(x)dx=0,∂ξ[image: there is no content]∂y(x)dx=0



(49)




and use the following ansatz’s for ξ[image: there is no content]dz and [image: there is no content]:



ξ[image: there is no content]dz=c(z,t)dz+c0(z,t)y(z)dz,[image: there is no content]=c1(z,t)+c2(z,t)y(z)



(50)




Next, we want to consider Equation (47) without the restriction [image: there is no content]; hence, we integrate Equation (47) with respect to [image: there is no content]. This leads to:



∂∂xy(x)∂[image: there is no content]∂t+∂ξ[image: there is no content]∂x−∂∂xy(x)∂[image: there is no content]∂x−2∫G[image: there is no content](x)∂ξ[image: there is no content]∂y(x)dxdz+2[image: there is no content](x)∫G[image: there is no content](z)∂[image: there is no content]∂y(x)dxdz=0.








Now, we put in Ansatz (50), make use of [image: there is no content]=[image: there is no content](t) and take into consideration that this equation has to hold for all choices of y∈[image: there is no content](G,[image: there is no content]); hence, the coefficients of one, y, [image: there is no content], [image: there is no content], y[image: there is no content], [image: there is no content][image: there is no content] have to vanish:



[image: there is no content]



(51)






[image: there is no content]



(52)






[image: there is no content]



(53)






[image: there is no content]



(54)




After differentiating Equation (53) with respect to x, we find:



[image: there is no content]








which, together with Equation (52), gives:



∂2c1∂x2=0,c0=c0(t)



(55)




Considering this and Equations (51) and (53), Ansatz (50) reads:



[image: there is no content]=c3(t)z+c4(t).



(56)






ξ[image: there is no content]dz=c(t)dz+ξt′(t)−c3(t)y(z)dz,



(57)





	Now, we are ready to deal with Equation (26). If we use Equations (56), (57), (40), (46) and (55), Equation (26) reads:



0=−ν[image: there is no content](z)ξt′(t)−c′(t)−ξt′′(t)−∂2[image: there is no content]∂t∂x(t)y(z)−νξt′(t)−∂[image: there is no content]∂x(t)[image: there is no content](z)−2iy(z)∂f1(z,t)∂z+2i∂∂zy(z)f1(z,t)+ν∫Gy(x)ξt′(t)−∂[image: there is no content]∂z(t)∂2δ(x−z)∂x2dx−2ν∫G∂∂xy(x)ξt′(t)−∂[image: there is no content]∂x(t)∂δ(x−z)∂xdx−ν∂∂zy(z)∂2[image: there is no content]∂z2+ν∫G∂2∂x2y(x)ξt′(t)−∂[image: there is no content]∂x(t)δ(x−z)dx+2ν∂2∂z2y(z)∂[image: there is no content]∂z(t)+[image: there is no content](z)∂[image: there is no content]∂t+y(z)∂2[image: there is no content]∂t∂x



(58)




In this equation, the last two integrals involving the Dirac delta distribution vanish if we assume that:



y(x),[image: there is no content](x)⟶0forx→±∞








As Equation (58) has to hold for all choices of y∈[image: there is no content](G,[image: there is no content]), the coefficients of one, y, [image: there is no content] and [image: there is no content] have to vanish. We evaluate the coefficient of [image: there is no content] in [image: there is no content] and get:



−c′(t)=0⟹c(t)=const.=:c∈[image: there is no content],



(59)






−ξt′′(t)+2∂2[image: there is no content]∂t∂z(t)=0,



(60)






2if1(z,t)+∂[image: there is no content]∂t=0,



(61)






2ν∂[image: there is no content]∂z(t)−νξt′(t)=0



(62)




From the above system, we first use the relation (62), (45), take into account (55) and substitute into Equation (25) to get:



12i∂2[image: there is no content]∂t2∫y(x)dxϕ+∂g∂t−∫Gy(x)i∂3g∂x∂(y(x)dx)2+ν∂3g∂x2∂y(x)dxdx=0



(63)




This equation has to hold for every ϕ; hence, the coefficient of ϕ has to vanish. This, together with (55) furnishes:



∂2[image: there is no content]∂t2=0



(64)




Hence, Equation (63) reads:



∂g∂t−∫Gy(x)i∂3g∂x∂(y(x)dx)2+ν∂3g∂x2∂y(x)dxdx=0



(65)




i.e., g has to fulfill the viscous Hopf–Burgers FDE. This is expected by the classical Lie symmetry analysis, as the considered differential equation is linear; we see that this result is furnished by the extended Lie symmetry analysis, as well. With (64) the system (60–62) has the solution:



[image: there is no content]=2a1t+a2+a4t2,



(66)






[image: there is no content]=a1x+a3+txa4+a5t,



(67)






[image: there is no content]



(68)




where a1,a2,a3,a4,a5,a6∈[image: there is no content]

We insert Equations (67), (66) and (59) into Equation (57) to get:



ξ[image: there is no content]dz=(a1+ta4)y(z)dz+a7dz








with a7∈[image: there is no content].




Theorem 9 (Local transformations of the viscous Hopf–Burgers FDE). Finally, the infinitesimals of the viscous Hopf–Burgers FDE are given by:



[image: there is no content]=2a1t+a2+a4t2,[image: there is no content]=a1x+a3+txa4+a5t,ξ[image: there is no content]dz=(a1+ta4)y(z)dz+a6dz,[image: there is no content]=12i∫(a4x+a5)y(x)dx+a7ϕ+g([image: there is no content],t)








where a1,a2,a3,a4,a5,a6,a7∈[image: there is no content] are arbitrary constants and g is an arbitrary functional, which has to fulfill the viscous Hopf–Burgers FDE.
The associated generators read:



[image: there is no content]=x∂∂x+2t∂∂t+∫Gy(x)dx∂∂y(x)dx,[image: there is no content]=∂∂t,[image: there is no content]=∂∂x,[image: there is no content]=2tx∂∂x+2t2∂∂x+2t∫Gy(x)dx∂∂y(x)dx+i∫xy(x)dxϕ∂∂ϕ,[image: there is no content]=2t∂∂x+i∫y(x)dxϕ∂∂ϕ[image: there is no content]=∫Gdx∂∂y(x)dx,[image: there is no content]=ϕ∂∂ϕ,[image: there is no content]=g([image: there is no content],t)∂∂ϕ










3.3. Symmetry Breaking Restrictions

The Lie symmetry analysis furnishes symmetries of the viscous Hopf–Burgers FDE without respecting physical restrictions. If we incorporate such physical restrictions, we lose some of the calculated symmetries, which the viscous Hopf–Burgers FDE exhibits considered as a mathematical equation detached from any physical conditions. The loss of symmetries by incorporating physical restrictions is called symmetry breaking. This section is devoted to restrictions on ϕ breaking some of the calculated symmetries [image: there is no content].

In [4], Hopf states conditions which have to be fulfilled by Hopf functionals:



ϕ([y([image: there is no content])],t)=ei([image: there is no content],y)=∫[image: there is no content](G,[image: there is no content])ei([image: there is no content],y)[image: there is no content]([[image: there is no content]([image: there is no content])])d[[image: there is no content]([image: there is no content])]








cf. Equation (3). These conditions may be derived from conditions that are imposed on the associated probability density functional [image: there is no content]. The definition of a probability density functional requires [image: there is no content] to fulfill the following two conditions:
Definition 10 (Probability density functional). [image: there is no content]is called a probability density functional if and only if:


	1. [image: there is no content] is real-valued and non-negative, i.e.,



[image: there is no content]([[image: there is no content]([image: there is no content])])∈[image: there is no content]0+



(69)





	2. The integral of [image: there is no content] over the whole domain of integration equals one, i.e.,



∫[image: there is no content](G,[image: there is no content])[image: there is no content]([[image: there is no content]([image: there is no content])])d[[image: there is no content]([image: there is no content])]=1



(70)







As in this paper, we restrict ourselves to the one-dimensional case and make use of the viscous Burgers equation instead of the incompressible Navier–Stokes equations; solutions of the viscous Hopf–Burgers FDE do not have to fulfill any conditions related to incompressibility. There remain three conditions that a solution ϕ of the viscous Hopf–Burgers FDE has to fulfill. We define:

Definition 11 (Physically-relevant solution of the viscous Hopf–Burgers FDE). Let ϕ be a solution of the viscous Hopf–Burgers FDE. ϕ is a physically-relevant solution of the viscous Hopf–Burgers FDE if and only if:


	1. [image: there is no content] where [image: there is no content] denotes the complex conjugate of ϕ,


	2. [image: there is no content]


	3. [image: there is no content]




These three conditions are implied by Restriction (69) and Equation (70).

In Section 3.2.2, we showed that the extended Lie symmetry analysis furnishes eight generators [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content][image: there is no content], as the local transformations depend on seven parameters [image: there is no content] and on a functional g. Especially, the generators [image: there is no content] and [image: there is no content] associated with symmetries of ϕ are independent. As the conditions given by Definition 11 do not influence any symmetries corresponding to transformations of the independent variables ([image: there is no content],x,t), the generators associated with transformations of the independent variables are not changed if we are looking for physically-relevant solutions: We have:



Xiphys=Xi,i∈{1,2,3,4,5}








Thus, it suffices to have a look at [image: there is no content] and [image: there is no content]. If ϕ shall be a physically-relevant solution, [image: there is no content] and [image: there is no content] are not independent. In order to see this, decompose g in:



[image: there is no content]=g([image: there is no content],t)∂∂ϕ








into a constant part [image: there is no content] and a non-constant part [image: there is no content]=[image: there is no content]([image: there is no content],t), i.e.,


g([image: there is no content],t)=g1+[image: there is no content]([image: there is no content],t)








Here, [image: there is no content] is a solution of the viscous Hopf–Burgers FDE; however, it is not a characteristic functional, i.e., the conditions given by Definition 11 must be fulfilled for the transformed functional [image: there is no content], but not for [image: there is no content] separately. We get the decomposition [image: there is no content]=Xg1+X[image: there is no content] with:



Xg1:=g1∂∂ϕ,g1∈C,X[image: there is no content]:=[image: there is no content]([image: there is no content],t)∂∂ϕ








We replace [image: there is no content] and [image: there is no content] by the two generators:



[image: there is no content]+Xg1=(ϕ+g1)∂∂ϕ,f,g1∈C,X[image: there is no content]=[image: there is no content]([image: there is no content],t)∂∂ϕ








and calculate the associated global transformations by solving the Lie initial value problems:


∂[image: there is no content]∂ϵ=[image: there is no content]+g1,∂[image: there is no content]∂ϵ=[image: there is no content]([image: there is no content],t),[image: there is no content](ϵ=0)=ϕ,[image: there is no content](ϵ=0)=ϕ








The solutions are given by:



[image: there is no content]([y(x)],t)=ϕ([y(x)],t)eϵ+(eϵ−1)g1,ϵ∈[image: there is no content],g1∈C



(71)






[image: there is no content]([y(x)],t)=ϕ([y(x)],t)+[image: there is no content]([y(x)],t)ϵ,ϵ∈[image: there is no content]



(72)




In the following, we investigate the consequences of the conditions given by Definition 11 for ϵ∈[image: there is no content] and [image: there is no content] if [image: there is no content] is given by Equation (71).




	As ϕ has to fulfill [image: there is no content], we have:



g1∈[image: there is no content]









	As ϕ has to fulfill [image: there is no content] and [image: there is no content] and since g1∈[image: there is no content], we get:



[image: there is no content]








This shows that [image: there is no content] and [image: there is no content] are not independent.


	As ϕ has to fulfill [image: there is no content], we have:



[image: there is no content]








and the generator [image: there is no content]+Xg1 associated with the physically-relevant symmetry: reads



[image: there is no content]:=([image: there is no content]+Xg1)phys=(ϕ−1)∂∂ϕ











Next, we investigate the consequences of the conditions given by Definition 11 for ϵ∈[image: there is no content] and [image: there is no content]=[image: there is no content]([y(x)],t) if [image: there is no content] is given by Equation (72).




	As ϕ has to fulfill condition [image: there is no content], we have:



g2*([y(x)],t)=[image: there is no content]([−y(x)],t)



(73)





	As ϕ has to fulfill [image: there is no content] and [image: there is no content], using Equation (73), we get:



[image: there is no content](0,t)=0



(74)





	As ϕ has to fulfill condition [image: there is no content], we have:



Re(ϕ)Re([image: there is no content]ϵ)+Im(ϕ)Im([image: there is no content]ϵ)≤0



(75)




Altogether, the generator X[image: there is no content] associated with the physically-relevant symmetry reads:



[image: there is no content]:=X[image: there is no content]phys=[image: there is no content]([image: there is no content],t)∂∂ϕ








where [image: there is no content] fulfills Conditions (73)–(75).




At the end of this section, we want to compare the calculated physically-relevant symmetries with the symmetries of the viscous Burgers equation; cf. [13]. Results are summarised in the Table 1.

Table 1. Comparison between the symmetries of the viscous Hopf–Burgers functional differential equation (FDE) and the viscous Burgers equation.






	Symmetries of the Viscous Hopf–Burgers FDE
	Symmetries of the viscous Burgers Equation





	[image: there is no content],
	[image: there is no content]=2t∂∂t+x∂∂x−U∂∂U,



	[image: there is no content],
	[image: there is no content]=∂∂t,



	[image: there is no content],
	[image: there is no content]=∂∂x,



	[image: there is no content]
	[image: there is no content]=2t2∂∂t+2tx∂∂x+(x−2tU)∂∂U



	[image: there is no content]
	



	[image: there is no content],
	[image: there is no content]=2t∂∂x+∂∂U,



	[image: there is no content],
	



	[image: there is no content],
	



	[image: there is no content]=[image: there is no content]([image: there is no content],t)∂∂ϕ,
	










In Table 1, [image: there is no content] is a solution of the viscous Hopf–Burgers FDE satisfying the three conditions (73)–(75). For [image: there is no content], the group parameter ϵ is restricted to be non-positive, i.e., [image: there is no content]. For all of the other generators, we have ϵ∈[image: there is no content].

We see that we rediscover the analogous forms of the symmetries of the viscous Burgers equation generated by [image: there is no content] (scaling symmetry), [image: there is no content] (time translation), [image: there is no content] (translation of space), [image: there is no content] and [image: there is no content] (Galilei invariance). Global form of transformations are presented in Table 2.


Table 2. Global transformations of the viscous Hopf–Burgers FDE.



	
Generator

	
Global Transformations Associated with the Generator






	
[image: there is no content]

	
[image: there is no content]=te2ϵ,

	
[image: there is no content]=xeϵ,

	
[image: there is no content]¯=y(x)dxeϵ,

	
[image: there is no content]=ϕ,




	
[image: there is no content]

	
[image: there is no content]=t+ϵ,

	
[image: there is no content]=x,

	
[image: there is no content]¯=y(x)dx,

	
[image: there is no content]=ϕ,




	
[image: there is no content]

	
[image: there is no content]=t,

	
[image: there is no content]=x+ϵ,

	
[image: there is no content]¯=y(x)dx,

	
[image: there is no content]=ϕ,




	
[image: there is no content]

	
[image: there is no content]=t1−2tϵ,

	
[image: there is no content]=x(1−2tϵ)

	
[image: there is no content]¯=[image: there is no content]1−2tϵ,

	
[image: there is no content]=ϕexpiϵ1−2tϵ∫Gxy(x)dx,




	
[image: there is no content]

	
[image: there is no content]=t,

	
[image: there is no content]=x+2tϵ,

	
[image: there is no content]¯=y(x)dx

	
[image: there is no content]=ϕexpiϵ∫Gy(x)dx,




	
[image: there is no content]

	
[image: there is no content]=t,

	
[image: there is no content]=x,

	
[image: there is no content]=y(z)dz+ϵdz,

	
[image: there is no content]=ϕ,




	
[image: there is no content]

	
[image: there is no content]=t,

	
[image: there is no content]=x,

	
[image: there is no content]=y(z)dz,

	
[image: there is no content]=ϕeϵ+(1−eϵ),




	
[image: there is no content]

	
[image: there is no content]=t,

	
[image: there is no content]=x,

	
[image: there is no content]=y(z)dz,

	
[image: there is no content]=ϕ+g([image: there is no content],t)ϵ.















4. Conclusions

This paper continues the work of Oberlack and Wacławczyk (cf. [8,9]), where the classical Lie symmetry analysis is extended from partial differential equations to equations with functional derivatives and performed in the Fourier space. Here, we introduce the procedure of applying the extended Lie symmetry analysis in the physical space. This corresponds to the case when both functional derivatives and spatial derivates with respect to the integration variable are present in the functional integro-differential equation. The method is based on the transformation of the product [image: there is no content] appearing in the integral term.

As an example, we consider the viscous Hopf–Burgers functional integro-differential equation, i.e., the functional formulation of the viscous Burgers equation. We perform the extended Lie symmetry analysis on the viscous Hopf–Burgers FDE to find the eight symmetries given in Table 1. Furthermore, we take a brief look at symmetry breaking restrictions and indicate physically-relevant symmetries, i.e., such that the transformed [image: there is no content] fulfills the conditions for the characteristic functional. We see that only statistical symmetries (i.e., symmetries associated with transformations of the dependent variable ϕ) are influenced if we demand [image: there is no content] to be the characteristic functional. The construction of physically-relevant invariant solutions remains a task for future work. Finally, we compare the symmetries of the viscous Hopf–Burgers FDE with the symmetries of the viscous Burgers equation: we are able to rediscover all five symmetries.

The most significant result of this paper consists of demonstrating that the extended Lie symmetry analysis works for the considered functional equation and that it is not only able to rediscover symmetries of the considered equation, but also to furnish new, unknown symmetries associated with the Hopf formulation of the viscous Burgers equation having a purely statistical origin. The presented extension of the Lie symmetry analysis can be a useful tool for the analysis of FDEs with functional derivatives.

Presently, the underlying equation is the viscous Burgers equation. For future work, one might consider the Hopf–Navier–Stokes FDE and perform the extended Lie symmetry analysis on this equation to determine the moments of the solutions of the Navier–Stokes equations (see also [19]). Furthermore, one might choose a more sophisticated ansatz during the solution procedure of the determining system of equations for the infinitesimals. Hopefully, the less restrictive ansatz will lead to further new symmetries.

We believe that the presented machinery is highly relevant to a variety of important functional differential equations and functional integro-differential equations in physics, especially in continuum mechanics. As the numerical treatment of FDEs is difficult because of the high dimensionality and since very little is known about how to treat and solve FDEs analytically, the presented methods may give a chance to treat equations that so far have been put aside because of the missing analytical methods. Additionally, unknown symmetries may be discovered, which would be pleasant, since symmetries illuminate the properties of the physical model equations.
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Appendix


Infinitesimals of the Dependent Variables

For the viscous Hopf–Burgers FDE, we need the three infinitesimals [image: there is no content], [image: there is no content] and [image: there is no content]. [image: there is no content] is given by Equation (18):



[image: there is no content]=∂[image: there is no content]∂t+[image: there is no content]∂[image: there is no content]∂ϕ−∂[image: there is no content]∂t−([image: there is no content])2∂[image: there is no content]∂ϕ−∫Gϕ,y(x′)∂ξ[image: there is no content]dx′∂t−∫Gϕ,y(x′)[image: there is no content]∂ξ[image: there is no content]dx′∂ϕ−∫Gϕ,x′y(x′)∂ξx′∂ty(x′)dx′−∫Gϕ,x′y(x′)[image: there is no content]∂ξx′∂ϕy(x′)dx′.








[image: there is no content] and [image: there is no content] are given below:


[image: there is no content]=∂3[image: there is no content]∂x∂(y(x)dx)2+2[image: there is no content]∂3[image: there is no content]∂x∂y(x)dx∂ϕ−[image: there is no content]∂3[image: there is no content]∂x∂(y(x)dx)2−2[image: there is no content][image: there is no content]∂3[image: there is no content]∂x∂y(x)dx∂ϕ−∫Gϕ,y(z)∂3ξ[image: there is no content]dz∂x∂(y(x)dx)2−2∫Gϕ,y(z)[image: there is no content]∂3ξ[image: there is no content]dz∂x∂y(x)dx∂ϕ+([image: there is no content])2∂3[image: there is no content]∂x∂ϕ2−[image: there is no content]([image: there is no content])2∂3[image: there is no content]∂x∂ϕ2−∫Gϕ,y(z)([image: there is no content])2∂3ξ[image: there is no content]dz∂x∂ϕ2−2[image: there is no content]∂2[image: there is no content]∂x∂y(x)dx−2[image: there is no content][image: there is no content]∂2[image: there is no content]∂x∂ϕ−2∫Gϕ,y(z)y(x)∂2ξ[image: there is no content]dz∂x∂y(x)dx−2∫G[image: there is no content]ϕ,y(z)y(x)∂2ξ[image: there is no content]dz∂x∂ϕ−[image: there is no content]∂2[image: there is no content]∂x∂y(x)dx−[image: there is no content][image: there is no content]∂2[image: there is no content]∂x∂ϕ+ϕ,y(x)y(x)∂2[image: there is no content]∂x∂ϕ−[image: there is no content]ϕ,y(x)y(x)∂2[image: there is no content]∂x∂ϕ−∫Gϕ,y(z)ϕ,y(x)y(x)∂2ξ[image: there is no content]dz∂x∂ϕ+2[image: there is no content]∂2[image: there is no content]∂y(x)dx∂ϕ−2[image: there is no content][image: there is no content]∂2[image: there is no content]∂y(x)dx∂ϕ−∫Gϕ,xy(z)∂2ξ[image: there is no content]dz∂(y(x)dx)2−2∫Gϕ,xy(z)[image: there is no content]∂2ξ[image: there is no content]dz∂y(x)dx∂ϕ−2∫Gϕ,y(z)[image: there is no content]∂2ξ[image: there is no content]dz∂y(x)dx∂ϕ+2[image: there is no content][image: there is no content]∂2[image: there is no content]∂ϕ2−2[image: there is no content][image: there is no content][image: there is no content]∂2[image: there is no content]∂ϕ2−∫Gϕ,xy(z)([image: there is no content])2∂2ξ[image: there is no content]dz∂ϕ2−2∫Gϕ,y(z)[image: there is no content][image: there is no content]∂2ξ[image: there is no content]dz∂ϕ2−2[image: there is no content][image: there is no content]∂[image: there is no content]∂ϕ−2∫G[image: there is no content]ϕ,y(z)y(x)∂ξ[image: there is no content]dz∂ϕ−([image: there is no content])2∂[image: there is no content]∂ϕ−∫Gϕ,xy(z)ϕ,y(x)y(x)∂ξ[image: there is no content]dz∂ϕ−2ϕ,xty(x)∂[image: there is no content]∂y(x)dx−2[image: there is no content]ϕ,xty(x)∂[image: there is no content]∂ϕ−[image: there is no content]∂[image: there is no content]∂y(x)dx−[image: there is no content][image: there is no content]∂[image: there is no content]∂ϕ−2∫Gϕ,xy(z)y(x)∂ξ[image: there is no content]dz∂y(x)dx−2∫G[image: there is no content]ϕ,xy(z)y(x)∂ξ[image: there is no content]dz∂ϕ+[image: there is no content]∂[image: there is no content]∂ϕ−[image: there is no content][image: there is no content]∂[image: there is no content]∂ϕ−∫Gϕ,y(z)[image: there is no content]∂ξ[image: there is no content]dz∂ϕ−ϕ,ty(x)y(x)∂[image: there is no content]∂x−∫Gϕ,y(z)y(x)y(x)∂ξ[image: there is no content]dz∂x−[image: there is no content]∂[image: there is no content]∂x−[image: there is no content]∂[image: there is no content]∂y(x)dx−[image: there is no content]∂2[image: there is no content]∂x∂y(x)dx−[image: there is no content][image: there is no content]∂[image: there is no content]∂ϕ−[image: there is no content][image: there is no content]∂[image: there is no content]∂ϕ−[image: there is no content][image: there is no content]∂2[image: there is no content]∂ϕ∂x−∫G[image: there is no content]ϕ,zy(z)y(z)∂3[image: there is no content]∂x∂ϕ∂y(x)dxdz−2∫Gϕ,zy(x)y(z)y(z)∂2[image: there is no content]∂x∂∂y(x)dxdz−∫Gϕ,zxy(z)y(z)∂2[image: there is no content](∂y(x)dx)2dz−∫Gϕ,zy(z)y(z)∂3[image: there is no content]∂x(∂y(x)dx)2dz−∫G[image: there is no content]ϕ,zy(z)y(z)∂2[image: there is no content]∂ϕ∂y(x)dxdz−∫G[image: there is no content]ϕ,zxy(z)y(z)∂2[image: there is no content]∂ϕ∂y(x)dxdz−2∫Gϕ,zxy(x)y(z)y(z)∂[image: there is no content]∂y(x)dxdz−2∫Gϕ,zxy(x)y(z)[image: there is no content]y(z)∂[image: there is no content]∂ϕdz−2∫Gϕ,zy(x)y(z)[image: there is no content]y(z)∂[image: there is no content]∂ϕdz−∫G[image: there is no content]ϕ,zy(z)y(z)∂[image: there is no content]∂ϕdz










[image: there is no content]=∂3[image: there is no content]∂x2∂y(x)dx−[image: there is no content]∂3[image: there is no content]∂x2∂y(x)dx−∫Gϕ,y(z)∂3ξ[image: there is no content]dz∂x2∂y(x)dx−∫Gϕ,y(z)y(x)∂3ξ[image: there is no content]dz∂x2∂ϕ+[image: there is no content]∂2[image: there is no content]∂x∂ϕ−2[image: there is no content][image: there is no content]∂2[image: there is no content]∂x∂ϕ−2∫Gϕ,xy(z)∂2ξ[image: there is no content]dz∂x∂y(x)dx−∫Gϕ,xy(z)[image: there is no content]∂2ξ[image: there is no content]dz∂x∂ϕ−2∫Gϕ,y(z)[image: there is no content]∂2ξ[image: there is no content]dz∂x∂ϕ−∫Gϕ,y(z)y(x)∂2ξ[image: there is no content]dz∂x2−[image: there is no content]∂2[image: there is no content]∂x2−∫Gϕ,xy(z)[image: there is no content]∂2ξ[image: there is no content]dz∂x∂ϕ−2∫Gϕ,xy(z)[image: there is no content]∂ξ[image: there is no content]dz∂ϕ+[image: there is no content]∂[image: there is no content]∂ϕ−[image: there is no content][image: there is no content]∂[image: there is no content]∂ϕ−∫Gϕ,xxy(z)∂ξ[image: there is no content]dz∂y(x)dx−∫Gϕ,xxy(z)[image: there is no content]∂ξ[image: there is no content]dz∂ϕ−∫Gϕ,y(z)[image: there is no content]∂ξ[image: there is no content]dz∂ϕ−2[image: there is no content]∂[image: there is no content]∂x−∫Gϕ,xy(z)y(x)∂ξ[image: there is no content]dz∂x−[image: there is no content]∂[image: there is no content]∂x−∫Gϕ,y(z)xy(x)∂ξ[image: there is no content]dz∂x−[image: there is no content][image: there is no content]∂3[image: there is no content]∂x2∂ϕ−[image: there is no content]∂2[image: there is no content]∂x2−ϕ,xty(x)∂[image: there is no content]∂x−∫Gϕ,zy(z)y(z)∂3[image: there is no content]∂x2δy(x)dz−∫Gϕ,xxzy(z)y(z)δ[image: there is no content]δy(x)dz−∫Gϕ,zy(z)[image: there is no content]y(z)∂[image: there is no content]∂ϕdz−2∫Gϕ,xzy(z)y(z)∂2[image: there is no content]∂xδy(x)dz.
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