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invariant under Q-conditional operators is found. Using the symmetries obtained, the
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1. Introduction

In 1952, Alan Turing published his prominent paper [1]. In this paper he proposed the Turing
hypothesis of pattern formation. He used reaction–diffusion equations of the form

λ1ut = (D1(u)ux)x + F (u, v),

λ2vt = (D2(v)vx)x +G(u, v)
(1)

which are central to the field of pattern formation.
In system (1), F and G are arbitrary smooth functions, u = u(t, x) and v = v(t, x) are unknown

functions of the variables t and x, while the subscripts t and x denote differentiation with respect to
this variable. Nonlinear system (1) generalizes many well-known nonlinear second-order models used
to describe various processes in physics [2], biology [3–5] and ecology [6].
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Here we concentrate ourselves on the most important subclass of RD systems with the form of (1),
namely that with constant coefficients of diffusivity

λ1ut = uxx + F (u, v),

λ2vt = vxx +G(u, v)
(2)

System (2) has been intensely studied using different mathematical methods (see, e.g., [3,4,7] and papers
cited therein). All possible Lie symmetries of system (2) have been found, in [8–11]. In particular,
Q-conditional symmetries of (2) were found in [12]. Reference [13] also contains some results related
with system (2).

System (1) is a natural generalization of the well-known RD equation

ut = [D(u)ux]x + F (u) (3)

There are many papers devoted to the construction of Q-conditional symmetries for this
equation [14–21], starting from the pioneering work in [22]. There is also a non-trivial generalization of
these results for the case of the reaction–diffusion–convection equation ([21] and papers cited therein).

In contrast to (3), there are not many results for searching Q-conditional symmetries of system (2).
Construction of the Q-conditional symmetries (non-classical symmetries) of such systems is a very
difficult task. Only a few papers have been devoted to the search of such symmetries. In [23] the
Q-conditional symmetries of the system

ut = (ukux)x + F (u, v),

vt = (vlvx)x +G(u, v), l2 + k2 6= 0,

have been obtained; in [24] the Q-conditional symmetries of the Lotka–Volterra system

λ1ut = uxx + u(a1 + b1u+ c1v),

λ2vt = vxx + v(a2 + b2u+ c2v)
(4)

were obtained.
The paper is organized as follows. In Section 2 three theorems are presented which contain the main

result for Q-conditional symmetries of system (2). In Section 3, ansätze for all systems and solutions
for one of the systems are derived. In Section 4, the solutions for a generalization of the Lotka–Volterra
system are obtained and analyzed. Some graphs of the exact solutions are also presented. Finally, we
present some conclusions.

2. Main Result

Let us consider the reaction–diffusion system with constant diffusivities: (2). We want to find
Q-conditional operators of the form

Q = ∂t + ξ(t, x, u, v)∂x + η1(t, x, u, v)∂u + η2(t, x, u, v)∂v (5)

under which system (2) is invariant.
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The most general form of the Q-conditional operators is

Q = ξ0(t, x, u, v)∂t + ξ1(t, x, u, v)∂x + η1(t, x, u, v)∂u + η2(t, x, u, v)∂v.

In the case ξ0(t, x, u, v) 6= 0, this operator can be reduced to that with ξ0(t, x, u, v) = 1 [25]. So we
investigate operator (5).

We write down system (2) in the following form:

uxx = λ1ut + C1(u, v), λ1 6= 0,

vxx = λ2vt + C2(u, v), λ2 6= 0
(6)

where C1(u, v) = −F (u, v), C2(u, v) = −G(u, v).

The determining equations for finding coefficients of operator (5) and functions C1(u, v), C2(u, v)

from system (6) have the form

1) ξuu = ξvv = ξuv = 0,

2) η1
vv = 0,

3) η2
uu = 0,

4) 2λ1ξξu + η1
uu − 2ξxu = 0,

5) 2λ2ξξv + η2
vv − 2ξxv = 0,

6) (λ1 + λ2)ξξv + 2η1
uv − 2ξxv = 0,

7) (λ1 + λ2)ξξu + 2η2
uv − 2ξxu = 0,

8) (λ1 − λ2)ξη1
v + 2η1

xv − 2ξvC
1 − 2λ1ξvη

1 = 0,

9) (λ2 − λ1)ξη2
u + 2η2

xu − 2ξuC
2 − 2λ2ξuη

2 = 0,

10) λ1(2ξuη
1 − ξt − ξvη2 − 2ξξx) + λ2ξvη

2 + 3ξuC
1 + ξvC

2 − 2η1
xu + ξxx = 0,

11) λ2(2ξvη
2 − ξt − ξuη1 − 2ξξx) + λ1ξuη

1 + 3ξvC
2 + ξuC

1 − 2η2
xv + ξxx = 0,

12) λ1(η1
t + η2η1

v + 2ξxη
1)− λ2η

2η1
v + η1C1

u + η2C1
v − η1

uC
1 + 2ξxC

1 − η1
vC

2 − η1
xx = 0,

13) λ2(η2
t + η1η2

u + 2ξxη
2)− λ1η

1η2
u + η1C2

u + η2C2
v − η2

uC
1 + 2ξxC

2 − η2
vC

2 − η2
xx = 0.

(7)

System (7) is an over-determined system of partial differential equations and there are no any general
method for solving of such systems [26,27]. Thus, we were not able to find the general solution of
system (7), hence we have solved it with conditions

ξ = ξ(u, v), ηi = ηi(u, v), i = 1, 2 (8)

Solving Equations 1)–3) of system (7), we obtain

ξ = au+ bv + c, η1 = p1(u)v + q1(u), η2 = p2(v)u+ q2(v) (9)

where a, b, c are arbitrary constants, p1, p2, q1, q2 are arbitrary smooth functions. Substituting (9) into
6), 7) from (7) and splitting the obtained equations with respect to the powers of u and v, we arrive at
the system

a2(λ1 + λ2) = 0, b2(λ1 + λ2) = 0,

(λ1 + λ2)a(bv + c) + 2p2
v = 0, (λ1 + λ2)b(au+ c) + 2p1

u = 0
(10)
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Obviously, that solutions of first pair of equations of (10) will be λ2 = −λ1, or a = b = 0.
Let us consider the case λ2 = −λ1 (the case a = b = 0 will be considered later). In this case we

obtain p1 = const = α1, p
2 = const = α2. Substituting (9) p1 = α1, p

2 = α2 into Equations 4) and 5)

of system (7) and splitting with respect to the powers of u and v, we arrive at

2λ1ab = 0, q1
uu + 2λ1a(au+ c) = 0, q2

vv − 2λ1b(bv + c) = 0 (11)

Since λ1 6= 0, we conclude that ab = 0. Consider the case a = 0, b 6= 0 (the case b = 0,
a 6= 0 is symmetrical). From Equation 8), we obtain α2 = 0. Substituting (9) with the specified
coefficients, namely

ξ = bv + c, η1 = α1v + q1, η2 = q2,

into Equations 10), 11) of system (7), we arrive at

b(C2 − 2λ1q
2) = 0, b(3C2 − 2λ1q

2) = 0 (12)

Substituting q2 = 0, obtained from (12), into the third equation of system (11), we obtain λ1b(bv+c) = 0,
that is λ1b = 0, but that contradicts the above restrictions.

Thus, in the case λ2 = −λ1 we do not obtain any Q-conditional operator of the form (5).
Consider the case a = b = 0. In this case, from Equations 4), 5), 6) and 7) of system (7), we obtain

pi = const = αi, i = 1, 2, q1 = β1u+ γ1, q
2 = β2v + γ2,

where βi, γi, i = 1, 2 are the arbitrary constants. Thus, expressions (9) take the form

ξ = c, η1 = α1v + β1u+ γ1, η
2 = α2u+ β2v + γ2 (13)

Substituting (13) into Equations 8) and 9) of system (7), we arrive at

cα1(λ2 − λ1) = 0, cα2(λ2 − λ1) = 0 (14)

Solving the system of algebraic Equations (14), we obtain three solutions λ2 = λ1, α1 = α2 = 0 and
c = 0, therefore we obtain three cases. Let us consider all these cases.

Theorem 1. In the cases λ2 = λ1 or η1
v = η2

u = 0 with conditions (8), the system of determining
equations for finding of the Q-conditional operators of the form (5) for system (6) coincide with the
system of determining equations for finding Lie operators.

Proof. Substituting (13), with λ2 = λ1, into system (7) we find that Equations 1)− 11) are transformed
into identities, and Equations 12) and 13) take the form

η1C1
u + η2C1

v − η1
uC

1 − η1
vC

2 = 0, η1C2
u + η2C2

v − η2
uC

1 − η2
vC

2 = 0 (15)

In [11] the determining equations for finding of Lie symmetries with condition λ2 = λ1 are written down
in explicit form. Substituting conditions (8) into these equations, we see that the result is completely
identical to Equations (15).
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Substituting (13), with α1 = α2 = 0 into system (7), we see that Equations 1) − 11) also transform
into identities, and equations 12) and 13) take the form

η1C1
u + η2C1

v − η1
uC

1 = 0, η1C2
u + η2C2

v − η2
vC

2 = 0. (16)

Comparing equations (16) with equations for finding of Lie symmetries of system (6) with conditions
(8) from [9], we see that they are completely identical.

Thus, in the following we assume that λ1 6= λ2, α
2
1 + α2

2 6= 0.

Let us consider the case c = 0, which is on the one hand the most interesting and on the other the
most difficult. In this case, (13) takes the form

ξ = 0, η1 = α1v + β1u+ γ1, η
2 = α2u+ β2v + γ2 (17)

Equations 1)− 11) satisfy expressions (17) and Equations 12), 13) take the form

(α1v + β1u+ γ1)C1
u + (α2u+ β2v + γ2)C1

v − β1C
1 − α1C

2

= α1(λ2 − λ1)(α2u+ β2v + γ2),

(α1v + β1u+ γ1)C2
u + (α2u+ β2v + γ2)C2

v − α2C
1 − β2C

2

= α2(λ1 − λ2)(α1v + β1u+ γ1)

(18)

Thus, we can formulate the following theorem.

Theorem 2. The nonlinear reaction–diffusion system (6) isQ-conditionally invariant under operator (5)
with coefficients (17) if and only if the nonlinearities C1, C2 are the solutions of linear system (18).

To find the general solution of system (18), one need to analyze two cases α2 = 0 and α2 6= 0. In the
case α2 = 0, system (18) takes the form

(α1v + β1u+ γ1)C1
u + (β2v + γ2)C1

v = β1C
1+α1C

2+α1(λ2−λ1)(β2v+γ2),

(α1v + β1u+ γ1)C2
u + (β2v + γ2)C2

v = β2C
2

(19)

Since α1 6= 0, renaming C1 → α1C
1, u → α1u and γ1 → α1γ1, and taking into account that with

any coefficients β1, β2 we can remove the parameter γ1 using linear substitutions of u, v, system (19)
reduces to the form

(v + β1u)C1
u + (β2v + γ2)C1

v = β1C
1 + C2 + (λ2 − λ1)(β2v + γ2),

(v + β1u)C2
u + (β2v + γ2)C2

v = β2C
2

(20)

One notes a particular solution of system (20), of the form

C1
part =

1

2
(λ2 − λ1)(v + β1u), C2

part =
1

2
(λ1 − λ2)(β2v + γ2) (21)

Now to construct the general solution of (20), we need to solve the corresponding homogeneous system,
that is

(v + β1u)C1
u + (β2v + γ2)C1

v = β1C
1 + C2,

(v + β1u)C2
u + (β2v + γ2)C2

v = β2C
2

(22)

As a result, the following statement was proved.
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Theorem 3. Reaction–diffusion system (6) is Q-conditionally invariant under operator (5) with
conditions (8), and η2

u = 0, if and only if the system and corresponding operator have one of the seven
following forms (moreover λ2 6= λ1):

uxx = λ1ut + g(ω)v ln(v) + h(ω)v + 1
2
(λ2 − λ1)(v + β1u),

vxx = λ2vt + β1g(ω)v + 1
2
(λ1 − λ2)β1v,

Q = ∂t + (v + β1u)∂u + β1v∂v,

ω = v−1 exp(β1u
v

), β1 6= 0

(23)

uxx = λ1ut + h(ω)v
β1
β2 + g(ω)v + 1

2
(λ2 − λ1)(v + β1u),

vxx = λ2vt + (β2 − β1)g(ω)v + 1
2
(λ1 − λ2)β2v,

Q = ∂t + (v + β1u)∂u + β2v∂v,

ω = v
−β1
β2 ((β1 − β2)u+ v), β1β2(β1 − β2) 6= 0

(24)

uxx = λ1ut + ug(v) + h(v),

vxx = λ2vt + vg(v),

Q = ∂t + v∂u

(25)

uxx = λ1ut + g(ω)v + h(ω) + 1
2
(λ2 − λ1)v,

vxx = λ2vt + g(ω) + 1
2
(λ1 − λ2),

Q = ∂t + v∂u + ∂v,

ω = 2u− v2

(26)

uxx = λ1ut + g(ω)v + h(ω) + 1
2
(λ2 − λ1)v,

vxx = λ2vt + β2g(ω) (v + τ2) + 1
2
β2(λ1 − λ2)(v + τ2),

Q = ∂t + v∂u + β2(v + τ2)∂v,

ω = β2u− v + τ2 ln (v + τ2) , β2 6= 0

(27)

uxx = λ1ut + (v + u)h(v)− g(v),

vxx = λ2vt + g(v),

Q = ∂t + β1(v + u)∂u, β1 6= 0

(28)

uxx = λ1ut + h(ω) exp(β1
γ2
v)− g(ω) + 1

2
(λ2 − λ1)(v + β1u),

vxx = λ2vt + β1g(ω) + 1
2
γ2(λ1 − λ2),

Q = ∂t + (v + β1u)∂u + γ2∂v,

ω = exp(−β1
γ2
v) (β2

1u+ β1v + γ2) , β1γ2 6= 0

(29)

Proof. To prove this theorem, it is necessary and sufficient to construct the general solution of
system (22) for all possible ratios between parameters β1, β2, γ2. To do this we need to investigate
the following seven cases:

1. β1β2 6= 0, β1 = β2;
2. β1β2 6= 0, β1 6= β2;
3. β2 = 0, β1 = 0, γ2 = 0;
4. β2 = 0, β1 = 0, γ2 6= 0;
5. β2 6= 0, β1 = 0.
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6. β2 = 0, β1 6= 0, γ2 = 0;
7. β2 = 0, β1 6= 0, γ2 6= 0.
These cases take into account all possibilities that arise when we solve system (22). Let us consider

these cases.
Case 1. Solving the second equation of (22), we get C2 = β1vg(ω) and ω = v−1 exp

(
β1u
v

)
. So the

first equation of (22) reduces to an ODE for finding of the function C1:

C1
v −

C1

v
= g(ω).

Solving it, we get that C1 = g(ω)v ln(v) + vh(ω). Taking into account the expressions for C1, C2, ω,

obtained above, C1
part, C

2
part from Formulas (21) and restrictions (obtained above), finally we arrive at

the reaction–diffusion system and the Q-conditional operator listed in (23) of Theorem 3.
Cases 2–7. Considering similarly these cases and using simple renamings, we arrive at systems and

operators (24)–(29) of Theorem 3.

In the case α2 6= 0 we should also assume that α1 6= 0, otherwise we obtain the case α2 = 0 up to
renaming. We seek a solution of system (18) of the form

C1 = r1u+ r2v + r3, C
2 = s1u+ s2v + s3 (30)

Substituting (30) into (18), we obtain the system of algebraic equations

α2r2 − α1s1 + α1α2 (λ1 − λ2) = 0,

α1r1 + (β2 − β1) r2 − s2α1 + α1β2 (λ1 − λ2) = 0,

γ1r1 + γ2r2 − β1r3 − α1s3 + α1γ2 (λ1 − λ2) = 0,

α2r1 + (β2 − β1) s1 − s2α2 + α2β1 (λ1 − λ2) = 0,

α2r3 − γ1s1 − γ2s2 + β2s3 + α2γ1 (λ1 − λ2) = 0

(31)

Solving system (31), we arrive at two possibilities depending on ∆ = α1α2 − β1β2:
I) ∆ = 0,

r1 = β1
α2
s1 + β1 (λ2 − λ1) , r2 = α1

α2
s1 + α1 (λ2 − λ1) ,

r3 = α2γ1+β2γ2
α2
2

s1 − β2
α2
s3 + γ1 (λ2 − λ1) , s2 = β2

α2
s1.

II) ∆ 6= 0,

r1 = (β1−β2)
α2

s1 + s2 + β1 (λ2 − λ1) , r2 = α1

α2
s1 + α1 (λ2 − λ1) ,

r3 =
(∆+β2

2)γ1−α1β2γ2

α2∆
s1 + α1γ2−β2γ1

∆
s2 + γ1 (λ2 − λ1) , s3 = α1γ2−β2γ1

∆
s1 + α2γ1−β1γ2

∆
s2.

In Case I) s1 = s3 = 0, we obtain the solution of system (18)

C1
part = (λ2 − λ1)

(
β1

α2

(α2u+ β2v) + γ1

)
, C2

part = 0 (32)

In Case II) s1 = s2 = 0 we obtain the solution of system (18)

C1
part = (λ2 − λ1) (α1v + β1u+ γ1) , C2

part = 0 (33)
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Furthermore, we must solve the homogeneous system

(α1v + β1u+ γ1)C1
u + (α2u+ β2v + γ2)C1

v = β1C
1 + α1C

2,

(α1v + β1u+ γ1)C2
u + (α2u+ β2v + γ2)C2

v = α2C
1 + β2C

2
(34)

Let us consider Case I). Using the condition ∆ = 0 for system (34), we get

( β1
α2

(α2u+ β2v) + γ1)C1
u + (α2u+ β2v + γ2)C1

v = β1
α2

(α2C
1 + β2C

2),

( β1
α2

(α2u+ β2v) + γ1)C2
u + (α2u+ β2v + γ2)C2

v = α2C
1 + β2C

2
(35)

Multiplying the second equation of (35) by − β1
α2

, adding to the first and renaming u → u − γ2
α2
,

γ1 → γ1 + β1γ2
α2

, we arrive at(
β1

α2

(α2u+ β2v) + γ1

)(
C1 − β1

α2

C2

)
u

+ (α2u+ β2v)
(
C1 − β1

α2

C2

)
v

= 0 (36)

Using the substitution

C1 = S(u, v) +
β1

α2

C2 (37)

we obtain the equation (β1

α2

(α2u+ β2v) + γ1

)
Su + (α2u+ β2v)Sv = 0 (38)

Solving Equation (38), we arrive at three subcases:
1) β2 = −β1, γ1 = 0, S = S(ω), ω = α2u− β1v;

2) β2 = −β1, γ1 6= 0, S = S(ω), ω = (α2u− β1v)2 − 2α2γ1v;

3) β2 6= −β1, S = S(ω), ω = α2u− β1v − α2γ1
β1+β2

ln
∣∣∣α2u+ β2v + α2γ1

β1+β2

∣∣∣ .
Substituting (37) together with the function S from subcase 1) into the second equation of (35),

we obtain
(α2u− β1v)

(
α2Cv

2 + β1Cu
2
)

= α2
2f(ω) (39)

Solving (39), using (37), (32) and renaming u→ β1u, v → α2v we obtain the system

uxx = λ1ut + f(ω)u+ β1(g(ω)− λ1) (u− v) ,

vxx = λ2vt + f(ω)v + β1(g(ω)− λ2) (u− v) , ω = u− v,

Q-conditionally invariant under the operator

Q = ∂t + β1(u− v)(∂u + ∂v).

Similarly, for subcase 2), we arrive at the system

uxx = λ1ut + (f(ω)− λ1) (β1 (u− v) + γ1) + g(ω),

vxx = λ2vt + β1(f(ω)− λ2) (u− v) + g(ω), ω = (u− v)2 − 2 γ1
β1
v, γ1 6= 0

and the operator
Q = ∂t + (β1(u− v) + γ1)∂u + β1(u− v)∂v.
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In the subcase 3), we obtain the system

uxx = λ1ut + k(f(ω)− λ1) + β1(g(ω)− λ1) (u+ v) ,

vxx = λ2vt − k(f(ω)− λ2) + β2(g(ω)− λ2) (u+ v) ,

ω = β2u− β1v − k ln |u+ v|, k = γ1
β1+β2

,

and the operator
Q = ∂t + (β1(u+ v) + k)∂u + (β2(u+ v)− k)∂v.

Examination of Case II) is highly nontrivial and will be reported in another paper.

3. Ansätze and Exact Solutions of the Reaction–Diffusion System

Using standard procedures, we obtain ansätze for all operators of Theorem 3. Substituting these
anzätze in the corresponding reaction–diffusion systems, we obtain the reduction systems of equations.
All anzätze and reduction systems are presented in Table 1.

Table 1. Ansätze and reduction systems of Theorem 3.

No. Ansätze Systems of ODEs
(23) u = (t+ ψ) eβ1t+ϕ ϕ′′ + (ϕ′)2 − β1

(
g
(
eβ1ψ−ϕ

)
+ λ1+λ2

2

)
= 0

v = eβ1t+ϕ ψ′′ + 2ϕ′ψ′ + g
(
eβ1ψ−ϕ

)
(β1ψ − ϕ)− h

(
eβ1ψ−ϕ

)
− λ1+λ2

2 = 0

(24) u = ψ
(
eβ2t+ϕ

) β1
β2 − eβ2t+ϕ

β1−β2
ϕ′′ + (ϕ′)2 + g ((β1 − β2)ψ) (β1 − β2)− β2 λ1+λ2

2 = 0

v = eβ2t+ϕ ψ′′ + 2β1

β2
ϕ′ψ′ + β1

β2

(
β1

β2
− 1
)
ψ
(
(ϕ′)2 − β2g ((β1 − β2)ψ)

)
− h ((β1 − β2)ψ) = 0

(25) u = ϕt+ ψ ϕ′′ − ϕg(ϕ) = 0

v = ϕ ψ′′ − g(ϕ)ψ − h(ϕ)− λ1ϕ = 0

(26) u = 1
2 t

2 + ϕt+ ψ ϕ′′ − g
(
2ψ − ϕ2

)
− λ1+λ2

2 = 0

v = t+ ϕ ψ′′ − g
(
2ψ − ϕ2

)
ϕ− h

(
2ψ − ϕ2

)
− λ1+λ2

2 ϕ = 0

(27) u = 1
β2
eβ2t+ϕ − τ2t+ ψ ϕ′′ + (ϕ′)2 − β2 g (τ2(ϕ+ 1) + β2ψ)− λ1+λ2

2 β2 = 0

v = eβ2t+ϕ − τ2 ψ′′ − h (τ2(ϕ+ 1) + β2ψ) + τ2g (τ2(ϕ+ 1) + β2ψ) +
λ1+λ2

2 τ2 = 0

(28) u = ψeβ1t − ϕ ϕ′′ − g(ϕ) = 0

v = ϕ ψ′′ − (h(ϕ) + β1λ1)ψ = 0

(29) u = ψeβ1t − γ2t
β1
− ϕ

β1
− γ2

β2
1

ϕ′′ − g
(
β2
1ψe

− β1ϕγ2
)
β1 − (λ1+λ2)

2 γ2 = 0

v = γ2t+ ϕ ψ′′ − e
β1ϕ
γ2 h

(
β2
1ψe

− β1ϕγ2
)
− β1 λ1+λ2

2 ψ = 0

It is impossible to find the general solution of the systems from Table 1 for arbitrary functions g and
h. However, if we correctly specify these functions we can find the solutions of these systems.

System (27) is the most interesting one from the point of view of applicability. Let us consider
system (27) with τ2 = 0, g(ω) = b1ω+ b0− λ1+λ2

2
, h(ω) = a2ω

2 + a1ω+ a0. In this case, the reduction
system has the form

ϕ′′ + (ϕ′)2 − β2(b1β2ψ + b0) = 0 (40)

ψ′′ − a2β
2
2ψ

2 − a1β2ψ − a0 = 0 (41)

The solution of Equation (41) has the form

ψ = k = const (42)
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Substituting (42) into (40), we arrive at

ϕ′′ + (ϕ′)2 = A, A = β2 (b1β2k + b0) (43)

The solutions of Equation (43) depend on the parameter A. Solving Equation (43) we get three
different solutions (up to transformations x→ x+ C1, C1 = const)

ϕ =


ln |Cx|, A = 0;

ln |C cosh(
√
Ax)|, A > 0;

ln |C cos(
√
−Ax)|, A < 0.

Substituting ϕ and (42) into corresponding ansatz from Table 1, and renaming C → β2C, we arrive at
the exact solutions

u = Ceβ2tx+ k, v = Cβ2e
β2tx,

u = Ceβ2t cosh
(√

Ax
)

+ k, v = Cβ2e
β2t cosh

(√
Ax
)

u = Ceβ2t cos
(√
−Ax

)
+ k, v = Cβ2e

β2t cos
(√
−Ax

)
(44)

of the reaction–diffusion system

uxx = λ1ut + (v − uβ2) (−a1 + a2v − a2β2u) + (b0 − λ∗1 − b1v + b1β2u) v + a0,

vxx = λ2vt + β2 (b0 − λ∗2 − b1v + b1β2u) v
(45)

where k is the solution of the equation a2β
2
2k

2 + a1β2k + a0 = 0.

4. Solutions and Their Properties of Some Generalization of the Lotka–Volterra System

Let us consider in detail the case A < 0. Renaming β2 = −B2

C2
, b1 = −C2

2

B2
, b0 = A2C2+B2λ2

B2
,

a0 = −e0, a1 = A1C2

B2
, a2 = −B1C2

2

B2
2

, we obtain the exact solution

u = Ce
−B2
C2
t
cos
(√
−Ax

)
+ k, v = −B2C

C2

e
−B2
C2
t
cos
(√
−Ax

)
(46)

where A = −kB2C2+A2C2+B2λ2
C2

, and k is the solution of B1k
2 + A1k + e0 = 0, of the reaction–diffusion

system
λ1ut = uxx + u (A1 +B1u+ C1v) + e2v

2 + e1v + e0,

λ2vt = vxx + v (A2 +B2u+ C2v)
(47)

where C1 =
(

2B1

B2
− 1
)
C2, e2 =

(B1−B2)C2
2

B2
2

, e1 = (A1−A2)C2

B2
+ λ∗1 − λ∗2.

System (47) is the generalized Lotka–Volterra system. With e2 = e1 = e0 = 0 system (47) becomes
the classical Lotka–Volterra system

λ1ut = uxx + u (A1 +B1u+ C1v) ,

λ2vt = vxx + v (A2 +B2u+ C2v)
(48)

Note that exact solutions of the form (46) for the classical Lotka–Volterra system (48) have been
found in [24].
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Figure 1. Exact solution to (51).

System (48) can be obtained from system (47) with e0 = 0, B1 = B2, A1 =
A2C2+(λ∗2−λ∗1)B2

C2
. Also,

the coefficients of (46) and (48) must satisfy the equation k
(
k + A2

B2
+

λ∗2−λ∗1
C2

)
= 0.

It is well known [3] that three main kinds of interactions between two biological species are simulated
by system (48):

(i) predator u–prey v interaction,
(ii) competition of the species,
(iii) mutualism or symbiosis.
It turns out that solution (46) can describe the predator-prey interaction on the space interval [−l, l],

(here l = π
2
√
−A ) provided that

B2 < 0, C2 < 0, C < 0, k > |C| (49)

One can easily check that solution (46) is non-negative, bounded in the domain Ω = {(t, x) ∈
(0,+∞)× (−l, l)} and satisfies the given Dirichlet boundary conditions, i.e.,

u|x=−l = k, v|x=−l = 0, u|x=l = k, v|x=l = 0 (50)

Choosing the coefficients λ1 = 2, λ2 = 1, A2 = 1, B2 = −1, C2 = −1
3
, B1 = 0, C = −1

3
, e0 = 1,

gives that A1 = −2, C1 = 1
3
, k = 1

2
. Thus, from solution (46) we obtain the solution

u =
1

2
− 1

3
e−3t cos(

√
7

2
x), v = e−3t cos(

√
7

2
x) (51)

of the system
2ut = uxx + u

(
−2 + v

3

)
+ v2

9
+ 1,

vt = vxx + v
(
1− u− v

3

) (52)

which can describe predator u–prey v interaction, as its coefficients satisfy the conditions for this type of
the interaction [3]. System (52) is some generalization of the Lotka–Volterra system (48) with additional
nonlinearity v2

9
+ 1 in the first equation.
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Figure 2. Exact solution of (55).

Solution (51) satisfies Dirichlet boundary conditions (50) with l = π√
14
, k = 1

2
.

As an example, we present solution (51) in Figure 1. This solution can describe the predator u–prey
v interaction between the species u and v when population of predator u becomes 1

2
and prey eventually

dies, i.e., (u, v)→ (1
2
, 0) as t→ +∞.

Choosing coefficients λ1 = 3
2
, λ2 = 5

4
, A2 = 1, B2 = −4, C2 = −1

2
, B1 = 1, C = −1

4
, e0 = 0,

we get A1 = −1, C1 = 3
4
, k = 1. Renaming t→ 1

4
t, from solution (46) we obtain the solution

u = 1− 1

4
e−2t cos

(√
7x
)
, v = 2e−2t cos

(√
7x
)

(53)

of the system
6ut = uxx + u

(
−1 + u+ 3

4
v
)

+ 5
64
v2,

5vt = vxx + v
(
1− 4u− v

2

) (54)

which can also describe the predator u–prey v interaction, as its coefficients satisfy conditions for this
type of interaction [3]. System (52) is some generalization of Lotka–Volterra system (48) with additional
nonlinearity 5v2

64
in the first equation.

Solution (53) satisfies Dirichlet boundary conditions (50) with l = π
2
√

7
and k = 1. This solution can

describe the predator u–prey v interaction between the species u and v when population of predator u
becomes 1 and prey eventually die, i.e., (u, v)→ (1, 0) as t→ +∞.

If we consider system (48) with solution (46), then we obtain the solution that can describe
competition of the species. Such a solution is presented in [24].

Also, system (47) can describe mutualism—or symbiosis—of two species. Choosing the coefficients
λ1 = 2, λ2 = 1, A2 = 5, B2 = 2, C2 = −1

2
, B1 = − 1

10
, k = 0, C = 1, e0 = 0, we obtain

A1 = 9, C1 = 11
20
. So, from solution (46) we obtain the solution

u = e4t cos (x) , v = 4e4t cos (x) (55)
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of the system
2ut = uxx + u

(
9− u

10
+ 11v

20

)
− 21v2

160
,

vt = vxx + v
(
5− v

2
+ 2u

) (56)

which is a generalization of Lotka–Volterra system (48) with additional nonlinearity − 21
160
v2 in the

first equation.
Solution (55) satisfies Dirichlet boundary conditions (50) with l = π

2
, k = 0. As an example, we

present solution (55) in Figure 2. Solution (55) can describe the type of the interaction between the
species u and v when both populations grow unboundedly, i.e., (u, v)→ (+∞,+∞) if t→ +∞.

5. Conclusions

In this paper, the nonlinear RD system (2) was examined in order to find the Q-conditional operators
under which this system is invariant and to construct exact solutions. Because the system of differential
equations (7) is too complicated, we were unable (and believe it is not possible) to find all the solutions
of the determining system (7) and thence to find all possible Q-conditional operators. We have found the
Q–conditional operators with restrictions (8) (in the case η2

u = 0 we have found all possible systems
and operators, in the case η2

u 6= 0 we have presented some examples) with respect to which the
reaction–diffusion system of equations with constant diffusion (2) is invariant. All these operators are
given in Theorem 3 of Section 2. In Section 3 the ansätze for all Q-conditional operators of Theorem 3
and the reduction systems are constructed. Section 4 contains the solutions of some generalization of
the Lotka–Volterra system. These solutions are analyzed in order to present of biological interpretation.
Some graphs of obtained solutions are also presented. It is shown that the obtained solutions satisfy
Dirichlet boundary conditions, which are typical for biological interpretation.

Acknowledgments

The author is grateful to the referees for the useful comments.

Conflicts of Interest

The author declares no conflict of interest.

References

1. Turing, A.M. The chemical basis of morphogenesis. Philos. Trans. Royal Soc. Lond. B Biol. Sci.
1952, 237, 37–72.

2. Ames, W.F. Nonlinear Partial Differential Equations in Engineering; Academic Press: New York,
NY, USA; London, UK, 1965; pp. xii+511.

3. Murray, J.D. Mathematical Biology I: An Introduction, 3rd ed.; Interdisciplinary Applied
Mathematics; Springer-Verlag: New York, NY, USA, 2002; Volume 17, pp. xxiv+551.

4. Murray, J.D. Mathematical biology II: Spatial Models and Biomedical Applications, 3rd ed.;
Interdisciplinary Applied Mathematics; Springer-Verlag: New York, NY, USA, 2003; Volume 18,
pp. xxvi+811.



Symmetry 2015, 7 1854

5. Britton, N.F. Essential Mathematical Biology; Springer Undergraduate Mathematics Series;
Springer-Verlag London, Ltd.: London, UK, 2003; pp. xvi+335.

6. Okubo, A.; Levin, S.A. Diffusion and Ecological Problems: Modern Perspectives, 2nd ed.;
Interdisciplinary Applied Mathematics; Springer-Verlag: New York, NY, USA, 2001; Volume 14,
pp. xx+467.

7. Henry, D. Geometric Theory of Semilinear Parabolic Equations; Lecture Notes in Mathematics;
Springer-Verlag: Berlin, Germany; New York, NY, USA, 1981; Volume 840, pp. iv+348.

8. Cherniha, R. Lie symmetries of nonlinear two-dimensional reaction–diffusion systems. Rep. Math.
Phys. 2000, 46, 63–76.

9. Cherniha, R.; King, J.R. Lie symmetries of nonlinear multidimensional reaction–diffusion
systems. I. J. Phys. A 2000, 33, 267–282.

10. Cherniha, R.; King, J.R. Addendum: “Lie symmetries of nonlinear multidimensional
reaction–diffusion systems. I”. J. Phys. A 2000, 33, 7839–7841.

11. Cherniha, R.; King, J.R. Lie symmetries of nonlinear multidimensional reaction–diffusion
systems. II. J. Phys. A 2003, 36, 405–425.

12. Barannik, T.A. Conditional symmetry and exact solutions of a multidimensional diffusion equation.
Ukr. Math. J. 2002, 54, 1416–1420.

13. Barannyk, T. Symmetry and exact solutions for systems of nonlinear reaction–diffusion equations.
Available online: http://eqworld.ipmnet.ru/en/solutions/interesting/barannyk.pdf (accessed on
13 October 2015).

14. Serov, N.I. Conditional invariance and exact solutions of a nonlinear heat equation. Ukr. Math. J.
1990, 42, 1370–1376.

15. Fushchych, W.; Shtelen, W.; Serov, M. Symmetry Analysis and Exact Solutions of Equations of
Nonlinear Mathematical Physics; Kluwer: Dordrecht, The Netherland, 1993.

16. Nucci, M.C. Symmetries of linear, C-integrable, S-integrable, and nonintegrable equations. In
Nonlinear Evolution Equations and Dynamical Systems (Baia Verde, 1991); World Sci. Publ.:
River Edge, NJ, USA, 1992; pp. 374–381.

17. Clarkson, P.A.; Mansfield, E.L. Symmetry reductions and exact solutions of a class of nonlinear
heat equations. Physica D 1994, 70, 250–288.

18. Arrigo, D.J.; Hill, J.M.; Broadbridge, P. Nonclassical symmetry reductions of the linear diffusion
equation with a nonlinear source. IMA J. Appl. Math. 1994, 52, 1–24.

19. Arrigo, D.J.; Hill, J.M. Nonclassical symmetries for nonlinear diffusion and absorption. Stud.
Appl. Math. 1995, 94, 21–39.

20. Pucci, E.; Saccomandi, G. Evolution equations, invariant surface conditions and functional
separation of variables. Physica D 2000, 139, 28–47.

21. Bluman, G.W.; Cheviakov, A.F.; Anco, S.C. Applications of Symmetry Methods to Partial
Differential Equations; Applied Mathematical Sciences; Springer: New York, NY, USA, 2010;
Volume 168.

22. Bluman, G.W.; Cole, J.D. The general similarity solution of the heat equation. J. Math. Mech.
1968/69, 18, 1025–1042.



Symmetry 2015, 7 1855

23. Cherniha, R.; Pliukhin, O. New conditional symmetries and exact solutions of reaction–diffusion
systems with power diffusivities. J. Phys. A 2008, 41, 185208:1–185208:14.

24. Cherniha, R.; Davydovych, V. Conditional symmetries and exact solutions of the diffusive
Lotka–Volterra system. Math. Comput. Model. 2011, 54, 1238–1251.

25. Cherniha, R. Conditional symmetries for systems of PDEs: New definitions and their application
for reaction–diffusion systems. J. Phys. A 2010, 43, 405207:1–405207:13.

26. Sidorov, A.F.; Shapeev, V.P.; Yanenko, N.N. Metod Differentsialnykh Svyazei i Ego Prilozheniya v
Gazovoi Dinamike; “Nauka” Sibirsk. Otdel.: Novosibirsk, Russia, 1984; p. 272. (In Russian)

27. Carini, M.; Fusco, D.; Manganaro, N. Wave-like solutions for a class of parabolic models.
Nonlinear Dynam. 2003, 32, 211–222.

c© 2015 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Main Result
	Ansätze and Exact Solutions of the Reaction–Diffusion System
	Solutions and Their Properties of Some Generalization of the Lotka–Volterra System
	Conclusions

