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Abstract: Texture feature description is a remarkable challenge in the fields of computer vision
and pattern recognition. Since the traditional texture feature description method, the local binary
pattern (LBP), is unable to acquire more detailed direction information and always sensitive to
noise, we propose a novel method based on generalized Gabor direction pattern (GGDP) and
weighted discrepancy measurement model (WDMM) to overcome those defects. Firstly, a novel
patch-structure direction pattern (PDP) is proposed, which can extract rich feature information and
be insensitive to noise. Then, motivated by searching for a description method that can explore
richer and more discriminant texture features and reducing the local Gabor feature vector’s high
dimension problem, we extend PDP to form the GGDP method with multi-channel Gabor space.
Furthermore, WDMM, which can effectively measure the feature distance between two images, is
presented for the classification and recognition of image samples. Simulated experiments on olivetti
research laboratory (ORL), Carnegie Mellon University pose, illumination, and expression (CMUPIE)
and Yale B face databases under different illumination or facial expression conditions indicate that
the proposed method outperforms other existing classical methods.

Keywords: face recognition; texture feature description; feature extraction; LBP; local Gabor transform

1. Introduction

In recent years, image feature description methods have received significant attention in the
fields of computer vision and pattern recognition. A number of image feature extraction methods
are proposed, which can be divided into two categories: holistic and local image feature extraction.
There are many holistic feature extraction methods, which can produce a statistical information
template from a large amount of training sample images. One of the typical methods is principal
component analysis (PCA) [1]. Based on the PCA model, some improved methods have been presented
including 2D PCA [2,3], incremental PCA [4], block PCA [5,6], etc. Moreover, many methods using
matrix decomposition and linear combination have become very popular, such as linear discriminant
analysis (LDA) [7–11], independent component analysis (ICA) [12–16], singular value decomposition
(SVD) [17–19], discrete wavelet transform (DWT) [20,21], etc. Also, a method called k-LDA, which
combines LDA with PCA, is proposed to process image classification [22]. Without fully taking
into account local detailed information, these holistic feature extraction methods are sensitive to
geometric shape changes and some illumination and noise variations. However, local image feature
extraction methods can effectively overcome those drawbacks. Ojala [23] proposes a texture feature
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description method called the local binary pattern (LBP), which can achieve superior results for
image recognition. The original LBP method computes a binary sequence with 3× 3 neighborhoods,
which compares the central pixel value and its neighbor pixel value in 3× 3 neighborhoods, and then
expresses an LBP histogram as a texture description feature. The fixed neighborhoods make it easy
to restrict the larger neighborhood structure, which is an obvious disadvantage for the original LBP
method. Afterwards, Ojala improved the original one and suggested an extension LBRP, R [24] with
neighborhoods of different sizes, where P is the sample point number in a circle area with a radius of
R. Since LBP is a two-value model, which cannot describe more detailed information, Tan [25] extends
the two-value model to the three-value model and proposes a novel local feature description method,
local ternary patterns (LTP). Furthermore, many variants from the basic LBP have been presented,
including local phase quantization (LPQ) [26], local derivative pattern (LDP) [27], local difference
binary (LDB) [28], local line directional pattern (LLDP) [29], local binary pattern of pyramid transform
domain (PLBP) [30], local tetra patterns (LTrPs) [31], dominant local binary pattern (DLBP) [32],
binary robust independent elementary features (BRIEF) [33], local tri-directional patterns (LTPs) [34],
local convex-and-concave pattern (LCP) [35] multi-scale local binary patterns (MSLBP) [36] and etc.
In addition, motivated by image moments and local binary patterns, some novel texture descriptors
have been proposed, such as local Tchebichef moments (LTMs) [37], moment-based local binary patterns
(MLBP) [38] and etc. Nanni [39,40] has presented region-based approaches with a co-occurrence matrix,
which have had promising results in several medical datasets. Gabor wavelet filters are an excellent
feature representation that is insensitive to illumination and expression changes. There are many Gabor
feature extraction methods which have shown remarkable performances and wide applications [41–48],
such as local normalization entropy-like weighted Gabor features [42], local Gabor binary patterns
(LGBP) [43], local Gabor XOR patterns (LGXP) [44], Gabor wavelets and local binary pattern [45],
Gabor wavelets combined with volumetric fractal dimension [46], the combined method with the joint
of local binary pattern (LBP), local phase quantization (LPQ) and fuses Gabor filters [26]. Since the
computation amount of Gabor frames is very high, some accelerated Gabor methods have been studied,
such as accelerated Gabor frames [47], fusion of multi-channels classifier [48].

Motivated by the LBP structure and Gabor filters, we propose a novel texture feature description
method based on GGDP and WDMM. The contributions of this paper can be summarized as follows:

(1) Conventional LBP computes the relationship between one image’s center pixel value and its
neighbor pixel value, and always only utilizes the center pixel’s direction information. LBP cannot
obtain more detailed direction information from other neighborhood pixels, and thus is sensitive
to noise. To overcome these defects, we propose a novel patch-structure direction pattern (PDP)
method, which can extract richer feature information and be insensitive to noise.

(2) To further improve the effectiveness of PDP, we introduce it into multi-channel Gabor space and
get an improved method called GGDP, which can better describe multi-direction and multi-scale
texture information.

(3) In the traditional classification process, the GGDP feature of each Gabor sub-image should
be concatenated and measured. To make the measurement of feature distance more accurate,
WDMM is proposed for measuring every GGDP feature of the Gabor sub-image distance and use
weighted computing for the final distance with sub-image information content.

This paper is composed of four sections. The texture feature extraction background and
our contributions are introduced in Section 1. Section 2 describes the proposed method and its
corresponding algorithms including PDP, GGDP and WDMM. Simulated experiments are conducted
in Section 3. Section 4 gives the conclusion and introduces future work.
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2. Algorithm Description

2.1. PDP

We suppose the sample image is X and m0 is the pixel value of the center pixel in the neighborhood.
In addition, the neighborhood is set as 3× 3 and its center pixel’s adjacent pixel values are marked
as mi (i = 1, 2, · · · , 8), depicted in Figure 1. The patch with the central pixel m0 is computed by the
average value of mi (i = 1, 2, · · · , 8).

m0 =
1
9

8

∑
i=0

mi (1)
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Figure 1. Diagram of patch computation.

Other adjacent pixel values are computed according to Equation (1), shown in Figure 2. Then, we
acquire the patch-structure marked as Xp with the size of 3× 3.
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Figure 2. Diagram of PDP (patch-structure direction pattern) descriptor.

Next, we use Kirsch Masks to find information on the eight directions. Kirsch Masks are shown
in Figure 3, which are marked as Ki (i = 1, 2, · · · , 8).
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Ki (i = 1, 2, · · · , 8) is defined as the following:

K1 = Kirsch Masks (East)
K2 = Kirsch Masks (Northeast)

K3 = Kirsch Masks (North)
. . .

K8 = Kirsch Masks(Southeast)

(2)

Direction information Xd
p of patch-structure Xp is defined in Equation (3):

Xd
p =

 Xp × K4 Xp × K3 Xp × K2

Xp × K5 x Xp × K1

Xp × K6 Xp × K7 Xp × K8

 (3)

where notation “×” indicates sum of multiple of corresponding position elements in two matrix.
Result of Xd

p is defined as:

Xd
p =

 R4 R3 R2

R5 x R1

R6 R7 R8

 (4)

where Ri (i = 1, 2, · · · , 8) denotes the Kirsch response results.
The Kirsch response results Ri (i = 1, 2, · · · , 8) denotes the ith direction information in the

neighborhood, and are always not equal to each other in the direction feature description. In this paper,
we select the maximum and minimum Kirsch responses, which are respectively marked as Rmax and
Rmin, defined in Equation (5):

Rmax = argmax
i
{Ri} (1 ≤ i ≤ 8)

Rmin = argmin
i
{Ri} (1 ≤ i ≤ 8)

(5)

Thus, PDP code can be computed as follows:

PDP (m0) = S (Ri)× 2i−1 (i = 1, 2, · · · , 8) (6)

where S (Ri) is defined in Equation (7)

S (Ri) =

{
1, Ri = Rmin or Ri = Rmax

0, other
(7)
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Based on Equation (7), we can generate PDP code for the whole image. In order to reduce PDP
dimensions and further extract PDP feature, PDP histogram is supposed to describe image feature,
defined in Equation (8):

HPDP = ∑
x,y

I (PDP (x, y) = i), i = 0, 1, · · · , 255 (8)

where x and y denote the horizontal and vertical coordinates in the whole image, and the function I()
is defined in Equation (9):

I (P) =

{
1 P is true
0 P is false

(9)

2.2. GGDP

Gabor wavelet filters can express image direction and scale information for spatial and orientation
selectivity. The mathematical model for 2D Gabor wavelet filters are given in Equation (10):

φ (x, y) =
√

φ2
e (x, y) + φ2

o (x, y)
φ2

e (x, y) = ϕe (x, y)⊗ X (x, y)
φ2

o (x, y) = ϕo (x, y)⊗ X (x, y)
(10)

where X (x, y) is the sample image, x and y denote the horizontal and vertical coordinates, ϕo (x, y)
and ϕe (x, y) are the odd and even symmetry Gabor filters, respectively.

Isotropy Gabor filters ϕo and ϕe always use predigest models, which are defined as:{
ϕe(x, y, f , θ,σ) = g(x, y,σ) · cos[(2π f (xcosθ+ ysinθ)]
ϕo(x, y, f , θ,σ) = g(x, y,σ) · sin[(2π f (xcosθ+ ysinθ)]

(11)

where θ, f and σ represent space phase, space frequency and space constant; g(x, y,σ) is
a Gauss function:

g(x, y,σ) =
1

2πσ2 exp
[
− x2 + y2

2σ2

]
(12)

Since θ and f are multi-channel, we suppose F(i) and θ(j) are multi-channel scales and orientations
space functions. Herein, we set the multi-channel scales to 4 (i = 1, 2, 3, 4) and orientations to 6
(j = 1, 2, 3, 4, 5, 6). Thus, the multi-channel scales and orientation output of the sample image are
marked as φe

F(x,y), θ(x,y) (x, y) and φo
F(x,y), θ(x,y) (x, y) with i = 1, 2, 3, 4 and j = 1, 2, 3, 4, 5, 6.

Suppose AF(i), θ(j) indicates the filter images’ amplitude, defined in Equation (13):

AF(i), θ(j) = φ (x, y) | f = F (i) , θ = θ (j) (13)

Next, we generate the PDP histogram for each Gabor filter image AF(i), θ(j), where i = 1, 2, 3, 4
and j = 1, 2, 3, 4, 5, 6, by Equation (8) named as HPDP( AF(i), θ(j)), which is GGDP for the sample
image X (x, y) feature:

GGDP (i, j) = HPDP

(
AF(i), θ(j)

)
(14)

where i = 1, 2, 3, 4 and j = 1, 2, 3, 4, 5, 6. In the typical process for Gabor features, GGDP (i, j)
will be concatenated. However, we are unable to concatenate every scale and orientation Gabor
features for the reason that the importance of every scale and orientation Gabor features are not
equal. In fact, we will design a novel discrepancy measurement model to measure the similarity of the
two groups’ GGDP.
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2.3. WDMM

Suppose the training sample is Xt and testing sample is Xs. Main objective of classification is
defining the distance between Xt and Xs. The weighted discrepancy measurement model is defined in
the Equation (15):

DT (Xs, Xt) =
4

∑
i=1

6

∑
j=1
ωi,j

∣∣∣ f i,j
s − f i,j

t

∣∣∣
1 +

∣∣∣ f i,j
s

∣∣∣+ ∣∣∣ f i,j
t

∣∣∣ (15)

where f i,j
s denotes the ith scale and jth orientation GGDP feature of Xs, given in Equation (16):

f i,j
s = GGDP (i, j) = HPDP

(
As

F(i),θ(j)
)

, i = 1, 2, 3, 4, j = 1, 2, 3, 4, 5, 6 (16)

where As
F(i),θ(j) are the amplitude of Xs Gabor filter images. Then, f i,j

t is the ith scale and jth orientation
GGDP feature of Xt, given in Equation (17):

f i,j
t = GGDP (i, j) = HPDP

(
At

F(i),θ(j)
)

, i = 1, 2, 3, 4, j = 1, 2, 3, 4, 5, 6 (17)

where At
F(i),θ(j) are the amplitudes of the Xt Gabor filter images.

Since image entropy can represent the image texture information, we adopt image entropy
to describe the importance of Gabor filter images. The computation process of image entropy is
introduced as follows:

Suppose the probability of the random variable x (x1, x2, x3, . . . , xn) is
p (x) (p1 (x) , p2 (x) , p3 (x) , . . . pn (x)). The entropy H(x) is defined in Equation (18):

H (x) =
n

∑
i=1

pi (x) log
(

1
pi (x)

)
= −

n

∑
i=1

pi (x) log (pi (x)) (18)

For a Gabor filter image AF(i),θ(j), its 2D entropy H
(

AF(i),θ(j)
)

can be defined in the following:

H
(

AF(i),θ(j) (x, y)
)
=

m

∑
i=1

pilog
(

1
pi

)
= −

m

∑
i=1

pilog (pi) (19)

where m is the image gray degree and pi means the probability of the ith gray degree in the
whole image.

The weighted coefficientωi,j is introduced in this paper, which denotes the importance of Gabor
filter images with the ith scale and jth orientation. Based on the above discussions,ωi,j is defined by
Equation (20):

ωi,j =
H
(

As
F(i),θ(j) (x, y)

)
+ H

(
At

F(i),θ(j) (x, y)
)

4
∑

i=1

6
∑

j=1
H
(
As

F(i),θ(j) (x, y)
)
+

4
∑

i=1

6
∑

j=1
H
(
At

F(i),θ(j) (x, y)
) (20)

3. Experiments

For sake of verifying the effectiveness and stability of the proposed method, some simulated
experiments were conducted on several public face databases including ORL, CMUPIE and YALE B
database, on images in which contain different poses, different expressions and various illumination
conditions. The proposed method is compared with some other state-of-art methods, abbreviations for
which are listed in Table 1.
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Table 1. Method abbreviations and their explanations.

Method Abbreviation Method Explanation

LBP [23] Basic LBP features
LBP1 [24] LBP (8, 1) features
LBP2 [24] LBP (8, 2) features
LTP [25] LTP features
LG [40] Local Gabor

LGBP [42] Local Gabor Binary Pattern
LLDP [29] Local Line Directional Pattern

GGDP Generalized Gabor Direction Patterns

3.1. Performance of the Proposed Method

3.1.1. Discussion of Computational Time

Firstly, the computational time of these comparative methods are discussed in this section.
In our test, the size of the testing image is set as 128 × 128. Table 2 illustrates the corresponding
results, which indicate that LBP cost the least time and has a lower feature dimensions. However, the
recognition rate of LBP is the lowest as well. In addition, LGBP and GGDP have a relevant lower feature
dimension. According to the following experiments, GGDP can achieve the best results. When balancing
effectiveness with efficiency, our proposed method has a considerable advantage over other methods.

Table 2. Time cost for different feature extraction methods.

Descriptor Feature Dimension Feature Extract Times (ms)

LBP [1] 256 97.4
LG [40] 393,216 294.2

LGBP [42] 6144 326.4
GGDP 6144 386.5

3.1.2. Discussion on Classification

In order to evaluate the effectiveness of the classifier, we used the CMUPIE face database,
which contains 68 individuals’ images, and each one has 60 different poses, expressions and various
illumination conditions. Partial images from CMUPIE are shown in Figure 4.

The results reported in Table 3 show that the nearest neighbor (NN) classifier has the worst
performance for its simple processing capacity. In contrast, WDMM can achieve slightly better results
than a support vector machine (SVM) with GGDP.Symmetry 2016, 8, 109  8 of 13 
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Table 3. Recognition rates of different classification methods.

Recognition Methods
Training Sample Numbers

1 2 4 6 8 10

GGDP + NN 44.71% 56.08% 62.65% 67.94% 73.14% 81.08%
GGDP + SVM 45.98% 76.76% 81.76% 87.35% 88.33% 91.08%

GGDP + WDMM 56.76% 75.39% 83.73% 86.18% 90.98% 93.82%
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3.2. Experiments and Analysis on CMUPIE Database

To further evaluate the stability of the proposed method for different poses and illumination
variations, we conduct the experiments on CMUPIE database. In this experiments, one sub-set of
CMUPIE is selected, which contains 60 individuals, and each individual has 13 different poses and
4 different expressions. Moreover, 1, 2, 4, 6, 8 and 10 images are chosen from each person’s images as
the training sets randomly, and meanwhile, the other remaining images are selected for testing within
the same person category. Comparison results of these methods are tabulated in Table 4 as well as
Figure 5. It is clear that the recognition rates of all methods increase with the increase of the training
numbers. The recognition rate of GGDP with the training number 10 outperforms LGBP and LLDP by
an interval of 1.96% and 2.55%, respectively, which is due to the fact that LLDP mainly focuses on the
image with line structure (e.g., palmprint). Again, GGDP demonstrates its superior performance.

Table 4. Recognition rates of methods on CMUPLE (Carnegie Mellon University pose, illumination,
and expression) with different training sample numbers.

Recognition Methods
Training Sample Numbers

1 2 4 6 8 10

LBP 40.29% 44.41% 48.92% 55.98% 62.45% 68.14%
LBP1 46.18% 47.84% 49.71% 58.73% 64.02% 73.92%
LBP2 47.35% 48.92% 50.20% 61.57% 65.10% 75.10%
LTP 49.31% 50.59% 51.76% 63.53% 66.86% 76.67%
LG 50.20% 55.59% 60.10% 73.14% 79.12% 87.45%

LGBP 54.02% 67.35% 72.06% 80.29% 83.43% 91.86%
LLDP 55.49% 72.45% 85.20% 85.78% 89.31% 91.27%
GGDP 56.76% 75.39% 83.73% 86.18% 90.98% 93.82%
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Figure 5. Recognition rates of methods on CMUPIE with different training sample numbers.

3.3. Experiments and Analysis on the ORL Database

The ORL face database contains 400 grayscale images in PNG format for 40 individuals and each
individual has 10 images. There are different facial expressions and poses in this database. Part images
of ORL are shown as Figure 6. All face images are normalized at a size of 128 × 128.



Symmetry 2016, 8, 109 9 of 13

Symmetry 2016, 8, 109  9 of 13 

 

 

Figure 5. Recognition rates of methods on CMUPIE with different training sample numbers. 

3.3. Experiments and Analysis on the ORL Database 

The ORL face database contains 400 grayscale images in PNG format for 40 individuals and each 

individual has 10 images. There are different facial expressions and poses in this database. Part 

images of ORL are shown as Figure 6. All face images are normalized at a size of 128 × 128. 

 

Figure 6. Part Images of ORL (olivetti research laboratory). 

To evaluate the effectiveness of the GGDP texture descriptor, some experiments were conducted 

on ORL databases, which cover different poses and facial expressions. In this paper, 1, 2, 3, 4, 5 and 

6 images are randomly chosen from each person set for training sets, and at the same time, the 

remaining images are selected for testing for the same person category. Table 5 and Figure 7 depict 

the recognition results of the proposed method and other benchmark methods with different training 

numbers. It can be gained that those recognition rates of all the comparable methods increase as the 

training numbers increases. The performance of GGDP can achieve the best results compared with 

other methods. This is because, in short, GGDP can extract richer and more detailed features. The 

recognition rates of GGDP with the training number 6 outperform its nearest competitor LLDP 1.5%. 

In addition, GGDP outperforms LBP and LGBP by intervals of 13.75% and 6.5%, respectively. 

Table 5. Recognition rates of methods on ORL with different training sample numbers. 

Recognition 

Methods 

Training Sample Numbers 

1 2 3 4 5 6 

LBP 53.75% 55.50% 64.00% 76.50% 83.75% 84.25% 

LBP1 55.75% 56.00% 65.50% 81.00% 85.25% 85.50% 

LBP2 58.50% 59.00% 65.25% 81.50% 88.00% 88.50% 

LTP 60.25% 61.50% 69.00% 83.50% 87.25% 88.25% 

LG 64.25% 69.75% 72.25% 83.00% 88.00% 91.50% 

LGBP 65.75% 70.75% 75.50% 87.00% 90.75% 95.25% 

1 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

Training number

R
e
c
o

g
n

it
io

n
 R

a
te

(%
)

 

 

LBP

LBP1

LBP2

LTP

LG

LGBP

LLDP

GGDP

Figure 6. Part Images of ORL (olivetti research laboratory).

To evaluate the effectiveness of the GGDP texture descriptor, some experiments were conducted
on ORL databases, which cover different poses and facial expressions. In this paper, 1, 2, 3, 4, 5
and 6 images are randomly chosen from each person set for training sets, and at the same time, the
remaining images are selected for testing for the same person category. Table 5 and Figure 7 depict
the recognition results of the proposed method and other benchmark methods with different training
numbers. It can be gained that those recognition rates of all the comparable methods increase as
the training numbers increases. The performance of GGDP can achieve the best results compared
with other methods. This is because, in short, GGDP can extract richer and more detailed features.
The recognition rates of GGDP with the training number 6 outperform its nearest competitor LLDP
1.5%. In addition, GGDP outperforms LBP and LGBP by intervals of 13.75% and 6.5%, respectively.

Table 5. Recognition rates of methods on ORL with different training sample numbers.

Recognition Methods
Training Sample Numbers

1 2 3 4 5 6

LBP 53.75% 55.50% 64.00% 76.50% 83.75% 84.25%
LBP1 55.75% 56.00% 65.50% 81.00% 85.25% 85.50%
LBP2 58.50% 59.00% 65.25% 81.50% 88.00% 88.50%
LTP 60.25% 61.50% 69.00% 83.50% 87.25% 88.25%
LG 64.25% 69.75% 72.25% 83.00% 88.00% 91.50%

LGBP 65.75% 70.75% 75.50% 87.00% 90.75% 95.25%
LLDP 63.25% 72.25% 75.75% 86.50% 92.25% 96.50%
GGDP 70.25% 74.75% 78.00% 90.25% 93.25% 98.00%
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Figure 7. Recognition rates of methods on ORL with different training sample numbers.

3.4. Experiments and Analysis on YALE B Database

Yale B database has 10 subjects and each subject contains 73 viewing conditions with 9 different
poses and 64 different illumination conditions. The extended Yale B dataset is extended by 16,128 images
for 28 individuals. Partial images from the YALE B database are shown in Figure 8.
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Figure 8. Part Images of YALE B.

To validate the effectiveness of the proposed method under various illuminations, we adopted
YALE B database to conduct experiments. A total of 50 individuals’ facial images in the Yale B
database were selected to form a new sub-database called YALE B SET1, and each person has
64 images with different illuminations. In these experiments, 1, 2, 4, 8, 16 and 32 images are randomly
chosen from each group for training purposes and the remaining images are set as testing images.
Recognition rates of the proposed method and other benchmark methods are shown in Table 6
and Figure 9. In general, recognition rates of all methods also increase as the training numbers
increase. Furthermore, GGDP achieves the best results once again for the same reason as in the former
experiments on the ORL database.

Table 6. Recognition rates of methods on YALE B SET1 with different training sample numbers.

Recognition Methods
Training Sample Numbers

1 2 4 8 16 32

LBP 37.91% 38.22% 48.94% 51.72% 63.19% 63.53%
LBP1 42.31% 42.69% 52.44% 53.09% 69.25% 66.06%
LBP2 43.63% 44.44% 52.78% 53.84% 64.25% 67.91%
LTP 44.53% 48.84% 53.22% 55.09% 65.72% 69.88%
LG 49.59% 53.01% 55.48% 68.77% 75.21% 78.36%

LGBP 53.56% 58.36% 66.99% 73.56% 77.95% 82.60%
LLDP 59.72% 66.59% 69.66% 70.34% 79.34% 85.78%
GGDP 58.63% 64.52% 72.60% 78.22% 81.37% 86.44%
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4. Conclusions 

In this paper, we propose a texture feature description method based on GGDP and WDMM. 

Firstly, a novel method called PDP is proposed, which can extract rich feature information and be 

insensitive to noise. Then, motivated by searching for a richer and more discriminant texture feature 

description method and reducing the local Gabor feature vector’s high dimension problem, we 

extend PDP to multi-channel Gabor space to form the GGDP method. Furthermore, WDMM, which 

can effectively measure the feature distance between two images, is also presented for image sample 

classification and recognition. Some simulated experiments demonstrate the proposed recognition 

system can achieve superior results. In future work, we will test our proposed method on other image 

databases to further validate its effectiveness, such as texture databases (e.g., PhoTex, A lot and 

RawFooT), medical datasets (e.g., Histopatology and Pap smear), and so on. It may be valuable for 

us to expand our research scope of face recognition to other practical applications, such as medical 

analysis, fingerprint recognition, image retrieval, facial recognition, etc. 
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4. Conclusions

In this paper, we propose a texture feature description method based on GGDP and WDMM.
Firstly, a novel method called PDP is proposed, which can extract rich feature information and be
insensitive to noise. Then, motivated by searching for a richer and more discriminant texture feature
description method and reducing the local Gabor feature vector’s high dimension problem, we extend
PDP to multi-channel Gabor space to form the GGDP method. Furthermore, WDMM, which can
effectively measure the feature distance between two images, is also presented for image sample
classification and recognition. Some simulated experiments demonstrate the proposed recognition
system can achieve superior results. In future work, we will test our proposed method on other
image databases to further validate its effectiveness, such as texture databases (e.g., PhoTex, A lot and
RawFooT), medical datasets (e.g., Histopatology and Pap smear), and so on. It may be valuable for
us to expand our research scope of face recognition to other practical applications, such as medical
analysis, fingerprint recognition, image retrieval, facial recognition, etc.
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