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Abstract: Traditional detectors for spectrum sensing in cognitive radio networks always become
disabled when noise uncertainty is severe. Shannon entropy-based detection methods have aroused
widespread attention in recent years due to the characteristics of effective anti-noise uncertainty.
However, in existing entropy-based sensing schemes, the uniform quantization method cannot
guarantee the maximum entropy distribution when primary users do not exist, and cannot effectively
distinguish between two hypotheses, which severely limits the promotion of detection performance.
Moreover, the Shannon entropy-based sensing schemes are prone to misconvergence occurring
when estimating entropy values, thus causing failure detection, which leads to system detection
inefficiency and resource waste. These are the two major serious defects in Shannon entropy-based
detectors, which restrict the performance improvement. In this paper, a novel non-uniform quantized
exponential entropy-based (NQEE) detector is proposed for local sensing to deal with the problems
of maximum entropy distribution and detection failure. To further improve the reliability of
the detection, a collaborative spectrum sensing algorithm based on an NQEE detector with multiple
fusion rules is presented. Simulation results verify that the detection performance of the improved
local entropy-based detector is superior to the existing Shannon entropy-based detectors and is proved
to be robust to noise power uncertainty. In addition, the novel collaborative detection algorithm
outperforms the traditional collaborative spectrum detection method to a great degree.

Keywords: cognitive radio networks; collaborative spectrum sensing; exponential entropy;
multi-fusion rule

1. Introduction

With the rapid development of wireless communication business, demand for wireless spectrum
resources has grown exponentially in recent years. Given the limitations of natural frequency
spectrums, the current fixed radio spectrum allocation policy makes it impossible to satisfy all of the
new requirements. Cognitive radio (CR) [1], as a kind of spectrum reutilize technology, can improve
utilization efficiency by employing dynamic spectrum allocation (DSA) [2,3]. Secondary users (SUs)
are allowed to use the radio spectrum licensed to the primary users (PUs) when the spectrum is
temporarily underutilized. In order to support this spectrum reuse functionality, SUs are required
to sense the radio frequency environment and vacate the channel instantly without causing any
interference once the PUs are found to be active. Therefore, spectrum sensing is of vital importance in
cognitive radio networks (CRNs).

Traditional local detection strategies normally adopt matched filter detection [4], energy detection [5]
and cyclostationary feature detection [6]. Both matched filter detection and cyclostationary feature
detection require certain prior knowledge about the PU signal as well as large computational costs,
which are not suitable to act as a blind detector. Energy detection is shown to be optimal when the

Symmetry 2016, 8, 112; doi:10.3390/sym8110112 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/journal/symmetry


Symmetry 2016, 8, 112 2 of 16

cognitive devices do not have prior information about the PU signals, and it possesses low computational
costs and is easily implemented. Nevertheless, energy detection is sensitive to noise uncertainty and
performs poorly at a low signal-to-noise ratio (SNR). The above traditional detectors are susceptible to
noise uncertainty in practical systems, which is a fundamental limitation of current spectrum sensing
strategies in detecting the presence of PUs in CRNs. Due to noise uncertainty, the performance of
traditional detectors deteriorates rapidly with low SNR.

Fortunately, the entropy-based detectors can effectively overcome the influence of noise
uncertainty and improve the robustness of sensing schemes, and hence have obtained extensive
research in recent years [7–13]. Dr S. Nagaraj combined the entropy-based detection and matched
filter in the time domain in [7,8], but the matched filter needed prior knowledge about PU features,
which required additional overhead as a non-blind detector. Zhang et al. proposed a Shannon
entropy-based sensing scheme in the frequency domain based on spectrum amplitude (SASE) in [9,10],
and the scheme was proved to be robust against noise uncertainty. However, there still exists severe
problems such as the maximum entropy distribution in the absence of PUs and detection failure
phenomenon. Since an entropy-based detection scheme was proposed, plenty of researchers have
conducted comprehensive studies based on Shannon entropy. In [11], a Shannon entropy-based
detection scheme based on spectrum power (SPSE) was depicted, the deficiency of which is that
computational complexity increases as well as system overhead. In addition, its performance still can
be improved. Waleed et al. proposed a robust entropy-based optimization cooperative sensing scheme
in [12]; however, the method is only applicable in special occasions, say high sea areas; thus, it does
not possess the universality for extensive application. A conditional entropy-based detection method
improving the detection performance in low SNR was proposed in [13]. The scheme requires prior
information of the system to accurately estimate the unauthorized signal characteristics, which is also
a non-blind detection.

In order to enhance sensing performance, more sensing time is needed. However, during the
process of sensing, secondary users should stop data transmission to avoid being recognized as
primary users. Therefore, more sensing time means lower secondary system capacity, making this
approach less attractive. Collaborative spectrum sensing [14–18] (CSS), where local secondary users
sense and then send sensing information to the fusion center where the final decision is made, has
been studied extensively as a promising alternative to improve sensing performance. There are mainly
three schemes of CSS: AND-rule-based CSS [14], OR-rule-based CSS [15], and VOTING-rule-based
CSS [16]. However, these CSS schemes are quite simple, and their performance is limited. Recently,
the CSS schemes based on weight have been proposed [17,18] with excellent performance; however,
in these schemes, SNR of each SU should be estimated perfectly to get the fusion weight, and it is
difficult to realize in practical systems.

In this paper, a novel collaborative spectrum sensing (CSS) algorithm based on exponential
entropy is proposed. Firstly, in order to solve the problem of the maximum entropy distribution in
the absence of PUs, and to avoid detection failure phenomenon in Shannon entropy, a non-uniform
quantized exponential entropy-based detection (NQEE) scheme is proposed. To further improve the
detection reliability, a novel exponential entropy-based collaborative spectrum sensing scheme with
the multi-fusion rule, which adopts an NQEE detector in local sensing, is designed. Local exponential
entropy estimation are divided into reliable and unreliable information entropy areas according to the
decision area classification rule. SUs transmit one bit or two bits to the fusion center (FC) for decision
fusion. The detection performance of the novel scheme is much better than classical CSS schemes.
In addition, the scheme is proved to be robust against the noise uncertainty.

The rest of the paper is organized as follows. Section 2 presents the system model for spectrum
sensing as well as the defects in previous Shannon entropy-based detectors. In Section 3, we elaborate
on the proposed exponential entropy-based CSS scheme, where the NQEE method is applied in
local sensing. In Section 4, the NQEE-CSS scheme based on a multi-fusion rule is proposed. Section 5
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details performance evaluation and comparisons through plenty of simulations. Finally, conclusions of
this paper are drawn in Section 6.

2. System Model and Problem Statement

2.1. System Model

Spectrum sensing can be formularized as a following binary hypothesis problem as follows:

x(n) =

{
w(n), H0(n = 0, 1, . . . , N − 1),

s(n) + w(n), H1 (n = 0, 1, . . . , N − 1),
(1)

where x(n), s(n) and w(n) are, respectively, the received signal, the primary signal and
background noise. N is the sample size during the observation period. H0 / H1 represent the
idle/busy state of channels, respectively. A standard assumption in the literature, which we also
make throughout this article, is that the additive noise w(n) is zero-mean, white, and circularly
symmetric complex Gaussian (AWGN) with variance σ2

n . Signal s(n) can either be a deterministic
signal (accounting for AWGN channel) or a stochastic signal (corresponding to channel characteristics
like fading) with mean µs and variance σ2

s . s(n) and w(n) are mutually independent.
Applying Discrete Fourier Transform (DFT) to (1), we have the frequency domain form of

received signal:

~X(k) =

{
~W(k), H0 (k = 0, 1, . . . , K− 1),
~S(k) + ~W(k), H1 (k = 0, 1, . . . , K− 1),

(2)

where K is the length of DFT equal to sample size N, ~X(k), ~S(k) and ~W(k) are, respectively, the complex
spectrum of the receiver signal, primary signal and noise.

The complex spectrum of received signal is expressed as follows:

~X(k) = Xr(k) + jXi(k) =
1
N

N−1

∑
n=0

x(n) exp(−j
2π

N
kn). (3)

Under hypothesis H0, both the real and imaginary parts of received signal ~X(k) follow the

Gaussian distribution N (0, σ2
0

2N ), and the spectrum magnitude of follows Rayleigh distribution with

parameter σ2
0

2N . On the other side, the received signal consists of PU signal and noise under hypothesis
H1, and the spectrum magnitude of ~X(k) follows the Rice distribution. Ascribed to the different
probability distributions between Rayleigh distribution and Rice distribution, the detection of the
presence/absence of the primary signal can be realized.

Shannon entropy [19] (SE) is used for measuring the size of the average information uncertainty
and can be the measurement of ordering degree for systems. The Shannon entropy for a discrete
random variable X with sample space [x1, x2], [x2, x3], . . . , [xL,+∞] is

H(X) = E[log2
1

P(xi)
] = −

L

∑
i=1

P(xi) log2 P(xi), (4)

where L denotes the number of quantized intervals, and P(xi) is the probability of sample xi in
each interval.

The authors in [9] propose a Shannon entropy-based spectrum sensing scheme in the frequency
domain based on the spectrum amplitude, and they proved that the information entropy of the white
Gaussian noise (WGN) is a constant with probability space partitioned into fixed dimensions, and the
entropy detection based on spectrum amplitude is thus intrinsically robust against noise uncertainty.
The decision rule is as follows:
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H(X) = −
L

∑
i=1

ni
N

log2(
ni
N
)

{
> λ, H0,

6 λ, H1,
(5)

where ni represents the numbers of sequence X falling into ith quantized interval; and λ is the threshold
determined by the false alarm probability.

2.2. Problem Statement

Theoretical analysis and simulation in [9] verified the resistance of SASE to noise uncertainty.
However, the assumptions and theoretical derivation in the literature have significant limitations,
which will be described in detail as follows.

2.2.1. Problem 1—Distribution of the Maximum Entropy underH0

On the basis of the theory in [9], the uniform quantization Shannon entropy obeys Rayleigh
distribution under hypothesisH0 and deflect Rayleigh distribution underH1. The authors draw the
conclusion that entropy estimation underH0 is greater than that underH1. However, it can be known
from [19] that Gauss distribution has the maximum differential entropy, and Rayleigh distribution is
non-maximum entropy distribution, which means that the conclusion that the entropy of Rayleigh
distribution exceeds other distributions is incorrect and controversial. In entropy-based spectrum
sensing schemes, if and only if the sample sequence of received signals fall into any quantized interval
with then same probability can the maximum entropy distribution then be achieved. As for the
detection scheme in [9], the intervals are uniformly divided into fixed dimensions, which cannot
ensure equal probability that estimations fall into each range. Hence, the urgent problem to be solved
is how to reasonably quantize the probability space and guarantee the maximum entropy distribution
in the absence of PUs, meanwhile improving the detection performance to the maximum extent.

2.2.2. Problem 2—The Detection Failure Phenomenon in Shannon Entropy-Based Detectors

The Shannon entropy detection method has certain defects in solving practical problems.
According to the definition of Shannon entropy [19], when the probability of detection event xi
is infinitely close to zero, the entropy increment ∆I(Pi = 0) = log2

1
Pi

tends to be infinity. Theoretically,
for the fixed number of segments L, Shannon entropy estimation X is constant; however, the
misconvergence phenomenon ni = 0 (i = 1, 2, . . . , L), log2

ni
N = −∞ (ni represents the signal number

falling into ith segment) is prone to occur in practical situations when estimating Shannon entropy,
thus causing failure detection, which leads to detection inefficiency and resource waste in the system.

3. Non-Uniform Quantized Exponential Entropy-Based Spectrum (NQEE) Detector

In order to solve the above problems in SASE, we consider using the characteristic that the
spectrum amplitude of the received data sequence obeys Rayleigh distribution to detect whether the
received signal only contains noise.

3.1. Definition and Property of NQSE

Definition 1. Given sequential data series, X= {x1, . . . , xi, . . . , xN} follows the specific distribution FX(x),
and non-uniform quantized intervals y={y1, y2, . . . , yL} are used to conduct L-level quantization for X, and
the probability of X falling into ith quantized interval is expressed as pi. The non-uniform quantized Shannon
entropy of X is

H(X) = −
L

∑
i=1

pi log2 pi. (6)

The non-uniform quantized Shannon entropy has the following property:
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Property 1. For given sequential data series X = {x1, . . . , xi, . . . , xN} with specific distribution FX(x),
non-uniform quantized intervals y = {y1, y2, . . . , yL} are confirmed by distribution function FX(x),
which ensures that X fall into each quantized interval with the same probability pi; thus, the non-uniform
quantized entropy achieves the maximum log L.

Proof. According to the Maximum Discrete Shannon Entropy theorem [19]:

H(p1, p2, . . . , pL) ≤ H(
1
L

,
1
L

, . . . ,
1
L
) = log L, (7)

where [p1, p2, . . . , pL] is the distribution law of discrete random variables, and the equality holds up if
and only if pi =

1
L ; that is to say, when the discrete random variable follows the uniform probability

distribution, the discrete Shannon entropy reaches the maximum value. Hence, for the specific
distribution FX(x), the maximum entropy log L is guaranteed to be achieved through determining
the non-uniform quantized intervals y = {y1, y2, . . . , yL}, as long as the data sequence falls into each
quantized interval with equal probability.

It can be seen from the above property that determining the non-uniform quantized
space by Rayleigh distribution can ensure the equal probability of quantized interval
∆k = [yk, yk+1], (k = 1, 2, . . . , L) and the maximum entropy under hypothesisH0.

3.2. Determination of Non-Uniform Quantized Intervals

Assuming random variable V represents event “X falls into quantized intervals”, {v1, v2, . . . , vL},
respectively, denotes X(k) falling into L quantized intervals. The received signal only contains noise
when PU signals does not exist, X(k) falls into L quantized intervals with equal probability and discrete
random variable V presents uniform probability distribution. Here, the non-uniform quantization
entropy of signal spectrum amplitude can achieve the maximum. On the other hand, when the received
signal contains primary signals, random variables V no longer obey uniform probability distribution,
and the non-uniform quantized spectrum entropy gets smaller. Cognitive users can determine the
presence/absence of PUs according to the difference feature of information entropy measure.

Known amplitude sequence of the received signal obeys the Rayleigh distribution, and the
probability distribution function (pdf) of Rayleigh distribution is:

FX(x) =
∫ ∞

0

x
σ2 exp(− x

2σ2 )dx = 1− exp(− x
2σ2 ). (8)

In order to obtain the uniform probability distribution, combine Equation (8) with the
following formula

FX(xi) =
1
L
(i− 1). (9)

Then, the separating points of non-uniform quantized intervals can be obtained by the
following expression:

xi =

√
−2 ln(1− i− 1

L
)σ, i = 0, 1, . . . , N − 1. (10)

For instance, when the value of L is 10, subsections of Rayleigh distribution, as shown in Figure 1,
can be acquired through the process of non-uniform quantization. The x-axis shows the amplitude
of the signal in the frequency domain, while the y-axis represents the probability density function
of Rayleigh distribution. The probability of received data falling into certain intervals is the area
of that interval. It can be qualitatively seen that sequence x falls into ten subsections (1–10) with
equal probability.

The noise variance is indispensable for dividing quantization intervals; thus, when the estimation
of noise variance is inaccurate or noise fluctuates over time, the process of non-uniform quantization
interval will be affected. Taking the above issues into account, we perform normalization processing for
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received information sequence s(k) (k = 0, 1, . . . , N − 1), making the Rayleigh distribution parameter
σ2 as 1, and then the influence of the noise uncertainty can be overcome. The quantization interval
boundary can be rewritten as

xi =

√
−2 ln(1− i− 1

L
), i = 0, 1, . . . , N − 1. (11)

Signal amplitude in the frequency domain
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Figure 1. Sketch map for non-uniform quantization under Rayleigh distribution.

3.3. Spectrum Sensing Based on NQSE

Based on the above discussions and analyses, we make the following statements about
the implementation process of the non-uniform quantized Shannon entropy-based (NQSE)
detection algorithm. Firstly, secondary users perform N-point samples to received signals to
obtain the sampling sequence s = [s(0), s(1), . . . , s(N)]; then, normalization for received sequences
s(k) (k = 0, 1, . . . , N − 1) are conducted to get the normalized sequences sN(k), and the power of
received signal sequences become sN(k) =

s(k)√
∑N−1

i=1 |s(k)|2
; afterwards, DFT is used to obtain spectrum

sequences S(k) = ∑N−1
l=0 sN(l) exp(−j 2π

N kn), and the amplitude of spectrum is X(k) = S(k)S∗(k);
subsequently, calculating the quantization intervals [x1, x2], [x2, x3], . . . , [xL,+∞] according to (11),
and counting numbers of the sequence X = [X(0), X(1), . . . , X(N)] dropping into each interval,
denoted by [n1, n2, . . . , nL]; thus, the non-uniform quantized Shannon entropy (NQSE) of spectrum
sequence is

HSHAN(X) = −
L

∑
i=1

ni
N

log2(
ni
N
). (12)

Finally, compare HSHAN(X) with threshold λ. If test statistic HSHAN(X)>λ, the authorised channel is
judged as free; otherwise, the channel is occupied.

3.4. Spectrum Sensing Based on NQEE

Hereinbefore, we solve the Problem 1 through the proposal of NQSE. In order to overcome the
defect of failure detection problem in SASE, the concept of exponential entropy is introduced into
the sensing algorithm. The increment of exponential entropy ∆I is zero when probability Pi = 0,
and the phenomenon of misconvergence is effectively avoided in the process of estimating entropy.
Thus, the problem of failure detection is definitely solved.

The exponential entropy is defined based on the following principles [20]:
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(1) Supposing the probability of each state xi is Pi, then the information content ∆I(Pi) carried by xi
has definition in all points between [0, 1];

(2) lim
Pi→0

∆I(Pi) = ∆I(Pi = 0) = k1, k1 is limited and greater than or equal to 0;

(3) ∆I(Pi = 1) = k2, k2 is limited and greater than or equal to 0;
(4) k2 < k1;
(5) ∆I(Pi) decreases in exponential form with Pi increasing;
(6) Information content ∆I(Pi) and entropy H are consecutive between [0, 1];
(7) Entropy H reaches the maximum when Pi(i = 1, 2, · · · , L) are all equal, i.e., uniform

probability distribution.

The exponential entropy which satisfies all principles above is defined as [20]:

HEXP(X) = −
L

∑
i=1

Pie(1−Pi). (13)

The specific algorithm procedures of non-uniform quantized exponential entropy-based detection
are shown in Algorithm 1, and the only difference between the non-uniform quantized exponential
entropy-based detection and NQSE is the calculation method of entropy. Exponential entropy has
similar properties to Shannon entropy; for instance, exponential entropy is not affected by noise power.
In fact, exponential entropy also has no relationship with noise power. That is to say, the NQEE
algorithm also possess robustness to the noise power uncertainty. This property will be attested in the
following simulation work. By comparing the exponential entropy calculated in Equation (14) with
the threshold, the existence of PU signal can be determined. The decision rule can be expressed as

HEXP(X) = −
L

∑
i=1

ni
N

exp(1− ni
N
)

{
> λ, H0,

6 λ, H1.
(14)

Algorithm 1 Non-uniform Quantized Exponential Entropy-based Detection (NQEE) Algorithm

Input: λ ∈ R+, N ∈ N, L ∈ N.
Output: Si ∈ {H0,H1}.

1. for each sensing event do
2. s = [s(0), s(1), . . . , s(N)]← N-point sampling
3. sN(k)← perform normalization to s
4. X← perform Discrete Fourier Transform for sN
5. [x1, x2], [x2, x3], . . . , [xL,+∞] quantized intervals
6. for i = 1, 2, . . . , L
7. [n1, n2, . . . , nL] count numbers of each interval
8. end for
9. HEXP(X) = −∑L

i=1
ni
N exp(1− ni

N )
10. if HEXP(X) > λ then
11. Si ← H0
12. else
13. Si ← H1
14. end if
15. end for

The introduction of exponential entropy effectively evades the problem of no definition or zero
value of using logarithms to define entropy and also overcoming the deficiency of the Shannon
entropy. The problem of failure detection discussed above has been solved skillfully by introducing
the exponential entropy into the spectrum detection algorithm.
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4. Collaborative Spectrum Sensing Based On Exponential Entropy

4.1. Traditional CSS Schemes

We consider a CR network consisting of K SUs and a data fusion center (FC). Assume that each
CR performs spectrum sensing independently and then their local decisions are sent to the FC, which
can fuse all available decision information to infer the presence or absence of the PU.

In traditional “k-out-of-n” rule CSS, each collaborative partner makes a binary decision based on
its local observation and then forwards one bit of the decision Di (i = 1 standing for the presence of
the PU, i = 0 for the absence of the PU) to the FC through an error-free channel. At the FC, all one-bit
decisions are fused together according to the logic rule whereH0 andH1 denote the decision made by
the fusion center that the PU signal is transmitted or not, respectively. The threshold k is an integer
representing the “k-out-of-n” rule. It can be seen that the OR rule corresponds to the case of k = 1,
AND rule corresponds to the case of k = n, and in the VOTING rule k is equal to the minimal integer
larger than n

2 .

4.2. CSS Based On Exponential Entropy

When SNR becomes lower, the gap between the exponential entropies calculated in the
two hypotheses are getting smaller, hence the detection results become trustless. To further improve
the performance of the non-uniform quantized exponential entropy detection at low SNR, a novel
exponential entropy CSS scheme based on multi-fusion rule (NQEE-CSS) is proposed, which improves
the detection performance by farthest use all SUs local sensing results.

In the proposed CSS scheme, the local estimated entropy results in information made by each
secondary user being classified into two types, as shown in Figure 2. When estimated entropy satisfies
H(Y) 6 λ− ∆ or H(Y) > λ + ∆ (∆ is any positive real number, λ is decision threshold), we define
this area as reliable information entropy area; otherwise, when entropy is in λ− ∆ < H(Y) 6 λ + ∆,
the area is defined as an unreliable information entropy area. The OR rule is adopted to fuse reliable
information entropy, if there is at least one decision result of cognitive user being one, then the fusion
result of this region is one. The AND rule is used to merge under-reliable information entropy together,
if and only if all decisions of SUs are one, and the final fusion result in the area is one.

l

RELIABLE 

ENTROPY AREA

RELIABLE 

ENTROPY AREA

l +Dl-D l ll DDl

 

ENTROPY 

AREA

Figure 2. Local decision zoning map.

The process of novel CSS algorithm is shown in Figure 3, and the specific implementation steps
are as follows:

Step 1 Each SU conducts independent local sensing. At the ith secondary user, the normalized
process for received signal sequences is firstly performed, then the N-point DFT is applied
to obtain the spectrum of the received signal Y(k), k = 1, 2, . . . , N. Calculate non-uniform
quantized exponential entropy H(Y) of spectrum sequences Y according to Equation (15).

Step 2 SUs make decisions based on the decision rules as shown in Figure 4. When exponential
entropy is in the reliable information area, SUs use one bit to code decision information;
otherwise, when entropy is in the under-reliable information area, they adopt two bits to code
decisions. Two kinds of decision information obtained by cognitive users are shown below.
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One-bit information:

D1i =

{
0, H(Y) ≥ λ + ∆,

1, H(Y) ≤ λ− ∆,
(15)

Two-bit information:

D2i =

{
10, λ < H(Y) < λ + ∆,

11, λ− ∆ < H(Y) ≤ λ,
(16)

where the first bit is the identification information, which represents the estimation entropy
falling into the unreliable information entropy area. The second bit is the decision information.

Step 3 All SUs send decision information to the FC. The fusion center receives two types of
information: one-bit and two-bit information. The FC extracts the corresponding decision
information Zi from two-bit information:

Zi =

{
0, λ < H(Y) < λ + ∆,

1, λ− ∆ < H(Y) ≤ λ.
(17)

Step 4 Assume that M SUs are involved in collaborative sensing, where K users send one-bit
messages, and M − K users send two-bit messages. The FC fuses all messages in light
of the difference of information type: OR rule for one-bit messages and AND rule for 2-bit
messages. FC makes the final OR rule for the two sorts of results above. The global decision
result is as follows:

F =

{
0, ∑K

i=1 D1i + ∏M
i=K+1 Zi ≥ 1,

1, else,
(18)

where F = 1 and F = 0, respectively, denote the presence and absence of the PU signal.

Authorized user 

spectrum

The ith SU conduct 

local sensing

0

( )H l£ -DY( )H l³ +DY ( )Hl l< < +DY  ( )Hl l-D < £Y

10 11 1

The (i-1)th SU 

decision result

The ith SU 

decision result

The (i+1)th SU 

decision result

Decision information fusion center

OR rule
AND rule

(extract the ahead one bit)

1bit message 2bit message

OR rule

Make the final decision

Figure 3. The flow chart of NQEE-CSS algorithm with the multi-fusion rule.
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l l +Dl-D

1 011 10

Figure 4. Multi-fusion rule decision area encoding rules.

5. Simulation Results and Analysis

The verification test of detection failure for Shannon entropy is presented in Figure 5.
The experiments are divided into three groups, and each group conducts 50 sub-experiments with
detection for 100 times. The received signal is AWGN with length N = 512 and the bin number L in
each experiment is 12, 16, 20, respectively. The abscissa is set as the experiment times and the ordinate
is the times of failure detection. It can be seen that there exist different levels of detection failure
phenomenon. The proportion of failure obviously rises with L increasing, which can be ascribed to
fact that the width of the interval decreases when L increases; therefore, the probability of detection
statistics falling into the i∆th interval becomes higher. When L = 20, the average rate of failure
detection reaches above 50%. To a large extent, high ratio of detection failure causes low detection
efficiency and waste of system resources.
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Figure 5. Failure detection experiment for Shannon spectrum entropy.

To evaluate the detection performance of the proposed detection scheme, plenty of simulations
are carried out. The signal of the primary user is modulated BPSK signal, baseband symbol rate
Rb = 8 kbps and carrier frequency fc = 16 kHz. The sampling frequency at the cognitive receiver is
set as fs = 64 kHz. The number of non-uniform quantizing interval L of the probability space is 20.
The number of Monte Carlo simulation times is 10,000. In all of the entropy-based detectors, the sample
size of DFT is equal to 1024 points. The sample size is also equal to 1024 points in energy detection.

In Figure 6, we compare the detection probability of proposed non-uniform quantized exponential
entropy-based detection with entropy-based scheme based on power spectral, Shannon entropy-based
detection and energy detection. False alarm probability Pf is 0.1, the variation range of SNR is
[−16 dB, −4 dB] with step length 1 dB. Simulation experiments are under the conditions of the
additive white Gaussian noise (AWGN) channel. Overall, the detection performance of the proposed
scheme is better than several other solutions. Among which, the NQEE detection conducts non-uniform
quantization for probability space according to the characteristics of the spectrum obeying Rayleigh
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distribution, which ensures that the entropy estimation achieves the maximum, thus its performance
is superior to other detection schemes. In addition, the NQEE spectrum detection scheme overcomes
the detection failure problem of Shannon entropy on the basis of NQSE, and its detection performance
is apparently superior to the NQSE algorithm. In particular, when detection probability Pd is equal to
0.9, the SNR of the NQEE is about −10 dB, realizing a performance improvement effect of about 2 dB
when compared with SASE of −8 dB.
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Figure 6. Detection performance against SNR comparison of the detectors.

When SNR is equal to−10 dB, the simulation about the relationship between detection probability
Pd and false alarm probability Pf is carried out and the receiver operating characteristics (ROC)
curves are shown in Figure 7. Obviously, the NQEE scheme has the best detection performance.
Considering Pf = 0.1, detection probability of NQEE and SASE are 0.9357 and 0.6960, respectively;
thus, the performance promotion of NQEE is roughly 0.24. When Pf is greater than 0.3, the detection
probability of four kinds of entropy-based schemes are all greater than 0.9, but, in general, we do not
care much about the detection performance under high false alarm probability. Due to the standard of
the IEEE 802.22 working group, a false-alarm probability less than or equal to 0.1 is the most conducive
for full use of valuable spectrum resources. Hence, the detection performance under low false alarm
probability should mainly be considered.

The above simulation and analysis verify that NQEE outperforms similar entropy detection schemes.
Besides detection performance, the robustness against noise uncertainty is also presented as a significant
measure factor in sensing schemes. While energy detection is very sensitive to the variation of the
background noise. Based on this, the simulation concerning the detection performance of NQEE and
energy detection under noise uncertainty is conducted in Figure 8. The change range of background
noise power in the experiment is [−98 dBm, −93 dBm], and SNR is set as −12 dB.

In Figure 8, Pf and Pd of the exponential entropy-based detection remain unchanged with the
noise power varying, respectively remaining at 0.6825 and 0.1, which indicates that noise uncertainty
cannot affect the performance of the novel entropy-based scheme, and the noise power is −95.5 dBm
when Pf of the energy detection and the NQEE detection are both equal to 0.1. The energy detector
is extremely sensitive to the noise power uncertainty, and Pf and Pd become unsatisfactory with the
noise uncertainty larger than only 0.5 dBm. Thus, the energy detection with a fixed threshold is hardly
applicable to actual networks due to the background noise fluctuating in almost all of the practical
communication systems.
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Figure 7. ROC curves comparison of the detectors when SNR is equal to −10 dB.
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Figure 8. The relationship between detection performance and noise power uncertainty when
SNR = −12 dB.

Under the condition that primary signals exist in the authorized spectrum, the simulation about
the relationship between exponential entropy and SNR is shown in Figure 9. Sampling numbers are
N1 = 512, N2 = 1024, interval numbers are L1 = 12, L2 = 16, and L3 = 20, and the changing range of SNR
is [−16 dB, −6 dB]. It can be seen that the exponential entropy estimation gets smaller with the increase
of SNR. After confirming the decision threshold, detection probability has obvious improvement as
SNR increases. On the other hand, it can be derived through the comparisons of three curves that
exponential entropy estimation reduces with the reduction of L, thus reducing section numbers is
also considered as feasible way to improve detection probability under low SNR. In addition, the
sampling number also influences the change of entropy estimation. In this experiment, the entropy
estimate index decreases with the increase of sampling points, and detection probability increases
with the increase of sampling points. In the case of high SNR, the effect that sampling points exert on
exponential entropy estimation weakens.
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∆ is a significant parameter in an exponential entropy-based CSS scheme, and the setting of its
value should be carefully considered. As shown in Figure 10, we study the relationship between SNR
and detection probability Pd: false alarm probability Pf = 0.1 and SNR changes from −12 dB to −4 dB.
Parameter ∆ is, respectively, set as 0.1, 0.2, 0.3, and 0.4. Sample number is 1024, and the number of
SUs involved in the CSS M is equal to five. The simulation of exponential entropy-based detection,
power spectral entropy-based detection, and energy detection are also shown as contrast curves in
the picture. For the fixed SNR, when ∆ increases, the detection probability Pd also increases. The reason
for this phenomenon is that the probability of exponential entropy estimation information falling into
[λ + ∆, λ− ∆] gets larger with the increase of ∆; therefore, the performance of the NQEE-CSS scheme
presents an obvious increase. When ∆ > 2, the growth rate of detection performance is very small,
almost remaining the same. In addition, as mentioned earlier, the detection performance of exponential
entropy-based detection method is superior to the power spectrum entropy detection and the energy
detection algorithm.
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Figure 9. The relationship between exponential entropy and SNR.
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Figure 10. Performance of CSS schemes for different ∆.
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We demonstrate the detection performance of proposed exponential entropy CSS algorithm in
Figures 11 and 12. In Figure 11, the SNR range is set as [−16 dB, −4 dB], Pf is 0.1, N = 1024, parameter
∆ is 0.2, and simulation is under the channel of AWGN. The performance of exponential entropy-based
detection and power spectral entropy detection with a single secondary user is also analyzed. From the
simulation results in Figure 11, we can see that the Pd performance of the NQEE-CSS method is
much better than the other three traditional cooperative entropy-based detection schemes (AND, OR,
and VOTING rules). Especially when SNR is equal to -12dB, the proposed algorithm possesses the
0.162, 0.278 and 0.394 promotion of detection probability, compared with three kinds of traditional
collaborative detection methods (based on the exponential entropy), which proves that the proposed
CSS algorithm has the superior detection performance with low SNR and is suitable for the actual
wireless environment.
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Figure 11. Detection performance against SNR comparison of the entropy-based collaborative detectors.
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Figure 12. ROC curve comparison of the entropy-based cooperative detectors.

The ROC performances of these entropy-based collaborative detectors are also analyzed and
the corresponding ROC curves are depicted in Figure 12. The parameters of these detectors are



Symmetry 2016, 8, 112 15 of 16

the same as those set in Figure 7. From the simulation results in Figure 12, we can see that the
ROC performance of the cooperative exponential entropy-based detection scheme is obviously much
better than that of the other detectors, especially under the condition of low false alarm probability.
When Pf = 0.1, the detection probability of exponential entropy CSS achieves 0.534 promotion to the
VOTING-CSS scheme.

6. Conclusions

In order to avoid detection failure phenomenon of Shannon entropy and tackle the problem of the
maximum entropy distribution in the absence of PUs, a novel exponential entropy-based cooperative
spectrum sensing scheme with a multi-fusion rule is designed in this paper. Local exponential
entropy-based estimations are divided into reliable and unreliable information entropy areas according
to the decision area classification rule. SUs transmit one bit or two bits to the fusion center for
the multi-fusion rule. The new cooperative scheme is proved to achieve much better performance
than AND, OR, and VOTING rule CSS schemes. Moreover, the scheme is robust against the
noise uncertainty.
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