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Abstract: In the present paper, we study helicoidal surfaces in the three-dimensional isotropic space
I3 and construct helicoidal surfaces satisfying a linear equation in terms of the Gaussian curvature
and the mean curvature of the surface.
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1. Introduction

Introduced in 1861 [1], a Weingarten surface in the Euclidean three-dimensional space E is
a surface M, whose mean curvature H and Gaussian curvature K satisfy a non-trivial relation
®(H,K) = 0. Such a surface was introduced by Weingarten. The class of Weingarten surfaces is
remarkably large, and it consists of intriguing surfaces in the Euclidean space: the constant mean
curvature surfaces, the constant Gaussian curvature surfaces and all rotational surfaces.

As a special case of Weingarten surfaces, we consider that the Weingarten relation @ is linear in
its variables. That is, P satisfies the following relation

aH+bK=c¢ 1)

for a, b, and c are not all zero real numbers. Such a surface with the Equation (1) is said to be a linear
Weingarten surface (briefly, LW-surface). Especially, in the case for a = 0 or b = 0 in (1), LW-surfaces
are Weingarten surfaces either with a constant Gaussian curvature or with a constant mean curvature,
respectively. The classification of Weingarten surfaces and linear Weingarten surfaces in the general
case is almost completely open today. Several geometers are studying Weingarten surfaces and linear
Weingarten surfaces in the ambient spaces, and many interesting results can be found in [2-14] etc.

2. Preliminaries
The three-dimensional isotropic space I> was introduced by Strubecker in the 1940s, and it is
based on the following group Gg of affine transformations (x,y,z) — (%,7,Z) in R?,
X=a+xcos¢ —ysing,
7=b+xsing + ycos¢,
Z=c+cx+cytz

where a, b, c,cq,cp, ¢ € R. Such affine transformations are called isotropic congruence transformations
or isotropic motions of I® (cf. [15]). We see that isotropic motions appear as Euclidean motions
(a translation and a rotation) in the projection onto the xy-plane; the result of this projection
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P=(x,y,z) = P = (x,y,0) is called "top view". Hence, an isotropic motion is composed of
a Euclidean motion in the xy-plane and an affine shear transformation in the z-direction.

On the other hand, the isotropic distance of two points—P = (x1,¥1,21) and Q = (x2, Y2, z2)—is
defined as the Euclidean distance of the top views, i.e.,

d(P,Q); = \/(Xl —x2)2 4+ (y1 — y2)% ()

In fact, two points (x,y,z;) (i = 1,2) with the same top views have the isotropic distance of zero,
called "parallel points". The isotropic metric (2) degenerates along z-parallel lines, called "isotropic
lines". Isotropic angles between straight lines are measured as Euclidean angles in the top view.
There are two types of planes in I3: isotropic planes are planes parallel to the z-direction, and otherwise
they are non-isotropic planes.

Let x = (x1,¥1,z1) and y = (x2,12,22) be vectors in 3. The isotropic inner product of x and y is
defined by

2122, if ;=0 and y; =0
(xy)i = L l ©)
X1X2 + Y1Y2, if otherwise.
We call a vector of the form x = (0,0,z) in I3 an "isotropic vector", and a "non-isotropic

vector" otherwise.
Consider a C"-surface M, r > 1,1in I° parameterized by

X(u,v) = (x(u,v),y(u,0),z(u,v)).

A surface M immersed in I° is called admissible if it has no isotropic tangent planes. We restrict
our framework to admissible regular surfaces.
For such a surface, the coefficients g;; (i,j = 1,2) of its first fundamental form are given by

811 = <Xu/ Xu>ir 812 = <Xu/ Xv>i/ 822 = <Xv/ Xv>i/

where X, = %—fj and X, = a—i}( On the other hand, the unit normal vector of M is always the isotropic
vector (0,0, 1) since it is perpendicular to all tangent vectors to M. The coefficients h;; (i,j = 1,2) of
the second fundamental form of M are calculated with respect to the normal vector of M and they are
given by

_ det( X, Xy Xy) _ det(X,p Xy Xo) _ det( Xy Xy Xy)
hW=———-, hp=——-—", hp=— —=—".

12 22
det(g;;) det(g;;) det(g;j)

The isotropic Gaussian curvature K and the isotropic mean curvature H are defined by

_ M o S11h2 — 28122 + §0hn
det (gij) ! ZdEt(gij)

(4)

The surface M is said to be isotropic flat (resp. isotropic minimal ) if K (resp.H) vanishes (cf. [16]).

An isotropic three-dimensional space, which is one of the Cayley-Klein spaces defined from
the projective three-dimensional spaces, is obtained from the Euclidean space by substituting the
usual Euclidean distance with the isotropic distance. The work of surfaces with special properties
in an isotropic three-dimensional space has important applications in several applied sciences, e.g.,
computer science, image processing, architectural design and microeconomics, see [15].

In this paper, we study helicoidal surfaces in an isotropic three-dimensional space. The surfaces
are invariant by an isotropic motion and a translation. The main purpose of this paper is to construct
helicoidal surfaces in an isotropic three-dimensional space satisfying the linear Weingarten relation (1).
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3. Main Results

In this section, we completely construct linear Weingarten helicoidal surfaces in an isotropic
three-dimensional space I° in terms of the Gaussian curvature and the mean curvature of the surface.
To define helicoidal surfaces in an isotropic space I3, we consider a curve v lying in the isotropic
xz-plane or yz-plane without loss of generality. Then, the profile curve -y is parameterized as

() = (f(u),0,8(u)) or y(u)=(0,f(u)gu)),

where f and g are smooth functions. Together with the Euclidean rotations in the isotropic space I3,
given by the normal form (in affine coordinates)
X =xcos¢ —ysing,
7 = xsin¢g +ycos¢, ¢ R,
Z,

I\]
Il

and a translation, a helicoidal surface M in I° can be parameterized by

cosv —sinv 0 f(u) 0
X(u,v) = | sinv cosv 0 0 +ov]| 0
0 o 1)\ ¢ ! ©®)
= (f(u)cosv, f(u)sinv, g(u) + hv)
or
cosv —sinv 0 0 0
X(u,v) = | sinv cosv 0 flu) | +of O
0 o 1)\ ¢ ! ©)

(—f(u)sinv, f(u)cosv, g(u) + hv),

where I € R. Then, the helicoidal surfaces given by (5) and (6) are locally isometric. Our study is
concentrated on the helicoidal surface given by (5).

Suppose that a profile curve y(u) = (f(u),0,¢(u)) is a unit speed curve. Then we can take
f(u) = u. Thus, a helicoidal surface in I® is parameterized by

X(u,v) = (ucosv,usinv, g(u) + hv),

where u € (0,00) and v € R. In this case, the components of the first fundamental form of M are
given by
gn=1 gn=0 gn=1°

and the components of the second fundamental form of M are

h
hi=g", hp= —y 2= ug'.
Since M is a non-degenerate surface, u # 0. From now on, " '/ means the partial derivative with
respect to the parameter # unless mentioned. Thus, the Gaussian curvature K and the mean curvature
H of M are given by

Ll3 ! //_h2
K==88—, ™)
and
g
H=2=+4". (8)
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Let M be a linear Weingarten helicoidal surface in an isotropic three-dimensional space satisfying
the condition aH + bK = ¢, where a,b,c € R. It is well-known that surfaces with a constant
Gaussian curvature (b = 0) and a constant mean curvature (@ = 0) are trivial solutions of linear
Weingarten surfaces. On the other hand, Aydin [17] classified all helicoidal surfaces in an isotropic
three-dimensional space with a constant Gaussian curvature and a constant mean curvature.

To obtain non-trivial solutions of linear Weingarten surfaces, we consider

aH+K=b, abeR, a#0. 9)
Now, we discuss a helicoidal surface satisfying (9). Put
A=ug. (10)

Then (7) and (8) can be rewritten as the form

1/A2 Y
K_u(ZLtz+2L12>' (1)
1,
H=_A, (12)

respectively.
Suppose that M is a non-trivial linear Weingarten surface. Then from (11) and (12),

Equation (9) implies
1, 1/42 Y

After solving the ordinary differential equation, we obtain
A% 420U A+ 1? — bu* —2cu* =0

for some constant c. Thus, we have

A= —au®+ \/(az +b)u* + 2cu? — h2. (13)

By combining (10) and (13), one yields

§(u) = —yo+ [ of(@@ 4 byt + 202 —2du+d, dER (14)

In (14), there are two functions for g. Without loss of generality, we take the sign + in the above
expression (the reasoning is analogous with the choice—).

On the other hand, we can calculate the integral term in (14) with the help of the result in
(see [17], page 7), it follows that

1 5,1 h cu? — h?
u) = —=au® + =/ (a® + b)u* + 2cu® — h?2 — = tan™ !
8t) 2 2\/( ) 2 <h\/(a2+b)u4+20u2—h2 (15)

¢ In

+7
2vVa? +b

Consequently, we have proven the following result.

2c 4 2(a® + b)u® +2v/a2 + b\/([/z2 +b)u* +2cu? — h?| + d.

Theorem 1. Let M be a helicoidal surface in an isotropic three-dimensional space parameterized by

X(u,v) = (ucosv,usinv, g(u) + hv).
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If M is a non-trivial linear Weingarten surface satisfying aH + K = b with a,b € R,a # 0, then the
function g is given by (15).

Remark 1. Ifa = 0in (9) (i.e.,, K is constant.), Theorem 1 is the same as Theorem 3.1 in [17].

Remark 2. Fora =b =c = 1and h = 1in (15), we have the LW helicoidal surface (see Figure 1).

Figure 1. A helicoidal surface with H + K = 1.

In the special case that M is a rotational surface (i.e., # = 0) in an isotropic three-dimensional
space, we have the same result with Theorem 3.2 in C")grenmig’s work as follows:

Corollary 1. [18] Let M be a rotational surface in an isotropic three-dimensional space parameterized by
X(u,v) = (ucosv,usinv, g(u)).

If M is a non-trivial linear Weingarten surface satisfying aH + K = b with a,b € R,a # 0, then the
function g is given by

g(u) = e + %u (a® +b)u? +2c

2

c
+———In|2c+2(a* + b)u® + 2u/a? + b/ (a% + b)u? + 2¢| + d.
— (@ + by + 20 /a2 + by /(a2 + b)

Remark 3. Fora = b = c = 1 in Corollary 2, we have the LW rotational surface (see Figure 2).
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Figure 2. A rotational surface with H + K = 1.
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