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Abstract: Topological indices and polynomials are predicting properties like boiling points, fracture
toughness, heat of formation, etc., of different materials, and thus save us from extra experimental
burden. In this article we compute many topological indices for the family of circulant graphs.
At first, we give a general closed form of M-polynomial of this family and recover many degree-based
topological indices out of it. We also compute Zagreb indices and Zagreb polynomials of this family.
Our results extend many existing results.
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1. Introduction

A number, polynomial or a matrix can uniquely identify a graph. A topological index is a numeric
number associated to a graph which completely describes the topology of the graph, and this quantity
is invariant under the isomorphism of graphs. The degree-based topological indices are derived from
degrees of vertices in the graph. These indices have many correlations to chemical properties. In other
words, a topological index remains invariant under graph isomorphism.

The study of topological indices, based on distance in a graph, was effectively employed in 1947 in
chemistry by Weiner [1]. He introduced a distance-based topological index called the “Wiener index”
to correlate properties of alkenes and the structures of their molecular graphs. Recent progress in
nano-technology is attracting attention to the topological indices of molecular graphs, such as
nanotubes, nanocones, and fullerenes to cut short experimental labor. Since their introduction, more
than 140 topological indices have been developed, and experiments reveal that these indices, in
combination, determine the material properties such as melting point, boiling point, heat of formation,
toxicity, toughness, and stability [2]. These indices play a vital role in computational and theoretical
aspects of chemistry in predicting material properties [3–8].

Several algebraic polynomials have useful applications in chemistry, such as the Hosoya
Polynomial (also called the Wiener polynomial) [9]. It plays a vital role in determining distance-based
topological indices. Among other algebraic polynomials, the M-polynomial—introduced recently
in 2015 [10]—plays the same role in determining the closed form of many degree-based topological
indices. Other famous polynomials are the first Zagreb polynomial and the second Zagreb polynomial.

A graph G is an ordered pair (V, E), where V is the set of vertices and E is the set of edges. A path
from a vertex v to a vertex w is a sequence of vertices and edges that starts from v and stops at w.
The number of edges in a path is called the length of that path. A graph is said to be connected if there
is a path between any two of its vertices. The distance d(u, v) between two vertices u, v of a connected
graph G is the length of a shortest path between them. Graph theory is contributing a lion’s share in
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many areas such as chemistry, physics, pharmacy, as well as in industry [11]. We will start with some
preliminary facts.

Let G be a simple connected graph and let uv represent the edge between the vertices u and
v. The number of vertices of G, adjacent to a given vertex v, is the “degree” of this vertex, and
will be denoted by dv. We define Vk = {vεV(G)|dv = k}, Ei,j = {uvεE(G)|du = j and dv = i},
δ = Min{dv|vεV(G)}, 4 = Max{dv|vεV(G)}, and mij as the number of edges uv of G such that
{dv, du} = {i, j}. The M-polynomial of G is defined as:

M(G, x, y) = ∑
δ≤i≤j≤4

mijxiyj (1)

Active research is in progress, and many authors computed M-polynomials for different types of
nonmaterial, for example see [12–16] and the references therein.

The Wiener index of G is defined as:

W(G) =
1
2 ∑

(u,v)
d(u, v) (2)

where (u, v) is any ordered pair of vertices in G. Gutman and Trinajstić [11] introduces important
topological index called first Zagreb index, denoted by M1(G), and is defined as:

M1(G) = ∑
uv∈E(G)

(du + dv) (3)

The second Zagreb index M2(G) and the second modified Zagreb index m M2(G) are defined as:

M2(G) = ∑
uv∈E(G)

(du × dv) (4)

and:
m M2(G) = ∑

uv∈E(G)

1
du.dv

(5)

Results obtained in the theory of Zagreb indices are summarized in the review [17].
In 1998, working independently, Bollobas and Erdos [18] and Amic et al. [19] proposed general

Randić index. It has been extensively studied by both mathematicians and theoretical chemists
(see, for example, [20,21]). The Randić index denoted by Rα(G) is the sum of (dudv)α; i.e.:

Rα(G) = ∑
uv∈E(G)

(dudv)
α (6)

where α is any constant.
The symmetric division index is defined by:

SDD(G) = ∑
uvεE(G)

(
min{du, dv}
max{du, dv}

+
max{du, dv}
min{du, dv}

) (7)

These indices can help to characterize the chemical and physical properties of molecules (see [9]).
Table 1 enlists some standard degree-based topological indices and their derivation from

M-polynomial [10].



Symmetry 2016, 8, 134 3 of 8

Table 1. Derivation of topological indices from M-polynomial.

Topological Index f (x, y) Derivation from M(G, x, y)

First Zagreb x + y (Dx + Dy)(M(G; x, y))|x=y=1
Second Zagreb xy (DxDy)(M(G; x, y))|x=y=1

m M2(G) 1
xy (SxDy)(M(G; x, y))|x=y=1

General Randić αεN (xy)α (Dα
x Dα

y )(M(G; x, y))|x=y=1

General Randić αεN 1
xy

α
(Sα

x Sα
y )(M(G; x, y))|x=y=1

Symmetric Division Index x2+y2

xy (DxSy + DySx)(M(G; x, y))|x=y=1

Where Dx( f (x, y)) = x ∂ f (x,y)
∂x , Dy( f (x, y)) = y ∂ f (x,y)

∂y , Sx( f (x, y)) =
∫ x

0
f (t,y)

t dt, Sy( f (x, y)) =
∫ y

0
f (x,t)

t dt.
For a simple connected graph, the first Zagreb polynomial is defined as:

M1(G, x) = ∑
uc∈E(G)

x[du+dv ] (8)

and the second Zagreb polynomial is defined as:

M2(G, x) = ∑
uc∈E(G)

x[du×dv ] (9)

In 2013, Shirdel et al. in [22] proposed the hyper-Zagreb index, which is also degree-based,
given as:

HM(G) = ∑
uc∈E(G)

[du + dv]
2 (10)

In 2012, Ghorbani and Azimi [23] proposed two new variants of Zagreb indices; namely, the first
multiple Zagreb index PM1(G) and the second multiple Zagreb index PM2(G), which are defined as:

PM1(G) = ∏
uv∈E(G)

[du + dv] (11)

PM2(G) = ∏
uv∈E(G)

[du × dv] (12)

In this paper, we address the family of circulant graphs. We give closed forms of M-polynomial
and Zagreb Polynomials for this family. We also compute many degree-based topological indices.

Definition 1. Let n, m, and a1, . . . , am be positive integers, where 1 ≤ ai ≤ b n
2 c and ai 6= aj for all

1 ≤ i < j ≤ m. An undirected graph with the set of vertices V = {v1, . . . , vn} and the set of edges
E = {vivi+aj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}, where the indices being taken modulo n, is called the circulant graph,
and is denoted by Cn(a1, . . . , am).

The graph of C11(1, 2, 3) is shown in Figure 1.

Figure 1. C11(1, 2, 3).
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This is one of the most comprehensive families, as its specializations give some important families.
Classes of graphs that are circulant include the Andrásfai graphs, antiprism graphs, cocktail party
graphs, complete graphs, complete bipartite graphs, crown graphs, empty graphs, rook graphs,
Möbius ladders, Paley graphs of prime order, prism graphs, and torus grid graphs. Special cases are
summarized in the Table 2.

Table 2. Special cases of circulant graphs.

Graph Symbol Graph Symbol

2-path graph Ci2 (1) triangle graph Ci3 (1)
square graph Ci4 (1) tetrahedral graph Ci4 (1, 2)
5-cycle graph Ci5 (1) pentatope graph Ci5 (1, 2)
6-cycle graph Ci6 (1) octahedral graph Ci6 (1, 2)
utility graph Ci6 (1, 3) 3-prism graph Ci6 (2, 3)

6-complete graph Ci6 (1, 2, 3) 7-cycle graph Ci7 (1)
7-complete graph Ci7 (1, 2, 3) 8-cycle graph Ci8 (1)
4-antiprism graph Ci8 (1, 2) (4,4)-complete bipartite graph Ci8 (1, 3)

4-Möbius ladder graph Ci8 (1, 4) 16-cell graph Ci8 (1, 2, 3)
8-complete graph Ci8 (1, 2, 3, 4) 9-cycle graph Ci9 (1)
9-complete graph Ci9 (1, 2, 3, 4) 10-cycle graph Ci10 (1)
5-antiprism graph Ci10 (1, 2) 5-crown graph Ci10 (1, 3)

5-Möbius ladder graph Ci10 (1, 5) 5-prism graph Ci10 (2, 5)
5-cocktail party graph Ci10 (1, 2, 3, 4) (5,5)-complete bipartite graph Ci10 (1, 3, 5)

Because of this somewhat universality, circulant graphs have been the subject of much
investigation; for example, the chromatic index for circulant graphs is computed in [24]. Connectivity is
discussed in [25], and the Weiner index is computed in [26]. Exact values of the domination number
of some families of circulant graphs are given in [27]. Habibi et. al. computed the revised Szeged
spectrum of circulant graphs [28]. Multi-level and antipodal labelings for circulant graphs is discussed
in [29,30].

2. Main Theorem

We divided our main results into two parts.

2.1. Polynomials

In this section, we computed the closed forms of some polynomials.

Theorem 1. Let Cn(a1, a2, ..., am) be a circulant graph. Then, the M-Polynomial is:

M((Cn(a1, a2, ..., am), x, y) = nxn−1yn−1

Proof. Let Cn(a1, a2, ..., am), where n = 3, 4...n. and 1 ≤ ai ≤ b n
2 c and ai 6= aj when n = even and when

1 ≤ ai ≤ b n
2 c and ai < aj when n = odd be the circulant graph. From the structure of Cn(a1, a2, ..., am),

we can see that there is one partition V{1} = {vεV(Cn(a1, a2, ..., am))|dv = n}. We see that the edge set
of Cn(a1, a2, ..., am) partitions as follows:

E{n−1,n−1} = {e = uvεE(Cn(a1, a2, ..., am))|du = n− 1&dv = n− 1} → |E{n−1,n−1}| = n
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Thus, the M-Polynomial of (Cn(a1, a2, ..., am), x, y) is:

M(Cn(a1, a2, ..., am), x, y) = ∑
i≤j

mij(Cn(a1, a2, ..., am))xiyj

= ∑
n−1≤n−1

mn−1×n−1(Cn(a1, a2, ..., am))xn−1yn−1

= ∑
uvεE{n−1,n−1}

mn−1×n−1(Cn(a1, a2, ..., am))xn−1yn−1

= |E{n−1,n−1}|xn−1yn−1

= nxn−1yn−1

In the following theorem, we computed first and second Zagreb polynomials.

Theorem 2. Let Cn(a1, a2, ..., am) be a circulant graph. Then:

(1) M1(Cn(a1, a2, ..., am), x) = nx2(n−1)

(2) M2(Cn(a1, a2, ..., am), x) = nx(n−1)2

Proof. Let Cn(a1, a2, ..., am) be a complete circulant graph. The edge set of Cn(a1, a2, ..., am) has one
partition based on degree of vertices. The edge partition has n edges uv, where du = dv = n − 1.
It is easy to see that |E1(Cn(a1, a2, ..., am)| = dn−1×n−1. Now we have:

(1)

M1(Cn(a1, a2, ..., am) = ∑
uvεE(Cn(a1,a2,...,am)

x[du+dv ],

= ∑
uvεE1(Cn(a1,a2,...,am)

x[du+dv ]

= |E1(Cn(a1, a2, ..., am)|x2(n−1)

= nx2(n−1)

(2)

M2(Cn(a1, a2, ..., am) = ∑
uvεE(Cn(a1,a2,...,am)

x[du×dv ]

= ∑
uvεE1(Cn(a1,a2,...,am)

x[du×dv ]

= |E1(Cn(a1, a2, ..., am)|x(n−1)2

= nx(n−1)2

2.2. Topological Indices

In this section, we will recover some topological indices from polynomials computed in the
above section.

Theorem 3. For the circulant graph Cn(a1, a2, ..., am), we have:

(1) M1(Cn(a1, a2, ..., am)) = 2n(n− 1)
(2) M2(Cn(a1, a2, ..., am)) = n(n− 1)2

(3) m M2(Cn(a1, a2, ..., am)) =
n

(n−1)2



Symmetry 2016, 8, 134 6 of 8

(4) Rα(Cn(a1, a2, ..., am)) = n{(n− 1)2}α
(5) Rα(Cn(a1, a2, ..., am)) =

n
(n−1)α

(6) SDD(Cn(a1, a2, ..., am)) = 2n

Proof. Let f (x, y) = M((Cn(a1, a2, ..., am), x, y) = nxn−1yn−1. Then:

Dx( f (x, y)) = n(n− 1)xn−1yn−1

(Dx f (x, y))(M(Cn(a1, a2, ..., am); x, y))|x=y=1 = n(n− 1)

Dy( f (x, y)) = n(n− 1)xn−1yn−1

(Dx f (x, y))(M(Cn(a1, a2, ..., am); x, y))|x=y=1 = n(n− 1)

Sx f (x, y) =
n

n− 1
xn−1yn−1

(Sx f (x, y))(M(Cn(a1, a2, ..., am); x, y))|x=y=1 =
n

n− 1

Sy f (x, y) =
n

n− 1
xn−1yn−1

(Sy f (x, y))(M(Cn(a1, a2, ..., am); x, y))|x=y=1 =
n

n− 1

(1) M1(Cn(a1, a2, ..., am)):

(Dx + Dy) f (x, y))(M(Cn(a1, a2, ..., am); x, y))|x=y=1 = 2n(n− 1)

(2) M2(Cn(a1, a2, ..., am)):

(DxDy) f (x, y))(M(Cn(a1, a2, ..., am); x, y))|x=y=1 = n(n− 1)2

(3) m M2(Cn(a1, a2, ..., am)):

(SxSy) f (x, y))(M(Cn(a1, a2, ..., am); x, y))|x=y=1 =
n

(n− 1)2

(4) Rα(Cn(a1, a2, ..., am)):

(Dα
x Dα

y ) f (x, y))(M(Cn(a1, a2, ..., am); x, y))|x=y=1 = n(n− 1)2α

(5) Rα(Cn(a1, a2, ..., am)):

(Sα
x Sα

y ) f (x, y))(M(Cn(a1, a2, ..., am); x, y))|x=y=1 =
n

(n− 1)α

(6) SDD(Cn(a1, a2, ..., am)):

(DxSy + DySx)(M(Cn(a1, a2, ..., am); x, y))|x=y=1 = 2n

Theorem 4. Let (Cn(a1, a2, ..., am) be a circulant graph. Then:

(1) PM1(Mn) = 2(n− 1)n

(2) PM2(Mn) = {(n− 1)2}n

(3) HM(Mn) = {2(n− 1)}2(n)
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Proof. Let Cn(a1, a2, ..., am) be a complete circulant graph. The edge set of Cn(a1, a2, ..., am) has one
partition based on degree of vertices.The edge partition has n edges uv, where du = dv = n− 1. It is
easy to see that |E1(Mn)| = d(n−1)×(n−1). Now, we have:

(1)

PM1(Cn(a1, a2, ..., am) = ∏
uvεE(Cn(a1,a2,...,am)

[du + dv]

= ∏
uvεE1(Cn(Si

)[du + dv]

= {2(n− 1)}|E1(Cn(a1,a2,...,am)|

= 2(n− 1)n

(2)

PM2(Cn(a1, a2, ..., am) = ∏
uvεE(Cn(Si

[du × dv]

= ∏
uvεE1(Cn(a1,a2,...,am)

[du × dv]

= {(n− 1)2}|E1(Cn(a1,a2,...,am)|

= {(n− 1)2}n

(3)

HM(Cn(a1, a2, ..., am) = ∑
uvεE(Cn(a1,a2,...,am)

[du + dv]
2

= ∑
uvεE1(Cn(a1,a2,...,am)

[du + dv]
2

= {2(n− 1)}2|E1(Cn(a1, a2, ..., am)|
= {2(n− 1)}2(n)

3. Conclusions

In this article, we computed many topological indices for the family of circulant graphs. At first we
give a general closed form of M-polynomial of this family and recover many degree-based topological
indices out of it. We also compute Zagreb indices and Zagreb polynomials of this family. Our results
actually extend many existing results about crown graphs, Paley graphs, complete bipartite, Möbius
Ladders, any many other families; see Table 2.
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