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Abstract: We propose a method for measuring symmetry in images by using filter responses from
Convolutional Neural Networks (CNNs). The aim of the method is to model human perception
of left/right symmetry as closely as possible. Using the Convolutional Neural Network (CNN)
approach has two main advantages: First, CNN filter responses closely match the responses of
neurons in the human visual system; they take information on color, edges and texture into account
simultaneously. Second, we can measure higher-order symmetry, which relies not only on color,
edges and texture, but also on the shapes and objects that are depicted in images. We validated our
algorithm on a dataset of 300 music album covers, which were rated according to their symmetry
by 20 human observers, and compared results with those from a previously proposed method. With
our method, human perception of symmetry can be predicted with high accuracy. Moreover, we
demonstrate that the inclusion of features from higher CNN layers, which encode more abstract
image content, increases the performance further. In conclusion, we introduce a model of left/right
symmetry that closely models human perception of symmetry in CD album covers.

Keywords: symmetry perception; continuous symmetry; convolutional neural networks; aesthetics

1. Introduction

Symmetry is ubiquitous. It can be found in formations that have emerged in evolution, such as
bird wings and bugs, and in physical structures like crystals, as well as in man-made objects like
cars, buildings, or art. Symmetry as a concept refers to any manner, in which part of a pattern can be
mapped onto another part of itself [1]. While this can be done by translation (translational symmetry)
or rotation (rotational symmetry), reflectional symmetry, in which a part of a pattern is mirrored along
an axis, is special because it is highly salient for human observers [2]. Reflectional symmetry has been
linked to attractiveness in faces [3] and it is thought to serve as an indicator of normal development,
general health or the ability to withstand stress [4–6]. Symmetry was linked to beauty not only in
natural stimuli, but also in abstract patterns [7]. Together, these findings suggest that the perception
of symmetry is a general mechanism that plays an important role in our aesthetic judgment.

In mathematics, symmetry is a clean, formal concept of group theory. In contrast, symmetry
detection in computer vision is faced with real world data, which can be noisy, ambiguous and
even distorted. Nevertheless, several algorithms to detect symmetry in real world data have been
proposed [8–10]. Much work has been done regarding the detection of axes of symmetry in an
image. Continuous symmetry, as described by [11], measures the degree to which symmetry is
present in a given shape (defined by a set of points). In the present article, we introduce a novel
measure of continuous symmetry, which approximates the perception of natural images by human
observers. The aim of this measure is to indicate to which degree reflectional symmetry is present
in an arbitrary image. While this task is easily accomplished by humans, it is much harder for
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computers. One possibility to assign a measure of continuous symmetry to images is to compare
luminance values along an axis of the image, as proposed in [12]. However, this approach differs
substantially from how humans perceive real-world scenes. Instead of comparing pixels, humans
detect edges and group them into shapes, textures and, finally, into objects. Such grouping contributes
to symmetry perception by humans. Shaker and Monadjemi [13] proposed a symmetry measure
that uses edge information in gray-scale images. Although this approach goes beyond the restricted
usage of luminance intensity information, it does not take into account color and shapes. In the
present article, we propose a novel algorithm that detects symmetry in a manner that is closer to
how humans perceive symmetry. To this aim, we use filter responses from Convolutional Neural
Networks (CNNs), which have gained huge popularity among computer vision researchers in recent
years. The novelty of our measure is twofold: First, by using CNN filter responses, we take color and
spatial frequency information into account, as done by the human visual system, namely by encoding
color-opponent edges as well as color blobs and spatial frequency information [14,15]. Second, we
show that features from higher CNN layers, where more abstract image content is represented [16],
can improve the prediction of symmetry judgements of human observers even further.

Although CNNs were first proposed more than two decades ago [17,18], they have become
state-of-the-art technology for many computer vision tasks only recently, due to progress in
computing technology, such as the introduction of graphic cards for calculations, and the availability
of huge amounts of data for training. Currently, CNNs are being applied to object recognition
tasks [19,20], image description [21], and texture synthesis [22], and they have conquered other areas
like speech recognition [23]. CNNs learn a hierarchy of different filters that are applied to an input
image, enabling them to extract useful information. The training algorithm works in a supervised
manner, which means that, given an input image, the output is compared to the target output so that
an error gradient can be computed. Using backpropagation, parameters of the model are changed so
that the error is minimized and the network gets better at solving the task at hand.

In our study, we use filter responses from CNNs that were trained on millions of images of
objects [24] for measuring continuous symmetry in images. To validate our results, we collected
a dataset of 300 different CD album covers and asked human observers to rate them according to
their left/right symmetry. CD album covers are especially suited for this task because they offer a
wide variety and different degrees of symmetry. For each of the 300 images, the subjective symmetry
ratings were compared to the symmetry measure obtained by our algorithm.

2. Materials and Methods

2.1. Measuring Continuous Symmetry Using Filter Responses from Convolutional Neural Networks

As mentioned above, CNNs learn a hierarchy of different filters that are applied to an input
image. Filters reside on layers, where higher layers tend to extract more and more abstract features
from an image, compared to the previous ones. Different layer types have been proposed and are
investigated in ongoing research. The model we use in our experiments, referred to as CaffeNet, was
proposed by [19] and is provided as a part of the Caffe Library [24]. It consists of a total of 8 building
blocks, each consisting of one or more different layer types: Convolutional layers, in which the output of
a previous layer is convolved with a set of different filters, pooling layers, in which a subsampling of the
previous layer is performed by taking the maximum over equally sized subregions, and normalization
layers, which perform a local brightness normalization. Several fully-connected layers that are stacked
on top of a network learn to map extracted features onto class labels. Interestingly, the filters on
the first layer tend do develop oriented Gabor-like edge detectors, akin to those found in human
vision, when trained on huge datasets containing millions of natural images [25] (see Figure 1). In our
experiments, we drop the fully connected layers on top, which allows us to resize the input to have
a dimension of 512× 512 pixels. Using this modification of the CaffeNet model [24], we propose an
algorithm that measures continuous left/right mirror symmetry of natural images, as follows.
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First, every image is fed to the network, which yields 96 filter response maps after the first
convolutional layer, 256 after the second, 384 after the third and fourth, and 256 after the last
convolutional layer. Using these filter responses, we then build a histogram of the maximum
responses of equally sized, non-overlapping subregions of these maps, i.e., we perform a max-pooling
operation over a grid of equally sized areas (patches). In the remainder of this article, a patch level of n
refers to a tiling of the filter response maps into n× n subregions.

Using convolutional layer l ∈ {1, 2, ..., 5}, this procedures provides us with a max-pooling map
Il , which has three dimensions: two positional parameters of the subimage, on which the max-pooling
was performed, and one dimension that holds the maximum responses in that subimage for each
filter. We then flip the image along the middle vertical axis and repeat the same procedure for the
flipped version, which provides us with another five max-pooling maps Fl .

In order to measure the reflectional symmetry of an image, we measure the asymmetry of the
max-pooling maps Il and Fl by calculating how different the right and the left side of any given image
are, using the following equation:

A(Il , Fl) =
∑x,y, f |Il(x, y, f )− Fl(x, y, f )|

∑x,y, f max(Il(x, y, f ), Fl(x, y, f ))
(1)

where x and y iterate over all subimages and f iterates over all filters on layer l. Subtracting A(Il , Fl)

from one yields our final measure of symmetry:

S(Il , Fl) = 1− A(Il , Fl) (2)

This measure is bounded between zero and one (for asymmetric images and for highly
symmetric ones, respectively).

Figure 1. Filters of the first convolutional layer (conv1) of the Convolutional Neural Networks (CNN)
architecture used in our experiment (CaffeNet; [24]). The filters detect oriented luminance edges
and different spatial frequencies. Color is detected in form of oriented color-opponent edges and
color blobs.

2.2. Image Dataset

In order to evaluate the algorithm proposed in Section 2.1, we used a dataset of 300 CD album
covers that were collected from the internet in 2015 (kindly provided by Ms. Maria Grebenkina,
University of Jena School of Medicine). Images were equally distributed between three different
music genres (classic music, pop music and metal music). All cover images had a resolution of
500 × 500 pixels, or were down-sampled to this size by bicubic interpolation if the original image
had a higher resolution. A complete list of the 300 CD covers used in this study is provided in
Supplementary Table S1. The dataset is made available on request for scientific purposes (please
contact author C.R.).
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(a) Calculated Symmetry: 0.98 (b) Calculated Symmetry: 0.53 (c) Calculated Symmetry: 0.23

Figure 2. Representative covers and their respective calculated left/right symmetry values, which
were obtained with first-layer filters at patch level 17. The images are of high symmetry (a);
intermediate symmetry (b); and low symmetry (c); respectively. Due to copyright issues, we cannot
reproduce covers used in our study here. Copyright: (a) author A.B.; (b) Graham James Worthington,
CC BY-SA 4.0; and (c) Musiclive55, CC BY-SA 4.0.

2.3. Rating Experiment

Images of the 300 CD album covers (see above) were rated for their symmetry.
Twenty participants (21–62 years old; Mean = 36 years; 6 male), mostly medical students or employees
of the basic medical science department, participated in the experiment. All participants reported to
have corrected-to-normal vision. Images were presented on a calibrated screen (EIZO ColorEdge
CG241W, 1920 × 1200 pixels resolution) on a black background. A chin rest ensured a constant
viewing distance of 70 cm. The images extended 500× 500 pixels on the screen (135 mm× 135 mm,
corresponding to 11× 11 degrees of visual angle).

The study design was conducted in line with the ethical guidelines of the Declaration of
Helsinki on human participants in experiments. The Ethics Committee of Jena University Hospital
approved the procedure. Prior to participating in the study, all participants provided informed
written consent on the procedure of the study. The participants were tested individually in front
of the screen in a shaded room with the windows covered by blinds. First, the experimenter gave
the instructions for the experiment. The participant was asked to rate the presented image according
its left/right symmetry. The participants started the experiment with a mouse click. Then, for the
first trial, a fixation cross appeared on the screen for between 300 and 800 ms followed by the first
image. The question displayed on the screen below the image was “How symmetric is this image?”
The participant rated the presented images on a continuous scale that was visualized as a white
scoring bar on the bottom of the screen. The extremes of the scale were labeled as “not symmetric”
and “very symmetric”, respectively. Immediately after the response, the second trial with the next
image was initiated, and so on. Images were presented in random order. After each of 100 trials,
participants were allowed to take a rest for as long as they wished. The final symmetry rating value
for each cover was defined as the median of the ratings of all 20 participants. To test for normality of
the resulting data, D’Agostino and Pearson’s normality test [26] was used.

3. Results

In order to validate the computer algorithm proposed in the present work, 20 participants rated
the left/right symmetry of 300 covers from CD albums featuring pop music, metal music or classic
music. For 97 covers, the distribution of ratings was not normally distributed (p < 0.05). As a
representative value for a cover, we thus decided to use the median of all ratings for this cover.
Figure 3 shows box-plot diagrams of the resulting subjective ratings for the three music genres.
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Median symmetry is highest for covers of metal music, intermediate for pop music, and lowest for
covers of the classic genre. The symmetry ratings for all three music genres span a wide range of
values, including extreme values. Consequently, the cover images seem sufficiently diverse with
respect to their symmetry to serve as the ground truth in the validation of our model of left/right
symmetry perception by human observers.
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Figure 3. Subjective ratings for left/right symmetry in CD album covers of three music genres.

In order to maximize the correlation between the subjective ratings and the symmetry values
calculated with our algorithm (see Section 2.1), we modified the following two parameters: First, we
are free to chose which of the five convolutional layers of the CaffeNet model serves as a basis for
the calculations. Second, we can decide how many subregions to use in the max-pooling operation.
We therefore tested all five layers of the model. In addition, for layers conv1 and conv2, we obtained
results for patch levels 2–32 and, for the upper layers, for patch levels 2–31 (note that the number
of patches is restricted by the size of the response maps, which is 31 × 31 pixels for layers above
conv2). We calculated our measure of symmetry for each of these parameter configurations (see
Figure 2 for examples) and compared results with the human ratings. Because the distribution of
ratings for many covers was not normally distributed (p < 0.05, D’Agostino and Pearson’s normality
test), Spearman’s rank coefficients were calculated. Figure 4a plots the coefficients for the different
model configurations. The correlation coefficients obtained for our model ranged from 0.64 (for
convolutional layer 1 using patch level with 2 patches squared) to 0.90 (for convolutional layer 5
with 6 patches squared). Additionally, we provide the RMSE of a linear fit (Figure 4b), a quadratic fit
(Figure 4c) and a cubic fit of the distributions (Figure 4d) to better understand the relation between
our measure and the subjective ratings. Resulting trends are similar to those of the correlation analysis
(Figure 4a); the quadratic and cubic models have a lower RMSE than the linear model, which indicates
they provide a better fit of the relation between ratings and our measure.

For comparison, we implemented the symmetry measure recently proposed by [12] and
measured a correlation of 0.34 for their model. Thus, all configurations tested in our model
outperformed the previously proposed method. We also tried to compare our results with the
approach described in [13]. However, due to missing details regarding the filtering process used
in [13], we were not able to reproduce their results.

In our model, convolutional layer 1 performed worst with 2 patches squared, but results for
this layer improved when more patches were used, i.e., when we use more, but smaller max-pooling
regions. A plateau is reached at around 10 patches squared with a maximum correlation of 0.80 peak
at 17 patches (Figure 4a).
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Figure 4. (a) Spearman’s rank coefficients for the correlation between the subjective ratings and
calculated values of left/right symmetry. Subjective ratings are plotted as a function of the number
of subimages in the model for different layers of the CaffeNet model. The model parameters were
systematically varied. The patch level squared corresponds to the number of subimages. The RMSE
values of (b) a linear fit; (c) a quadratic fit and (d) a cubic fit show similar trends for all configurations.
With quadratic and cubic polynomials, lower errors were obtained compared to the linear fit, which
indicates that the relation between our measure and the subjective ratings is not linear.

Interestingly, the correlations between human ratings and our measure increase when higher
layers of the network are used. For the second convolutional layer, the correlation peaks at 0.85
with 11 patches and then drops steadily as more patches are used, performing even worse than
convolutional layer 1 at around 24 patches and above. The same can be observed for layers above
layer 2 where the correlations peak at smaller number of patches and then drop rapidly. Specifically,
the peak is reached at around 8 patches squared for layer 3 and 4, and at 6 patches squared for the
highest (fifth) layer (see Figure 4).

In Figure 5, median symmetry ratings for each image are plotted as a function of the values
calculated for two model configurations with high correlations. For both configurations, the rated
and calculated values seem to correspond better at the extremes of the spectrum, i.e., for symmetry
values closer to 0 or 1. In the mid-part of the spectrum, the two values correlated less well for
the individual images. To visualize whether similar difference can also be observed at the level
of individual observers, Figure 6 plots the standard deviation of all ratings for each cover over its
median rating. The resulting plot shows an inverse u-curve shape, which means that the standard
deviation of ratings is lower for highly symmetric covers and highly asymmetric covers, i.e., at the
extremes, compared to symmetry values at the mid-part of the rating spectrum. In conclusion, while



Symmetry 2016, 8, 144 7 of 10

people tended to agree whether an image is highly symmetric or highly asymmetric, judgments show
a higher deviation for images not falling into one of the extremes.
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(a) Best quadratic fit: f (x) = 0.76x2 + 1.03x− 0.24
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(b) Best quadratic fit: f (x) = −1.86x2 + 3.95x− 0.85

Figure 5. Scatter plot of rated symmetry values versus calculated symmetry values for two different
configurations of the model (a, layer 1 with 17 patches squared, correlation of 0.80; b, layer 2 with
11 patches squared, correlation of 0.85). Each dot represents one cover image. Metal music covers
are shown in black, pop music covers in cyan and classic music covers in magenta. The blue curve
represents the best quadratic fit, as determined from the plots shown in Figure 4c.
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Figure 6. Standard deviation of the ratings of 20 participants for 300 CD album cover images, plotted
as a function of the median rating for the covers. Each dot represents one cover image. Metal music
covers are shown in black, pop music covers in cyan and classic music covers in magenta.

4. Discussion

In the present study, we introduce a novel computational measure of left/right symmetry that
closely matches human perception, as exemplified for symmetry ratings of 300 CD album covers by
human participants. Using CNN filter responses in our measure has two main advantages. First,
CNN filters of the first layer are thought to resemble edge detectors akin to those found in the
human visual system (Gabor-like filters [27]), as well as color detectors in form of color blobs and
opponent color edges [19,25] (see Figure 1 for an illustration of filters used on conv1, the first layer).
Similar to human vision, we can take luminance, color and spatial frequencies in an image into
account simultaneously by using features from lower layers of the CNN. Second, because features are
becoming increasingly abstract when using higher layers for the max-pooling maps, our symmetry
measure is more likely to reflect human perception of symmetry because it takes into account the
grouping of visual elements in the images as well as more abstract image features.
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The first advantage may explain why our method outperforms the symmetry measure based on
intensity values [12], which ignores color completely and does not deal with structural features like
oriented edges. Furthermore, we group image regions over subimages (called patches in the present
work), which makes our measure more robust with regard to image features that are somewhat
symmetric but not exactly mirrored. Comparing intensity values of pixels alone does not address
this issue. However, although we demonstrated that our approach works well for music cover art, it
remains to be investigated whether it can also be applied to other types of images.

The emergence of increasingly abstract features at higher layers of the CNN can explain some
of the trends that we observed in our experiment at different layers and for different patch sizes.
On the one hand, when the patches become too big, our measure does not perform well because there
is not much local detail taken into account. On the other hand, when regions become exceedingly
small, grouping of luminance values is no longer possible over larger areas and, consequently, our
measure does not correlate well with the ground truth data (i.e., the subjective symmetry ratings).
Higher-layer features seem to resemble human symmetry perception more closely, if patch size is
optimal at higher layers (Figure 4). We speculate that this resemblance can be explained by the fact
that, when specific features or objects are prevalent in an image, larger patches are more tolerant
regarding the exact position of these features or objects. For example, when people observe two faces
in an image, one on the left side and one on the right side, the exact pixel positions of the faces are not
critical for symmetry perception in our approach, as long as the faces have roughly corresponding
positions with respect to the left/right symmetry axis.

Although the higher layers seem to resemble human symmetry perception of the CD album
covers best, we cannot unconditionally recommend to use higher-layer features for getting the best
results with other types of stimuli. Higher-layer features are not well understood yet, despite intense
research [16,28,29]. Yosinski et al. [25] investigated how transferable learned features are between
different tasks and found that the features from the first two layers only can be considered truly
generic. Higher-layer features tend to be specific to the set of images that were used during training;
this specificity may potentially limit their usefulness when novel images are encoded by the CNNs.
Although we did not observe such a negative effect in our study, this potential problem should be
kept in mind.

In order to evaluate the correlation between subjective ratings and calculated symmetry values,
we measured Spearman’s rank (non-parametric) correlation. Thus, we did not exactly replicate
the behavioral measures, but predicted their relative strength. We observed that quadratic and
cubic models fit the relation between our measure and the subjective ratings better than a linear
model, which indicates that the relation between the two measures is not strictly linear. In other
words, our algorithm does not match the exact subjective ratings that one would get from human
observers. Rather, the algorithm predicts the relative subjective impression of symmetry in sets of
images. This correspondence is strongest when symmetry is either very prominent or almost absent.
With intermediate degrees of symmetry, human observers tend to agree less on how symmetric an
image is (Figure 6). At the same time, the correspondence with the calculated values is less precise
(Figure 5).

5. Conclusions

We propose a novel computational method that was developed to predict human left/right
symmetry ratings for complex, non-geometrical images, as exemplified by CD album covers. The aim
of the model is to closely match subjective symmetry as judged by human observers. For this purpose,
we used filters learned by CNNs because they are akin to receptive fields in the early human visual
system and get more and more abstract at higher layers of the CNNs. In order to evaluate our method,
we compared the results from the computational model with subjective ratings by 20 participants
who assessed left/right symmetry in a dataset of 300 different album covers. We evaluated different
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model configurations by calculating the correlation between the computationally obtained results and
the ratings by humans.

Results demonstrate that our algorithm outperforms a recently proposed method for measuring
continuous symmetry in an image by comparing pixel intensities [12]. Moreover, the correlation
increased from 0.80 to 0.90 when we used filters from higher layers that focus on more abstract
features. However, it remains to be established whether our approach also works for images other
than album covers. For arbitrary images, we recommend to use second-layer features because they
are known to be more universal than higher-layer features and lead to better results than first-layer
features in our study.

In future research, we will use the proposed symmetry measure to study the role of symmetry
in aesthetic perception, for example, by applying the measure to images of visual artworks
and photographs.
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