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Abstract: A vertex v is a peripheral vertex in G if its eccentricity is equal to its diameter, and periphery
P(G) is a subgraph of G induced by its peripheral vertices. Further, a vertex v in G is a central vertex
if e(v) = rad(G), and the subgraph of G induced by its central vertices is called center C(G) of G.
Average eccentricity is the sum of eccentricities of all of the vertices in a graph divided by the total
number of vertices, i.e., avec(G) = { 1

n ∑ eG(u); u ∈ V(G)}. If every vertex in G is central vertex, then
C(G) = G, and hence, G is self-centered. In this report, we find the center, periphery and average
eccentricity for the convex polytopes.
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1. Introduction

In the facility location problem, we select a site according to some standard judgment. For example,
if we want to find out the exact location for an emergency facility, such as a fire station or a hospital,
we reduce the distance between that facility and the area where the emergency happens, and if we
are to decide the position for a service facility, like a post office, power station or employment office,
we try to reduce the traveling time of all people who have been living in that district. In the construction
of a railway line, a pipeline and a superhighway, we will reduce the distance of the constructing unit
for the people living in that area. All of these situations illustrate the concept of centrality but each of
these three examples deals with different types of centers. Nowadays, centrality questions are being
studied with the help of distance and graphs. We shall observe that many kinds of centers are helpful
in facility location problems.

The most important and fundamental concept that extends to the whole of graph theory is
distance. The distance is applicable in many fields, such as graph operation, extremal problems on
connectivity, diameter and isomorphism testing. The theme of distance is used to check the symmetry
of graphs. It also provides a base for many useful graph parameters, like radius, diameter, metric
dimension, eccentricity, center and periphery, etc.

The eccentricity of the vertices in G has a fundamental importance. Recently, many indices related
to eccentricity have been derived, i.e., eccentric connectivity index, adjacent eccentric sum index,
Wiener index and eccentric distance sum [1]. The center and periphery is also based on minimum and
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maximum eccentricity, respectively. W.Goddard and O. R. Oellermann in [2] have shown that if G is
an undirected graph, then,

rad(G) ≤ diam(G) ≤ 2rad(G)

They also examined the radius and diameter of certain families of graphs in the same paper,
as follows:

1. rad(Kn) = diam(Kn) = 1 for n ≥ 2,
2. rad(Cn) = diam(Cn) =

n
2 ,

3. rad(Km,n) = diam(Km,n) = 2 if m and n is at least two,
4. rad(Pn) =

n−1
2 , diam(Pn) = n− 1.

This implies that complete graphs Kn for n ≥ 2, complete bipartite graphs Km,n where m, n ≥ 2
and all cycles are self-centered. Jordan [3] determined the diameter of a tree. Bela Bollobas [4] discussed
the diameter of random graphs. The radius and diameter of a bridge graph are determined by Martin
Farber in [5]. More general results were presented by V. Klee and D. Larman [6] and Bela Bollobas [4].
B. Hedman determined the sharp bounds for the diameter of the clique graph K(G) in terms of the
diameter of G. The idea of self-centered graphs is presented and elaborated by Ando, Akiyama and Avis
individually [7]. These self-centered graphs are extensively studied in [7–11]. The extremal size of a
connected self-centered graph with p vertices and r radius is explained by F. Buckely [12]. The center
in maximal outer planar graphs is demonstrated by A. Proskurowski in [13]. Hedetniemi [14] has
shown that every graph is the center of some graph. The center of graph G is the full graph if and
only if rad(G) = diam(G) [15]. F. Buckely and F. Harary [16] gave the concept of average eccentricity.
Average eccentricity is the sum of eccentricities of all of the vertices in a graph divided by the total
number of vertices, i.e.,

avec(G) =
1
n ∑

u∈V(G)

eG(u).

The upper bounds of average eccentricity are determined by P. Dankelman, W. Goddard and
C.S. Swart [17]. Average eccentricity is most important in communication networks. The average
eccentricity of Sierpinski graphs Sp

n is determined by Andreas, M. Hinz and Daniele Parisse [18].
Since 1980, the average eccentricity has had a great roll as a molecular descriptor in mathematical
chemistry. This is attributed to V.A. Skorobogatov and A.A. Dobrynin [19]. For more details, please
see [20–22] and the references therein.

Definition 1. For a connected graph G, the eccentricity e(v) of a vertex v is its distance to a vertex farthest
from v. Thus,

e(v) = Max{d(u, v) : u ∈ V(G)}.

Definition 2. The radius rad(G) of G is the minimum eccentricity among all vertices of G.

Definition 3. The diameter diam(G) of G is the maximum eccentricity among all vertices of G.

Definition 4. Average eccentricity is the sum of eccentricities of all of the vertices in a graph divided by the
total number of vertices, i.e.,

avec(G) =
1
n ∑

u∈V(G)

eG(u).

Definition 5. A vertex u is eccentric to a vertex v if d(u, v) = e(v).

Definition 6. A vertex v is a peripheral vertex in G if its eccentricity is equal to its diameter, and periphery
P(G) is a subgraph of G induced by its peripheral vertices. Further, a vertex v in G is a central vertex if
e(v) = rad(G), and the subgraph of G induced by its central vertices is called center C(G) of G. If every vertex
in G is a central vertex, then C(G) = G, and hence, G is self-centered.
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In the present report, we discuss the center, periphery and average eccentricity for families of
convex polytope graphs, An, Sn and Tn.

2. The Center and Periphery for Convex Polytope An

In this section, we determine the center and periphery for convex polytope An.

Definition 7. The graph of convex polytope (double antiprism) An can be obtained from the graph of convex
polytope Rn by adding new edges bi+1ci, i.e.,

V(An) = V(Rn) and E(An) = E(Rn) ∪ {bi+1ci : 1 ≤ i ≤ n}.

Theorem 1. For the family of convex polytope An, n = 2k, Cen(An) and Per(An) are subgraphs induced by
the vertices (b1, b2, ..., b2k) and {ai ∪ ci : 1 ≤ i ≤ 2k}, respectively.

Proof. For all even values of n, select a vertex a1 on the cycle (a1a2a3...ai...a2k). Then:

d(a1, ai) = i− 1, 1 ≤ i ≤ k + 1 (1)

when i = k + 2, d(a1, ai) = k− 1 and for i = 2k, d(a1, ai) = 1.
In addition, for every value of i within k + 2 to 2k, d(a1, ai) must lie between k− 1 and one, i.e.,

d(a1, ai) = 2k + 1− i; k + 2 ≤ i ≤ 2k.

Thus, to find the vertices farthest from a1 in An, consider only 1 ≤ i ≤ k + 1.
As each ai is adjacent to bi, bi−1 and each bi adjacent to ci, ci−1, therefore, (1) implies,

d(a1, bi) = i, 1 ≤ i ≤ k

d(a1, ci) = i + 1, 1 ≤ i ≤ k

For k + 1 ≤ i ≤ 2k, consider the cycle (b1b2...bk+1...bi...b2k). In this cycle, the distance between bi
and b2k is 2k− i, and b2k is adjacent to a1, therefore, the distance between a1 and bi is 2k− i + 1.

d(a1, bi) = 2k− i + 1, k + 1 ≤ i ≤ 2k.

Now, consider the cycle (c1c2...ck+1...ci...c2k). The distance between ci and c2k−1 is 2k− 1− i and
the vertex c2k−1 is adjacent to b2k and b2k adjacent to a1. It shows,

d(a1, ci) = 2k− i + 1, k + 1 ≤ i ≤ 2k− 1.

For i = 2k, d(a1, ci) = 2.
Hence, ck is a vertex farthest from a1.

e(a1) = k + 1 (2)

Thus, the eccentricity of each vertex on inner cycle (a1a2a3...ai...a2k) is k + 1.
In the same way, take cycle (b1b2...bi....b2k); the distance between b1 and bi in this cycle is,

d(b1, bi) = i− 1; 1 ≤ i ≤ k + 1 (3)

Each bi is adjacent to ai and ai+1. Therefore,

d(b1, a1) = 1, (b1, a2) = 1

For 3 ≤ i ≤ k + 1, consider the path b1 → a2 → a3 → ...→ ai. Then, the distance between ai and
a2 is i− 2. a2 is also adjacent to b1. Therefore, the distance between b1 and ai is as follows,
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d(b1, ai) = i− 1, 3 ≤ i ≤ k + 1

For k + 2 ≤ i ≤ 2k, consider the cycle (a1a2...ak+2...ai...a2k). The distance between ai and a2k is
2k− i. Further, a2k is adjacent to a1 and a1 adjacent to b1. Therefore, the distance between b1 and ai
is 2k− i + 2.

d(b1, ai) = 2k− i + 2, k + 2 ≤ i ≤ 2k

Further, bi is also adjacent to ci and ci−1; it follows from (3):

d(b1, ci) = i, 1 ≤ i ≤ k

For k + 1 ≤ i ≤ 2k, consider the cycle (c1c2...ck+1...ci...c2k). The distance between ci and c2k is
2k− i, where c2k is also adjacent to b1. Therefore,

d(b1, ci) = 2k− i + 1, k + 1 ≤ i ≤ 2k

Hence, bk+1, ak+1 and ck are the vertices farthest from b1. Therefore:

e(b1) = k, (4)

Hence, each vertex on the middle cycle (b1b2...bi....b2k) has eccentricity k.
Further, to find out the eccentricity of the vertices on the outer cycle (c1c2...ci...c2k), choose a vertex

c1 on this cycle. The distance between c1 and ci is i− 1.

d(c1, ci) = i− 1, (5)

Each ci is adjacent to bi and bi+1, i.e.,

d(c1, b1) = 1, (6)

For 3 ≤ i ≤ k + 1, consider the path c1 → b2 → b3 → ...→ bi. The distance between b2 and bi is
i− 2. As b2 is adjacent to c1, therefore, c1 and bi has the following distance,

d(c1, bi) = i− 1, 3 ≤ i ≤ k + 1

For k + 2 ≤ i ≤ 2k, consider the cycle (b1b2...bk+2...bi...b2k). The distance between bi and b2k
is 2k − i. As b2k is adjacent to b1 and b1 adjacent to c1, therefore, the distance between c1 and bi
is 2k− i + 2.

d(c1, bi) = 2k− i + 2, k + 2 ≤ i ≤ 2k.

Each bi is also adjacent to ai and ai+1, using the result of (6),

d(c1, a1) = 2, d(c1, a2) = 2

For 3 ≤ i ≤ k + 2, consider the path c1 → b2 → b3 → ...→ bi−1 → ai. In this path, the distance
between b2 and bi−1 is i− 3. bi−1 is adjacent to ai and b2 adjacent to c1. Therefore, the distance between
c1 and ai is i− 1.

d(c1, ai) = i− 1, 3 ≤ i ≤ k + 2

For k + 3 ≤ i ≤ 2k, consider the cycle (a1a2...ak+2...ai...a2k). The distance between ai and a2k is
2k− i. a2k is adjacent to a1, a1 adjacent to b1 and b1 adjacent to c1. Therefore, the distance between c1

and ai is 2k− i + 3.
d(c1, ai) = 2k− i + 3, k + 3 ≤ i ≤ 2k

This shows that ak+1 is a vertex farthest from c1. Therefore:



Symmetry 2016, 8, 145 5 of 23

e(c1) = k + 1. (7)

Therefore, (2), (4) and (7) imply,

diam(An) = k + 1 =
n
2
+ 1.

and:
rad(An) = k =

n
2

.

Consequently, Cen(An) is a subgraph induced by vertices (b1, b2, ..., b2k), while the set of vertices
{a1, a2, ..., a2k, c1, c2, ..., c2k} is the peripheral vertices. Therefore, the periphery of An is the subgraph
induced by all of these vertices.

Theorem 2. For the family of convex polytope An, n is odd.

Cen(An) = Per(An) = An.

Proof. Consider, n = 2k + 1 k ≥ 2. Select vertex a1 on the cycle (a1a2a3...ai...a2k+1). By using this,

d(a1, ai) = i− 1, 1 ≤ i ≤ k + 1 (8)

while i increases from k + 2 to 2k + 1, d(a1, ai) reduces from k to one.

d(a1, ai) = 2k + 2− i, k + 2 ≤ i ≤ 2k + 1

Thus, to find the vertices farthest from a1 in An, we have to take only those values of i that lie
between one and k + 1.

As each ai is adjacent to bi, bi−1 and each bi adjacent to ci, ci−1, therefore, (8) implies,

d(a1, bi) = i, 1 ≤ i ≤ k + 1

d(a1, ci) = 1 + i, 1 ≤ i ≤ k

For k + 2 ≤ i ≤ 2k + 1, consider the cycle (b1b2...bk+1...bi...b2k+1). In this cycle, the distance
between bi and b2k+1 is 2k + 1− i, and b2k+1 is adjacent to a1. Therefore, the distance between a1 and
bi is 2k− i + 2.

d(a1, bi) = 2k− i + 2, k + 2 ≤ i ≤ 2k + 1.

Now, consider the cycle (c1c2...ck+1...ci...c2k+1). The distance between ci and c2k is 2k − i.
The vertex c2k is adjacent to b2k+1 and b2k+1 adjacent to a1. It shows that the distance between a1

and ci is 2k− i + 2.
d(a1, ci) = 2k− i + 2, k + 1 ≤ i ≤ 2k.

For i = 2k + 1, d(a1, ci) = 2.
Hence, ck and bk+1 are the vertices farthest from a1. Therefore:

e(a1) = k + 1 (9)

Thus, the eccentricity of each vertex on inner cycle (a1a2a3...ai...a2k+1) is k + 1.
Similarly as above, the vertices b1 and bi on cycle (b1b2...bi....b2k+1) have the distance as,

d(b1, bi) = i− 1, 1 ≤ i ≤ k + 1 (10)
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Each bi is adjacent to ai and ai+1. Therefore,

d(b1, a1) = 1, (b1, a2) = 1

For 3 ≤ i ≤ k + 2, consider the path b1 → a2 → a3 → ...→ ai. Then, the distance between ai and
a2 is i− 2. a2 is also adjacent to b1. Therefore, the distance between b1 and ai is i− 1, i.e.,

d(b1, ai) = i− 1, 3 ≤ i ≤ k + 2

For k + 3 ≤ i ≤ 2k + 1, consider the cycle (a1a2...ak+3...ai...a2k+1). The distance between ai and
a2k+1 is 2k− i + 1. Further, a2k+1 is adjacent to a1, and a1 is adjacent to b1. Therefore, the distance
between b1 and ai is 2k− i + 3.

d(b1, ai) = 2k− i + 3, k + 3 ≤ i ≤ 2k + 1

Further, bi is also adjacent to ci and ci−1; it follows from (10):

d(b1, ci) = i, 1 ≤ i ≤ k + 1

For k + 2 ≤ i ≤ 2k + 1, consider the cycle (c1c2...ck+2...ci...c2k+1). The distance between ci and
c2k+1 is 2k + 1− i. c2k+1 is also adjacent to b1. Therefore,

d(b1, ci) = 2k + 2− i, k + 2 ≤ i ≤ 2k + 1

Hence, ak+2 and ck+1 are the vertices farthest from b1. Therefore:

e(b1) = k + 1. (11)

Hence, each vertex on the middle cycle (b1b2...bi....b2k+1) has eccentricity k + 1.
Further, to find out the eccentricity of the vertices on the outer cycle (c1c2...ci...c2k+1),

choose a vertex c1 on this cycle. The distance between c1 and ci is i− 1.

d(c1, ci) = i− 1, 1 ≤ i ≤ k + 1 (12)

Each ci is adjacent to bi and bi+1. Therefore,

d(c1, b1) = 1, d(c1, b2) = 1 (13)

For 3 ≤ i ≤ k + 2, consider the path c1 → b2 → b3 → ...→ bi. The distance between b2 and bi is
i− 2. As b2 is adjacent to c1, therefore, the distance between c1 and bi is i− 1.

d(c1, bi) = i− 1, 3 ≤ i ≤ k + 2

For k + 3 ≤ i ≤ 2k + 1, consider the cycle (b1b2...bk+3...bi...b2k+1). The distance between bi and
b2k+1 is 2k + 1− i. As b2k+1 is adjacent to b1 and b1 adjacent to c1, therefore, the distance between c1

and bi is 2k− i + 3.
d(c1, bi) = 2k− i + 3, k + 3 ≤ i ≤ 2k + 1.

Each bi is also adjacent to ai and ai+1, using the result of (13):

d(c1, a1) = 2, d(c1, a2) = 2
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For 3 ≤ i ≤ k + 2, consider the path c1 → b2 → b3 → ...→ bi−1 → ai. In this path, the distance
between b2 and bi−1 is i − 3. bi−1 is adjacent to ai, and b2 is adjacent to c1. Therefore, the distance
between c1 and ai is i− 1.

d(c1, ai) = i− 1, 3 ≤ i ≤ k + 2

For k + 3 ≤ i ≤ 2k, consider the cycle (a1a2...ak+3...ai...a2k+1). The distance between ai and a2k+1
is 2k + 1− i. a2k+1 is adjacent to a1 and a1 adjacent to b1. In addition, b1 is adjacent to c1. Therefore,
the distance between c1 and ai is 2k− i + 4.

d(c1, ai) = 2k− i + 4, k + 3 ≤ i ≤ 2k + 1

This shows that ak+2 and bk+2 are the vertices farthest from c1. Therefore:

e(c1) = k + 1. (14)

Consequently, (9), (11) and (14) show the smallest, In addition, the greatest eccentricity of these
vertices is k + 1. Therefore:

diam(An) = rad(An) = k + 1 =
n− 1

2
+ 1 =

n + 1
2

.

Implies:
Cen(An) = Per(An) = An.

Hence, the family of An is self-centered for odd values of n.

2.1. Average Eccentricity for Convex Polytope An

Here, we also are concerned with calculating the average eccentricity for the graph of convex
polytope An. The average eccentricity of any graph can be calculated by dividing the sum of the
eccentricities of all of the vertices to the total number of vertices (ǹ). There are three circles in the
graph of convex polytope An, and each circle consists of n vertices. Therefore, An has a total of 3n
vertices; it follows,

avec(An) =
1
n ∑

u∈V(G)

eGu (15)

By Theorem 1:

avec(An) =
1

3× (ǹ)
[n× {e(a1) + e(b1) + e(c1)}]

=
1

3× n
[n× {(k + 1) + (k) + (k + 1)}] = k +

2
3
=

n
2
+

2
3

.

and by Theorem 2,

avec(An) =
1

3× n
[n× {3(k + 1)]

= k + 1 =
n− 1

2
+ 1 =

n + 1
2

.

Therefore, we have the following result:

avec(An) =


n + 1

2
, if n = 2k + 1 ;

n
2
+

2
3

, if n = 2k.
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2.2. Illustration

Consider the graph of A8. We have labeled each of its vertices by its eccentricities. The center and
periphery are shown in Figures 1 and 2.
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Figure 1. The graph of convex polytope A8.
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Figure 2. Centrality in the graph of convex polytope A8.

3. The Center and Periphery for Convex Polytope Sn

Here, we examine the center and periphery for convex polytope Sn.

Definition 8. The graph of convex polytope (double antiprism) Sn can be obtained from the graph of convex
polytope Qn by adding new edges cici+1, i.e.,

V(Sn) = V(Qn) and E(Sn) = E(Qn) ∪ {cici+1 : 1 ≤ i ≤ n}.

For our convenience, we identify the cycle induced by the vertices (a1, a2, ..., an), (b1, b2, ..., bn),
(c1, c2, ..., cn) and (d1, d2, ..., dn) as the inner cycle, interior cycle, exterior cycle and outer cycle,
respectively.

Theorem 3. For the family of convex polytope Sn, when n is even, we have:

diam(Sn) =
n
2
+ 1.

rad(Sn) =
n
2
+ 2.
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Proof. Suppose, n = 2k, k ≥ 2. Consider the cycle (a1a2....ai...a2k). Here, the eccentricity of only one
vertex, i.e., a1, is determined, and due to the symmetry of the graph, all other vertices have the same
eccentricity as a1 on this cycle. Using this cycle,

d(a1, ai) = i− 1, 1 ≤ i ≤ k + 1. (16)

For k + 2 ≤ i ≤ 2k, d(a1, ai) varies from k− 1 to one, i.e.,

d(a1, ai) = 2k− i + 1, k + 2 ≤ i ≤ 2k.

Thus, to identify a vertex at maximum distance from a1 in Sn, take only 1 ≤ i ≤ k + 1.
As each ai is adjacent to bi, therefore,

d(a1, bi) = i, 1 ≤ i ≤ k + 1. (17)

For k + 2 ≤ i ≤ 2k, take the interior cycle (b1b2...bk+2...bi...b2k). In this cycle, the vertices bi and
b2k are at a distance 2k− i. Further, b2k is adjacent to b1 and b1 adjacent to a1. Therefore, The distance
between a1 and bi is 2k− i + 2.

d(a1, bi) = 2k− i + 2, k + 2 ≤ i ≤ 2k.

Each bi is adjacent to ci and ci−1, by using (17),

d(a1, ci) = i + 1, 1 ≤ i ≤ k. (18)

For k + 1 ≤ i ≤ 2k, consider the exterior cycle (c1c2...ck+1...ci...c2k). The vertices ci and c2k
are at a distance 2k − i. As c2k is adjacent to b1 and b1 adjacent to a1, therefore, a1 and ci are at
a distance 2k− i + 2.

d(a1, ci) = 2k− i + 2, k + 1 ≤ i ≤ 2k.

ci is also adjacent to di, so (18) implies,

d(a1, di) = i + 2, 1 ≤ i ≤ k.

For k + 1 ≤ i ≤ 2k, the vertices di and d2k are at a distance 2k − i in the outer cycle
(d1d2...dk+1...di...d2k). As d2k is adjacent to c2k, c2k adjacent to b1 and b1 adjacent to a1, therefore,
a1 and di are at a distance 2k− i + 3.

d(a1, di) = 2k− i + 3 k + 1 ≤ i ≤ 2k.

Therefore, e(a1) = k + 2.
In the same manner as above, we calculate the eccentricity of b1 in the cycle (b1b2...bi...b2k).

The distance between b1 and bi in this cycle is,

d(b1, bi) = i− 1, 1 ≤ i ≤ k + 1. (19)

and,
d(b1, bi) = 2k + 1− i, k + 2 ≤ i ≤ 2k.

Therefore, we only take values of i between one and k + 1. As each bi is adjacent to ci and ci−1,
using (19),

d(b1, ci) = i, 1 ≤ i ≤ k. (20)
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For k + 1 ≤ i ≤ 2k, consider the cycle (c1c2...ck+2...ci...c2k). The distance between ci and c2k is
2k− i. Since, c2k is adjacent to b1. Thus,

d(b1, ci) = 2k− i + 1, k + 1 ≤ i ≤ 2k.

Each ci is also adjacent to di. Therefore, (20) shows,

d(b1, di) = i + 1, 1 ≤ i ≤ k.

For k + 1 ≤ i ≤ 2k, consider the cycle (d1d2...di...d2k). The distance between di and d2k is 2k− i.
As d2k is adjacent to c2k and c2k adjacent to b1, therefore,

d(b1, di) = 2k− i + 2, k + 1 ≤ i ≤ 2k.

bi is also adjacent to ai, i.e.,
d(b1, ai) = i, 1 ≤ i ≤ k + 1.

For k + 2 ≤ i ≤ 2k, consider the cycle (a1, a2...ak+2...ai...a2k). The distance between the vertices ai
and a2k is 2k− i. As a2k is adjacent to a1, a1 adjacent to b1, therefore,

d(b1, ai) = 2k− i + 2, k + 2 ≤ i ≤ 2k.

As, dk and ak+1 are farthest from b1, therefore, e(b1) = k + 1. Next, the distance between c1 and ci
in the cycle (c1c2...ci...c2k) is i− 1.

d(c1, ci) = i− 1, 1 ≤ i ≤ k + 1. (21)

Additionally, for k + 2 ≤ i ≤ 2k,

d(c1, ci) = 2k− i + 1, k + 2 ≤ i ≤ 2k

Each ci is adjacent to di, from (21):

d(c1, di) = i, 1 ≤ i ≤ k + 1.

For k + 2 ≤ i ≤ 2k, the vertices di and d2k are at a distance 2k− i in the cycle (d1d2...dk+2...di...d2k).
The vertex d2k is adjacent to d1 and d1 adjacent to c1. Therefore,

d(c1, di) = 2k− i + 2, k + 2 ≤ i ≤ 2k.

Each ci is adjacent to bi and bi+1; Equation (17) implies,

d(c1, b1) = 1, d(c1, b2) = 1. (22)

For 3 ≤ i ≤ k + 1, b2 and bi are at a distance i− 2 in the path c1 → b2 → b3 → ...→ bi. Again, b2

is adjacent to c1; thus, we have:

d(c1, bi) = i− 1, 3 ≤ i ≤ k + 1. (23)

For k + 2 ≤ i ≤ 2k, consider the cycle (b1b2...bk+2...bi...b2k). The distance between bi and b2k is
2k− i in this cycle. As, b2k is adjacent to b1, b1 adjacent to c1. Therefore,

d(c1, bi) = 2k− i + 2, k + 2 ≤ i ≤ 2k.
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Since bi is adjacent to ai, it follows from (22) that:

d(c1, a1) = 2 , d(c1, a2) = 2

For 3 ≤ i ≤ k + 1, bi and b2 are at a distance i − 2 in the path c1 → b2 → b3 → ... → bi → ai.
The vertex bi is adjacent to ai and b2 adjacent to c1. Therefore,

d(c1, ai) = i, 3 ≤ i ≤ k + 1. ...(23)

For k + 2 ≤ i ≤ 2k, the distance between ai and a2k is 2k− i in the cycle (a1a2...ak+2...ai...a2k). a2k is
again adjacent to a1, a1 adjacent to b1 and b1 adjacent to c1. For that reason,

d(c1, ai) = 2k− i + 3, k + 2 ≤ i ≤ 2k.

Consequently, dk+1 and ak+1 are farthest from c1. Therefore, e(c1) = k + 1.
Next, take a vertex d1 on the outer cycle. In this cycle (d1d2...di...d2k),

d(d1, di) = i− 1, 1 ≤ i ≤ k + 1. (24)

Additionally,
d(d1, di) = 2k− i + 1, k + 2 ≤ i ≤ 2k.

In addition, each di is adjacent to ci,

d(d1, ci) = i, 1 ≤ i ≤ k + 1.

For k + 2 ≤ i ≤ 2k, take a cycle (c1, c2...ck+2...ci...c2k). The vertices ci and c2k are at a distance
2k− i in this cycle. In addition, c2k is adjacent to c1 and c1 adjacent to d1. Then,

d(d1, ci) = 2k− i + 2, k + 2 ≤ i ≤ 2k.

Each ci is adjacent to bi and bi+1. i.e., d(d1, b1) = 2 and:

d(d1, b2) = 2. (25)

For 3 ≤ i ≤ k + 1, the vertices b2 and bi are at a distance i− 2 in the path d1 → c1 → b2 → b3 →
...→ bi. b2 is adjacent to c1 and c1 adjacent to d1 in Sn. Therefore,

d(d1, bi) = i, 3 ≤ i ≤ k + 1, (26)

For k + 2 ≤ i ≤ 2k, the vertices bi and b2k are at distance 2k− i in the cycle (b1, b2...bk+2...bi...b2k).
b2k is adjacent to b1, b1 adjacent to c1 and c1 adjacent to d1; for this,

d(d1, bi) = 2k− i + 3, k + 2 ≤ i ≤ 2k.

In addition, bi is adjacent to ai. This implies from (25),

d(d1, a1) = 3 , d(d1, a2) = 3.

For 3 ≤ i ≤ k + 1, the vertices b2 and bi are at a distance i− 2 in the path d1 → c1 → b2 → b3 →
...→ bi → ai. bi is adjacent to ai, b2 adjacent to c1 and c1 adjacent to d1 in Sn. Therefore,

d(d1, ai) = i + 1, 3 ≤ i ≤ k + 1.



Symmetry 2016, 8, 145 12 of 23

For k + 2 ≤ i ≤ 2k, consider the cycle (a1, a2...ak+2...ai...a2k). The vertices ai and a2k are at
a distance 2k− i in this cycle. a2k is adjacent to a1, a1 adjacent to b1, b1 adjacent to c1 and c1 adjacent to
d1. As a result,

d(d1, ai) = 2k− i + 4, k + 2 ≤ i ≤ 2k.

Consequently,
e(d1) = k + 2.

Thus, it is concluded that maximum eccentricity among all of the vertices of Sn is k + 2, and the
minimum eccentricity is k + 1.

Therefore
diam(Sn) = k + 2 =

n
2
+ 2.

rad(Sn) = k + 1 =
n
2
+ 1.

The following corollary is straightforward.

Corollary 1. The center and periphery for the family of convex polytope (Sn), when n is even, are subgraphs
induced by all of the central vertices {b1, b2, ..., bi, ..., b2k, c1, c2, ...., ci, ..., c2k} and peripheral vertices
{a1, a2, ..., ai, ..., a2k, d1, d2, ..., di, ..., d2k} of Sn, respectively.

Now, we find out the radius and diameter of Sn, when n is odd.

Theorem 4. When n is odd, the family of convex polytope Sn has the radius and diameter as,

diam(Sn) =
n− 1

2
+ 3,

rad(Sn) =
n− 1

2
+ 2.

Proof. Let n = 2k + 1, k ≥ 2. Consider the cycle (a1a2....ai...a2k+1), and select a vertex a1 in it. It is
clear that,

d(a1, ai) = i− 1, 1 ≤ i ≤ k + 1

d(a1, ai) = 2k + 2− i, k + 2 ≤ i ≤ 2k + 1, (27)

Thus, the equations above lead to the proof including only 1 ≤ i ≤ k + 1 in order to find a vertex
having the greatest distance from a1 in Sn. Since each ai is adjacent to bi, therefore, (27) implies that:

d(a1, bi) = i, 1 ≤ i ≤ k + 1. (28)

For k + 2 ≤ i ≤ 2k + 1, the vertices bi and b2k+1 are at a distance 2k − i + 1 in the cycle
(b1b2...bk+2...bi...b2k+1). b2k+1 is adjacent to b1 and b1 adjacent to a1. Therefore, The distance between
a1 and bi is 2k− i + 3.

d(a1, bi) = 2k + 3− i, k + 2 ≤ i ≤ 2k + 1.

Again, each bi is adjacent to ci and ci−1, by using (28).

d(a1, ci) = i + 1, 1 ≤ i ≤ k + 1. (29)
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For k + 2 ≤ i ≤ 2k + 1, the distance between the vertices ci and c2k+1 is 2k + 1− i in the cycle
(c1c2...ck+1...ci...c2k+1). Since, c2k+1 is adjacent to b1 and b1 adjacent to a1, therefore, a1 and ci are at
a distance 2k− i + 3.

d(a1, ci) = 2k− i + 3, k + 2 ≤ i ≤ 2k + 1.

In addition, ci is adjacent to di, therefore, (29) shows,

d(a1, di) = i + 2, 1 ≤ i ≤ k + 1.

For k + 2 ≤ i ≤ 2k + 1, the vertices di and d2k+1 are at a distance 2k + 1 − i in the cycle
(d1d2...dk+1...di...d2k+1). In addition, d2k+1 is adjacent to c2k+1, c2k+1 adjacent to b1 and b1 adjacent to
a1. Therefore, a1 and di are at a distance 2k− i + 4.

d(a1, di) = 2k− i + 4, k + 2 ≤ i ≤ 2k + 1.

As a result, dk+1 is farthest from a1; therefore, e(a1) = k + 3.
In order to find out the eccentricity of the vertices on the cycle (b1b2...bi...b2k+1), the distance

between b1 and bi in this cycle is i− 1.

d(b1, bi) = i− 1, 1 ≤ i ≤ k + 1. (30)

In addition,

d(b1, bi) = 2k− i + 2, k + 2 ≤ i ≤ 2k + 1.

Further, each bi is adjacent to ci and ci−1, therefore, (30) shows,

d(b1, ci) = i, 1 ≤ i ≤ k + 1. (31)

For k + 2 ≤ i ≤ 2k + 1, consider the cycle (c1c2...ck+2...ci...c2k+1). The distance between ci and
c2k+1 is 2k− i + 1. Since, c2k+1 is adjacent to b1, thus,

d(b1, ci) = 2k− i + 2, k + 2 ≤ i ≤ 2k + 1.

Each ci is also adjacent to di. It is shown from (31),

d(b1, di) = i + 1, 1 ≤ i ≤ k + 1.

For k + 2 ≤ i ≤ 2k + 1, consider the cycle (d1d2...di...d2k+1). The distance between di and d2k+1 is
2k− i + 1. As d2k+1 is adjacent to c2k+1 and c2k+1adjacent to b1, therefore,

d(b1, di) = 2k− i + 3, k + 2 ≤ i ≤ 2k + 1.

bi is also adjacent to ai, i.e.,
d(b1, ai) = i, 1 ≤ i ≤ k + 1.

For k + 2 ≤ i ≤ 2k + 1, consider the cycle (a1a2...ak+2...ai...a2k+1). The vertices ai and a2k+1 is
2k + 1− i. As a2k+1 is adjacent to a1, a1adjacent to b1, therefore,

d(b1, ai) = 2k− i + 3, k + 2 ≤ i ≤ 2k + 1.

Since, dk+1 is a vertex farthest from b1, therefore, e(b1) = k + 2.
Next, the distance between c1 and ci in the cycle (c1c2...ci...c2k+1) is,

d(c1, ci) = i− 1, 1 ≤ i ≤ k + 1. (32)
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Additionally,
d(c1, ci) = 2k− i + 2, k + 2 ≤ i ≤ 2k + 1.

Each ci is adjacent to di, from (32):

d(c1, di) = i, 1 ≤ i ≤ k + 1.

For k + 2 ≤ i ≤ 2k + 1, the vertices di and d2k+1 are at a distance 2k + 1 − i in the cycle
(d1d2...dk+2...di...d2k+1). The vertex d2k+1 is adjacent to d1 and d1 adjacent to c1. Therefore,

d(c1, di) = 2k− i + 3, k + 2 ≤ i ≤ 2k + 1.

Each ci is adjacent to bi and bi+1; Equation (28) implies,

d(c1, b1) = 1, d(c1, b2) = 1. (33)

For 3 ≤ i ≤ k + 2, b2 and bi are at a distance i− 2 in the path c1 → b2 → b3 → ...→ bi. Again, b2

is adjacent to c1; thus, we have:

d(c1, bi) = i− 1, 3 ≤ i ≤ k + 2. (34)

For k + 3 ≤ i ≤ 2k + 1, consider the cycle (b1b2...bk+1...bi...b2k+1). The distance between bi and
b2k+1 is 2k + 1− i in this cycle. As b2k+1 is adjacent to b1 and b1 adjacent to c1, therefore,

d(c1, bi) = 2k− i + 3, k + 3 ≤ i ≤ 2k + 1.

Since bi is adjacent to ai, it follows from (33) that:

d(c1, a1) = 2 , d(c1, a2) = 2

For 3 ≤ i ≤ k + 2, bi and b2 are at a distance i− 2 in the path c1 → b2 → b3 → ...→ bi → ai.
The vertex bi is adjacent to ai, b2 adjacent to c1. Therefore,

d(c1, ai) = i, 3 ≤ i ≤ k + 2.

For k + 3 ≤ i ≤ 2k + 1, the distance between ai and a2k+1 in the cycle (a1a2...ak+2...ai...a2k+1).
a2k+1 is again adjacent to a1, a1 adjacent to b1 and b1 adjacent to c1. For that reason,

d(c1, ai) = 2k− i + 4, k + 3 ≤ i ≤ 2k + 1.

Consequently, ak+2 is a vertex farthest from c1. Therefore, e(c1) = k + 2.
Next, take a vertex d1 on the outer cycle. In this cycle, (d1d2...di...d2k+1),

d(d1, di) = i− 1, 1 ≤ i ≤ k + 1. (35)

d(d1, di) starts to decrease for k + 2 ≤ i ≤ 2k + 1 as,

d(d1, di) = 2k− i + 2, k + 2 ≤ i ≤ 2k + 1.

Each di is adjacent to ci,
d(d1, ci) = i, 1 ≤ i ≤ k + 1.
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For k + 2 ≤ i ≤ 2k + 1, take a cycle (c1c2...ck+2...ci...c2k+1). The vertices ci and c2k+1 are at
a distance 2k + 1− i in this cycle. In addition, c2k+1 is adjacent to c1 and c1 adjacent to d1. Then,

d(d1, ci) = 2k− i + 3, k + 2 ≤ i ≤ 2k + 1.

Each ci is adjacent to bi and bi+1, i.e., d(d1, b1) = 2 and

d(d1, b2) = 2. (36)

For 3 ≤ i ≤ k + 2, the vertices b2 and bi are at a distance i− 2 in the path d1 → c1 → b2 → b3 →
...→ bi. b2 is adjacent to c1 and c1 adjacent to d1 in Sn. Therefore,

d(d1, bi) = i, 3 ≤ i ≤ k + 2. (37)

For k + 3 ≤ i ≤ 2k + 1, consider the cycle (b1b2...bk+2...bi...b2k+1). The vertices bi and b2k+1 are
2k + 1− i. b2k+1 is adjacent to b1, b1 adjacent to c1 and c1 adjacent to d1; for this,

d(d1, bi) = 2k− i + 4, k + 3 ≤ i ≤ 2k + 1.

In addition, bi is adjacent to ai. Therefore, (36) implies,

d(d1, a1) = , d(d1, a2) = 3.

For 3 ≤ i ≤ k + 2, the vertices b2 and bi are at a distance i− 2 in the path d1 → c1 → b2 → b3 →
...→ bi → ai. bi is adjacent to ai, b2 adjacent to c1 and c1 adjacent to d1 in Sn. Therefore,

d(d1, ai) = i + 1, 3 ≤ i ≤ k + 2.

For k + 3 ≤ i ≤ 2k + 1, consider the cycle (a1a2...ak+2...ai...a2k+1). The vertices ai and a2k+1 are
2k + 1− i. a2k+1 is adjacent to a1, a1 adjacent to b1, b1 adjacent to c1 and c1 adjacent to d1. As a result,

d(d1, ai) = 2k− i + 5, k + 3 ≤ i ≤ 2k + 1.

This means,
e(d1) = k + 3.

It shows that the maximum and minimum eccentricity among all of the vertices of Sn are k + 3
and k + 2, respectively. Therefore:

diam(Sn) = k + 3 =
n− 1

2
+ 3.

rad(Sn) = k + 2 =
n− 1

2
+ 2.

Thus, we can summarize the above results as,

Corollary 2. The center for the family of convex polytope S(n) is a subgraph induced by all of the vertices
of the interior and exterior cycles, and the periphery is the subgraphs induced by all of the peripheral vertices
{a1, a2, ..., ai, ..., a2k, d1, d2, ..., di, ..., d2k} of Sn, respectively.
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3.1. Average Eccentricity for Convex Polytopes Sn

Here, the average eccentricity for the family of Sn is being determined. The graph of Sn consist of
four major circles, and there are n vertices in each circle. Therefore, the total number of vertices in Sn

(i.e., ń) is 4n; it follows,

avec(Sn) =
1
ń ∑

u∈V(G)

eGu

By Theorem 3:

avec(Sn) =
1

4× (ń)
[n× {e(a1) + e(b1) + e(c1) + e(d1}]

=
1

4× n
[n× {(k + 2) + (k + 1) + (k + 1) + (k + 2)}]

=
1

4× n
[2n× {(k + 2) + (k + 1)}]

=
1
2
[2k + 3]

= k +
3
2

=
n + 3

2
.

and by Theorem 4,

avec(Sn) =
1

4× n
[n× {(k + 3) + (k + 2) + (k + 2) + (k + 3)}]

=
1

4× n
[2n× {(k + 3) + (k + 2)}]

=
1
2
[2k + 5]

= k +
5
2

=
n− 1

2
+

5
2

=
n + 4

2
.

Therefore, we have the following result:

avec(Sn) =


n + 3

2
, for all even values of n

n + 4
2

, for all odd values of n.

3.2. Illustration

Consider the graph of S6. Its center and periphery are shown in Figures 3 and 4.
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Figure 3. The graph of convex polytope S6.
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Figure 4. Centrality for S6.

4. The Center and Periphery for Convex Polytopes Tn

Here, we established the center and periphery for Tn and show that Tn is not self-centered.

Definition 9. The graph of convex polytope Tn can be obtained from the graph of convex polytope Qn by adding
new edges . It consist of three-sided faces, five-sided faces and n-sided faces. ai+1bi, i.e., V(Tn) = V(Qn) and
E(Tn) = E(Qn)

⋃{ai+1bi : 1 ≤ i ≤ n}.

This section begins with the following theorem on Tn.

Theorem 5. The diameter for the family of convex polytope Tn is,

diam(Tn) =


n
2
+ 2, for n = 2k;

n− 1
2

+ 2, for n = 2k + 1.

In addition, its radius,

rad(Tn) =


n
2
+ 1, for n to be even;

n + 1
2

, for n to be odd.

Proof. Consider, n = 2k, k ≥ 2. Choose take cycle (a1a2...ai...a2k). In this cycle:

d(a1, ai) = i− 1, 1 ≤ i ≤ k + 1. (38)
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For k + 2 ≤ i ≤ 2k, the distance between a1 and ai decreases from k− 1 to one, i.e.,

d(a1, ai) = 2k− i + 1, k + 2 ≤ i ≤ 2k.

Therefore, we must considered 1 ≤ i ≤ k + 1 in order to find the distance of a vertex a1 from a
vertex farthest from it in Tn.

In the graph of Tn, each ai is adjacent to bi and bi−1; thus, (38) implies,

d(a1, bi) = i, 1 ≤ i ≤ k. (39)

For k + 1 ≤ i ≤ 2k, the vertices bi and b2k are at a distance 2k− i in the cycle (b1b2...bk+1...bi...b2k).
In addition, b2k is adjacent to a1. Therefore, The distance between a1 and bi is 2k− i + 1.

d(a1, bi) = 2k− i + 1 k + 1 ≤ i ≤ 2k.

Further, each bi is adjacent to ci and ci−1, using (39).

d(a1, c1) = 2, d(a1, c2k) = 2

for 2 ≤ i ≤ k, consider path a1 → b1 → b2 → ... → bi → ci. The distance between b1 and bi is i− 1.
Each bi is adjacent to ci and b1 adjacent to a1. Therefore,

d(a1, ci) = i + 1, 2 ≤ i ≤ k. (40)

Next, for k + 1 ≤ i ≤ 2k− 1, consider the cycle (b1b2...bi+1...b2k). The vertices b2k and bi+1 are at a
distance 2k− i− 1. Further, b2k is adjacent to a1 and bi+1 adjacent to ci. Therefore,

d(a1, ci) = 2k− i + 1, k + 1 ≤ i ≤ 2k− 1.

ci is also adjacent to di. Therefore, (40) implies

d(a1, di) = i + 2, 1 ≤ i ≤ k.

For k + 1 ≤ i ≤ 2k, the vertices di and d2k are at a distance 2k − i in the cycle (d1d2...di...d2k).
In addition, each d2k is adjacent to c2k, c2k adjacent to b1 and b1 adjacent to a1; therefore,

d(a1, di) = 2k + 3− i, k + 1 ≤ i ≤ 2k.

Hence, dk is a vertex at the largest distance from a1. Therefore, e(a1) = k + 2.
Next, continue this for cycle (b1b2...bi...b2k); we choose a vertex b1, such that,

d(b1, bi) = i− 1, 1 ≤ i ≤ k + 1. (41)

The distance between b1 and bi decreases from k− 1 to one, when i increases from k + 2 to 2k.

d(b1, bi) = 2k− i + 1, k + 2 ≤ i ≤ 2k.

In addition, each bi is adjacent to ai and ai+1.

d(b1, a1) = 1, d(b1, a2) = 1
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and when 3 ≤ i ≤ k + 1, consider the path b1 → a2 → a3 → ...→ ai. a2 and ai are at a distance i− 2 in
this path, and a2 is adjacent to b1; therefore,

d(b1, ai) = i− 1, 3 ≤ i ≤ k + 1.

For k + 2 ≤ i ≤ 2k, consider the cycle (a1a2...ak+2...ai...a2k). The distance between ai and a2k is
2k− i. As a2k is adjacent to a1 and a1 adjacent to b1, therefore,

d(b1, ai) = 2k− i + 2, k + 2 ≤ i ≤ 2k.

In addition, bi is adjacent to ci and ci−1; using (41), we have:

d(b1, ci) = i, 1 ≤ i ≤ k. (42)

For k + 1 ≤ i ≤ 2k, consider the path b1 → b2k → b2k−1 → ...→ bi+1 → ci. The distance between
b2k and bi+1 is 2k− i− 1. Further, b2k is adjacent to b1. In addition, bi+1 is adjacent to ci. Therefore, the
distance between b1 and ci is 2k− i + 1.

d(b1, ci) = 2k− i + 1, k + 1 ≤ i ≤ 2k

Further, ci is adjacent to di; hence, (42) shows,

d(b1, di) = i + 1, 1 ≤ i ≤ k.

For k + 1 ≤ i ≤ 2k, the vertices di and d2k are at a distance 2k− i in the cycle (d1d2...dk+2...di...d2k).
The vertex d2k is adjacent to c2k and c2k adjacent to b1. Therefore,

d(b1, di) = 2k− i + 2, k + 1 ≤ i ≤ 2k.

Hence, dk is a vertex farthest from b1. Therefore, e(b1) = k + 1
Next, to find out the eccentricity of the vertices {ci, 1 ≤ i ≤ 2k}, take a vertex c1 among all ci’s,

and each ci is adjacent to bi, bi+1, i.e.,

d(c1, b1) = 1, , d(c1, b2) = 1

and when 3 ≤ i ≤ k + 1, consider the path c1 → b2 → b3 → ...→ bi. b2 and bi are at distance i− 2, and
again, b2 is adjacent to c1; thus, we have:

d(c1, bi) = i− 1, 3 ≤ i ≤ k + 1. (43)

For k + 2 ≤ i ≤ 2k, consider the cycle (b1b2...bk+2...bi...b2k). The distance between bi and b2k is
2k− i in this cycle. As b2k is adjacent to b1 and b1 adjacent to c1, therefore,

d(c1, bi) = 2k− i + 2, k + 2 ≤ i ≤ 2k.

Moreover, bi is adjacent to ai and ai+1; it follows from (43) that:

d(c1, a1) = 2 , d(c1, a2) = 2, d(c1, a3) = 2

For 4 ≤ i ≤ k + 2, ai and a2 are at a distance i − 3 in the path c1 → b2 → a3 → ... → ai.
Furthermore, a2 is adjacent to b2 and b2 adjacent to c1. Thus,

d(c1, ai) = i− 1, 4 ≤ i ≤ k + 2. (44)
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For k + 3 ≤ i ≤ 2k, the distance between ai and a2k in the cycle (a1a2...ak+3...ai...a2k) is 2k− i, and
a2k is adjacent to a1, a1 adjacent to b1 and b1 adjacent to c1. For that reason,

d(c1, ai) = 2k− i + 3, k + 3 ≤ i ≤ 2k.

Again, ci is adjacent to di. Hence,

d(c1, di) = i, 1 ≤ i ≤ k + 1

For k + 2 ≤ i ≤ 2k, the vertices d2k and di are at a distance 2k− i in the cycle (d1d2...dk+2...di...d2k),
and d2k is adjacent to d1 and d1 adjacent to c1 in Tn. Therefore,

d(c1, di) = 2k− i + 2, k + 2 ≤ i ≤ 2k

In order to find the distance between c1 and ci, 1 ≤ i ≤ k + 1, consider the path c1 → b2 → b3...→
bi → ci. The distance between b2 and bi is i-2, and bi is adjacent to ci and b2 adjacent to c1. Therefore,

d(c1, ci) = i, 1 ≤ i ≤ k + 1.

For more values of i, d(c1, ci) begins to reduce as,

d(c1, ci) = 2k− i + 2, k + 2 ≤ i ≤ 2k

This means that ak+2, ck+1 and dk+1 are the vertices farthest from c1. Therefore, e(c1) = k + 1.
Now, we find the eccentricities of the vertices on the cycle (d1d2...di...d2k). In this cycle,

d(d1, di) = i− 1, 1 ≤ i ≤ k + 1.

For k + 2 ≤ i ≤ 2k, the distance between d1 and di decreases from k− 1 to one.

d(d1, di) = 2k + 1− i, k + 2 ≤ i ≤ 2k.

As di adjacent to ci:
d(d1, ci) = i, 1 ≤ i ≤ k + 1. (45)

When i increases from k + 2 to 2k, the distance between di and d2k is 2k − i in the cycle
(d1d2...dk+2...di...d2k). In addition, d2k is adjacent to d1 and di adjacent to ci. Thus,

d(d1, ci) = 2k− i + 2, k + 2 ≤ i ≤ 2k.

As each ci is adjacent to bi, bi+1.

d(d1, b1) = 2 , d(d1, b2) = 2, (46)

For 3 ≤ i ≤ k + 1, consider a path d1 → c1 → b2 → b3 → ...→ bi. b2 and bi are at a distance i− 2,
and b2 is adjacent to c1 and c1 adjacent to d1 in Tn. Therefore,

d(d1, bi) = i, 3 ≤ i ≤ k + 1

For k + 2 ≤ i ≤ 2k, consider the cycle (b1b2...bk+2...bi...b2k). The distance between the vertices bi
and b2k is 2k− i. b2k is adjacent to b1, b1 adjacent to c1 and c1 adjacent to d1; for that reason,

d(d1, bi) = 2k− i + 3, k + 2 ≤ i ≤ 2k.
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In addition, bi is adjacent to ai and ai+1. Therefore, (46) implies,

d(d1, a1) = 3, d(d1, a2) = 3, d(d1, a3) = 3

For 4 ≤ i ≤ k + 2, the vertices a3 and ai are at a distance i− 3 in the path d1 → c1 → b2 → a3 →
a4 → ...→ ai. Further, a3 is adjacent to b2, b2 adjacent to c1 and c1 adjacent to d1 in Tn. Therefore,

d(d1, ai) = i, 4 ≤ i ≤ k + 2.

For k + 3 ≤ i ≤ 2k, consider the cycle (a1a2...ak+3...ai...a2k). The distance between the vertices ai
and a2k is 2k− i. a2k is adjacent to a1 and a1 adjacent to b1. Further, b1 adjacent to c1 and c1 adjacent to
d1. As a result,

d(d1, ai) = 2k− i + 4, k + 3 ≤ i ≤ 2k.

This shows that ak+2 is at the highest distance from d1. Therefore, e(d1) = k + 2.
Thus, it is concluded that the maximum eccentricity among all of the vertices of Tn is k + 2, and

k + 1 is the minimum eccentricity. Therefore, diam(Tn) = k + 2 = n
2 + 2.

rad(Tn) = k + 1 =
n
2
+ 1.

For odd n, the proof is analogous to the case discussed above and omitted.

Corollary 3. The center of Tn, when n is even, is the subgraph induced by the central vertices {bi ∪ ci : 1 ≤
i ≤ n}, while the periphery is the subgraph induced by the vertices of inner and outer cycles.

4.1. Average Eccentricity for Convex Polytopes Tn

There are four circles in the graph of Tn, and each circle has n vertices. The average eccentricity
for the graph of convex polytope Tn can be found out by dividing sum of eccentricities of all vertices
on each circle to its total number of vertices. Therefore,

avec(Tn) =
1
ń ∑

u∈V(G)

eGu

By Theorem 5:

avec(Tn) =
1

4× n
[n× {(k + 2) + (k + 1) + (k + 1) + (k + 2)]

=
1

4× n
[2n× {(k + 2) + (k + 1)}] = 1

2
[2k + 3] = k +

3
2
=

n + 3
2

.

and by Theorem 5,

avec(Tn) =
1

4× n
[n× {(k + 2) + (k + 2) + (k + 1) + (k + 2)}]

=
1

4× n
[3n× (k + 2) + n× (k + 1)] =

1
4
[4k + 7] =

1
4
[4(

n− 1
2

) + 7] =
n
2
+

5
4

.

Therefore, we get the following immediate result:

avec(Tn) =


n
2
+

5
4

, if n = 2k + 1 ;

n + 3
2

, if n = 2k .

4.2. Illustration

Consider the graph T6. The center and periphery for T6 are shown in Figures 5 and 6.
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Figure 5. The graph of convex polytope T6.
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Figure 6. Centrality for T6.

5. Concluding Remarks

In summary, we have studied the center and periphery of three types of families of convex
polytopes via finding a subgraph induced by central and peripheral vertices. The predetermined facts
about the eccentricity, radius and diameter of graphs play an important role in order to find the center
and periphery for specific families of graphs; the average eccentricity of the above families of graphs
has also been demonstrated.

6. Open Problems

This paper consist of the center and periphery for families of convex polytope graphs. This is
an open problem for new researchers to find the center and periphery for others families of graphs,
such as the corona product, composition product and lexicographic product of families of graphs.
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